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Abstract

A number of commercial cloud-based password
managers use bookmarklets to automatically populate
and submit login forms. Unfortunately, an attacker web
site can maliciously alter the JavaScript environment
and, when the login bookmarklet is invoked, steal the
user’s passwords. We describe general attack tech-
niques for altering a bookmarklet’s JavaScript envi-
ronment and apply them to extracting passwords from
six commercial password managers. Our proposed
solution has been adopted by several of the commercial
vendors.

1. Introduction

One promising direction for building engaging web
experiences is to combine content and functionality
from multiple sources, often called a “mashup.” In
a traditional mashup, an integrator combines gadgets
(such as advertisements [1], maps [2], or contact
lists [3]), but an increasingly popular mashup design
involves the user adding a bookmarklet [4] (also known
as a JavaScript bookmark or a favelet) to his or her
bookmark bar. To activate the mashup, the user clicks
the bookmarklet and the browser runs the JavaScript
contained in the bookmarklet in the context of the cur-
rent web page. This type of mashup is opportunistic:
the bookmarklet’s code runs within a web page it might
not have encountered previously. Bookmarklets were
popularized by the social bookmarking site Delicious,
whose bookmarklet enables users to add the currently
viewed site to their Delicious feed, URL and title in-
cluded, with just one click. Bookmarklets offer advan-
tages over browser plug-ins [5], [6]: they are easier to
develop, easier to install, and work with every browser.
Many other web sites have published bookmarklets,
including Google, Yahoo!, Microsoft Windows Live,
Facebook, Reddit, WordPress, and Ask.com.
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Figure 1. Developers assume the bookmarklet in-
teracts with the native JavaScript environment directly
(left). In fact, the bookmarklet’s environment can be
manipulated by the current web page (right).

If the user clicks a bookmarklet while visiting an
untrusted web page, the bookmarklet’s JavaScript is
run in the context of the malicious page, potentially
letting an attacker manipulate its execution by care-
fully crafting its JavaScript environment, essentially
installing a “rootkit” in its own JavaScript environment
(See Figure 1). Instead of interacting with the native
JavaScript objects, the bookmarklet interacts with the
attacker’s objects. This attack vector is not much of
a concern for Delicious’ social bookmarking service,
because the site’s own interests are served by advertis-
ing its true location and title. However, these rootkits
are a serious concern for more advanced bookmarklets,
where the malicious web site might benefit from sub-
verting the bookmarklet’s functionality. In particular,
these rootkits are a problematic for login bookmarklets.

By using bookmarklets, a server-based password
manager can enable one-click sign-on at each of
the user’s favorite sites, synchronization of passwords
across computers, and automatic generation of strong
passwords, features that are not found in typical
browser-built-in password managers. To automatically
log the user into the current site, the login book-
marklet must make a critical security decision about
which password to use. If the bookmarklet supplies the
wrong password, an attacker might be able to trick the
bookmarklet into revealing the user’s online banking
password.
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A traditional rootkit [7], [8] modifies the user-
program-accessible behavior of the operating system
and escapes detection by interception of the operat-
ing system’s reflection APIs, for example removing
itself from the operating system’s list of running pro-
cesses. Analogously, a JavaScript rootkit modifies the
bookmarklet-visible behavior of a JavaScript environ-
ment and escapes detection by overriding the native
JavaScript objects. Because bookmarklets are invoked
once a web page is already loaded, a malicious web
page is effectively a rootkit to the bookmarklet’s script.

We present attack techniques to corrupt a JavaScript
environment in today’s unmodified browsers. The
simplest technique shadows a native JavaScript ob-
ject, while the more complex uses explicit JavaScript
features [9] to defeat an advanced bookmarklet’s
reflection-based attempts at detecting our rootkit, and
even to extract the bookmarklet’s full source code,
which sometimes reveals inline secrets. We note that
the cat-and-mouse game between a malicious page
cloaking its interposed objects and a bookmarklet
attempting to detect them unfortunately favors the
malicious page, which is loaded first.

We examined six commercially available login
bookmarklets. Using our JavaScript rootkit techniques,
an attacker can fully compromise all six systems and
extract all of the user’s passwords if the user attempts
to use his or her bookmarklet when visiting the at-
tacker’s web site. In four of the systems, the attacker
can construct a rootkit that fools the bookmarklet into
revealing all of the user’s passwords with a single
click. In the remaining two cases, the attacker’s rootkit
cannot extract the passwords directly (because the
passwords are never present in the attacker’s JavaScript
environment), but the attacker can corrupt the book-
marklet’s cross-site scripting filter, which does run
in the attacker’s JavaScript environment, eventually
leading to the full compromise of the user’s password
store.

We propose a secure design for login bookmarklets
that does not rely on the untrusted JavaScript environ-
ment for security. We avoid the cat-and-mouse game
between the bookmarklet author and the attacker’s
rootkit. Our proposed solution is compatible with web
browsers that comprise 99% of the market and, as a
result of our disclosures, has been adopted by several
of the login bookmarklet vendors.

2. Threat Model

The attacker’s goal is to learn the user’s password
for an honest site, e.g., bank.com. We consider the web
attacker threat model [10], with a properly enforced

same-origin policy that isolates web pages that the
browser retrieved from different origins [11]. In partic-
ular, we assume the attacker owns an untrusted domain
name, e.g. attacker.com, operates a web server, and
possesses a valid HTTPS certificate for attacker.com.
We assume the user visits attacker.com where she
invokes her login bookmarklet, but we do not as-
sume that the user mistakes attacker.com for another
web site. If the login bookmarklet process normally
prompts the user for a master password, we assume
the user enters it at the appropriate time in the login
process. We argue this threat model is appropriate for
password managers because their purpose is to help the
user authenticate to multiple sites without revealing a
common password to all the sites.

3. Attack Techniques

The browser’s security model does not erect trust
boundaries within a single JavaScript environment.
Therefore, the attacker can employ a number of tech-
niques to disrupt the integrity or confidentiality of
trusted JavaScript running in an untrusted JavaScript
environment. For example, the attacker can shadow the
names of native objects and emulate their behavior,
or the attacker can alter the semantics of built-in
types by altering their prototype objects. By applying
these techniques to the JavaScript’s reflection API, the
attacker can hide these modifications from a book-
marklet that attempts to use introspection to uncover
the rootkit.

Typically, the attacker modifies the JavaScript en-
vironment by running malicious JavaScript while the
web page is loading, before the honest JavaScript runs.
None of the techniques presented in this section escape
the JavaScript sandbox, disrupt JavaScript running in
other security origins, or compromise the user’s oper-
ating system. Not all of these techniques work in all
browsers, but many of the techniques work in many of
the major browsers.

Shadowing. An attacker can replace native JavaScript
objects in the global scope by declaring global vari-
ables with the same name as the native objects. For
example, suppose the bookmarklet used the following
code to determine whether it was running on bank.com:

if (window.location.host == "bank.com")
doLogin(password);

In Internet Explorer and Google Chrome, the attacker
can disrupt the integrity of this computation by declar-
ing a global variable named window whose value is
an object with a fake location object:



var window = {
location: { host: "bank.com" } };

When the bookmarklet tries to read the host property
of the native location object, the bookmarklet in-
stead reads the host property of the fake location
object created by the attacker. Notice that the attacker
cannot modify the native location object directly
because assigning to the native location object
navigates the current frame to that location.

Browsers let web pages override native objects to
help with compatibility. For example, a pre-release
version of Firefox introduced an immutable JSON
object into the global scope, but this change broke a
number of prominent web sites that implemented their
own JSON object [12]. To avoid breaking these sites,
Firefox changed the JSON object to be mutable (e.g.,
overwritable by attackers).

Emulation. By interacting with an object, the book-
marklet could hope to determine whether the ob-
ject has been replaced by the attacker. For exam-
ple, the native location object behaves differ-
ently than a shadowing object if the bookmarklet
assigns to window.location. Consider the value
of window.location after running the following:

window.location = "#";

If window.location is the native object, the value
will be "https://bank.com/login#" after the
assignment. However, if window.location is an
object shadowing the real location object, the value
will be "#". Unfortunately, the attacker can emulate
the behavior of native objects using getters and setters.

Most JavaScript implementations, including Internet
Explorer 8, Firefox 3, Safari 3.1, Google Chrome, and
Opera 9.5, support “getter” and “setter” properties.
If an object obj has a getter for property p, the
expression obj.p results in calling the getter function
and using the return value of the function as the value
of the expression. Similarly, if obj has a setter for p,
the assignment obj.p = x calls the setter function
with the value of x as an argument.

Browsers implement getters and setters to let au-
thors of JavaScript libraries extend native objects to
emulate features available in other browsers. For ex-
ample, Internet Explorer supports the non-standard
document.all property. To emulate this features
in other browsers, some JavaScript libraries install a
getter for the all property of document. Getters and
setters are also used by JavaScript libraries to provide
more convenient DOM-like APIs to web developers.

Using getters and setters, the attacker can emulate
the behavior of native objects. For example, in Sa-
fari 3.1, Google Chrome, and Internet Explorer 8, the
attacker can emulate the native location object:

window.__defineGetter__("location",
function () {
return "https://bank.com/login#";

});
window.__defineSetter__("location",
function (v) { });

Because the attacker can construct the malicious
JavaScript after seeing the bookmarklet, the attacker
need only emulate the native objects to the extent
necessary to fool the bookmarklet.

Prototype poisoning. An attacker can also alter the
behavior of native objects, such as strings, functions,
and regular expressions, by manipulating the prototype
of these objects. For example, suppose the bookmarklet
attempts to ensure that a URL begins with either http
or https using the following regular expression:

(/ˆhttps?:/i).exec(url)

The attacker can compromise the integrity of this test
by modifying the prototype of regular expressions:

RegExp.prototype.exec =
function () { return true; }

Instead of calling the native exec function,
the bookmarklet will instead call the attacker’s
function, which erroneously reports that
javascript:doAttack() is a URL that begins
with http or https.

Reflection. The bookmarklet author could hope
to detect emulation or prototype poisoning us-
ing JavaScript’s reflection APIs. For example, most
JavaScript implementations provide a native method
called __lookupGetter__ that can be used to
determine whether a property has been replaced by
a getter. Similarly, the bookmarklet author could hope
to use a function’s toString property to determine
if a function has been replaced by the attacker. For
example, the bookmarklet might test for the existence
of a getter using the following code:

typeof obj.__lookupGetter__(
propertyName) !== "undefined"

Notice that this code carefully uses !== instead
of != to avoid the implicit call to valueOf
and uses typeof instead of comparing directly
against undefined because the attacker can redefine
undefined to a value of the attacker’s choice [13].



Unfortunately, the attacker can defeat even
this carefully crafted defense by emulating the
reflection API itself. In particular, the attacker
can replace __lookupGetter__ by altering
Object.prototype:

Object.prototype.__lookupGetter__ =
function() { ... };

Similarly, the attacker can alter the toString
method of every function by poisoning the
Function.prototype object.

Global variable hijacking. Bookmarklets cannot rely
on the confidentiality or integrity of global variables
because those variables can be controlled by getters
and setters. For example, suppose a bookmarklet con-
tained the following statement: var x = "#";. An
attacker can subvert the integrity of x by adding a
getter and a setter for x in the window object:

window.__defineGetter__(
"x", function () { ... });

window.__defineSetter__(
"x", function (v) { ... });

Instead of acting like a normal variable, x now behaves
according to the functions defined by the attacker.
The bookmarklet author can defend against this attack
by never using any variables or by wrapping the
bookmarklet inside an anonymous function:

(function () { ... code ... })();

Notice that this function must be anonymous because
otherwise the attacker could install a setter for the
name of the function and read its source code by
calling the function’s toString() method.

Caller. Wrapping the bookmarklet code in an anony-
mous function can lead to another vulnerability. If
the bookmarklet ever calls a function defined by the
attacker, the attacker can easily obtain a pointer to the
anonymous function by checking the call stack, and
can then read the function’s source code by calling
its toString() method. For example, suppose the
bookmarklet contains the following code:

(function () {
... if (obj == "bank.com") ... })();

Before comparing objects, the == operator implicitly
calls the valueOf method of each object, a function
which the attacker now controls. The attacker can then
extract the bookmarklet’s secrets in Internet Explorer,
Firefox 3, Safari 3.1, and Chrome. (The == operator
is analogous to equals? function in LISP, which can
be overridden by the objects being compared. The ===

operator, analogous to the eq? function in LISP, is
more predictable and (roughly) compares the identities
of the objects.) If obj is an object defined by the
attack, the attacker can read the entire source code
of the bookmarklet, including any passwords or keys
stored in the bookmarklet, by defining a valueOf
method on obj as follows:

functon f() {
... f.caller.toString() ...}

var obj = { valueOf: f };

The bookmarklet author can defend against this tech-
nique by never calling an untrusted function, but that
goal is difficult to achieve, especially if the browser
supports getters and setters. In most browsers, every
property read or write could potentially be a function
call that leaks the bookmarklet’s secrets.

4. Case Studies

To evaluate whether these attack techniques are
sufficient to defeat real-world implementations of login
bookmarklets, we examine six commercially available
bookmarklet-based password managers. We find that
all six systems are vulnerable to our attacks. Four of
the systems rely on the integrity of native JavaScript
objects to protect the user’s site-specific passwords.
The remaining two systems run cross-site scripting
filters in the attacker’s JavaScript environment, where
they can be corrupted using our attack techniques.

The commercial systems we examine are signifi-
cantly more complex than the prototype bookmarklets
we constructed in our laboratory. For example, the
systems often have a substantial server-side compo-
nent that lets users manage their passwords via their
browsers and several contain a master password so
user’s can log into their password manager from mul-
tiple machines. The bookmarklets themselves often
retrieve additional JavaScript code from the server to
implement encryption or site-specific form filling func-
tions. However, even with all these additional layers of
complexity, our attack techniques apply directly.

VeriSign. The first system we examine is VeriSign’s
One-Click Sign-In Bookmark [14]. To extract the
user’s Facebook password, for example, the attack need
only shadow the global location object:

var location = {
hostname: "www.facebook.com",
href: "http://www.facebook.com/" };

Alternately, the attacker can define a getter for
window.location:



window.__defineGetter__(
"location", function() {

return {
hostname: "www.facebook.com",
href: "http://www.facebook.com/"

};});

A variant on this attack extracts all of the user’s
site-specific passwords at once, rather than one per
click. We reported this vulnerability to VeriSign on 10
October 2008, and VeriSign implemented and deployed
the secure design we suggest in Section 5.

MashedLife. MashedLife is a bookmarklet-based
password manager. The attacker can extract
the user’s bank password by poisoning the
String.prototype object:

String.prototype.toLowerCase =
function() { return "bank.com"; };

This attack works because the bookmarklet converts
the site’s host name to lower case before determining
which password to use. We reported this vulnerability
to MashedLife on 10 October 2008 and suggested
the secure design we detail in Section 5. MashedLife
deployed our design on 2 November 2008.

Passpack. Passpack is a bookmarklet-based password
manager. Passpack’s bookmarklet calls the toString
method on the current page’s location, letting the at-
tacker extract the user’s Delicious password, for exam-
ple, by poisoning the String.prototype object:

String.prototype.toString =
function() {

return "https://delicious.com"; };

By itself, this attack is not sufficient because Passpack
also validates the HTTP Referer header. However,
they implement lenient Referer validation [15] (they
accept requests that lack a Referer header). By using
one of a number of Referer suppression techniques,
the attacker can extract the user’s passwords.

We reported this vulnerability to Passpack on 10 Oc-
tober 2008, and Passpack implemented and deployed
the secure design we suggest in Section 5 within 20
minutes. Passpack has also published a full description
of the vulnerability and their patch [16].

1Password. 1Password, a password manager for Mac-
OS-X-based browsers, includes a bookmarklet-based
component designed for the iPhone. Unlike the three
systems described above, the 1Password bookmarklet
does not contact its server during the login process.
Instead, 1Password stores all of the user’s site-specific
passwords within the bookmarklet itself. When the user

Figure 2. 1Password’s iPhone bookmarklet leaks
passwords to web sites, so the setup dialog rec-
ommends using the native application instead.

clicks his or her bookmarklet, the encrypted passwords
are stored in a global variable named database.
Using the global variable technique, the attacker can
extract all of the user’s encrypted passwords at once:

window.__defineSetter__("database",
function (v) { ... });

Then, the 1Password bookmarklet prompts the user for
a master password by displaying a form within the cur-
rent page. This master password is used as a decryption
key for the password database. The attacker can over-
ride the event handler that the bookmarklet calls after
the user types their master password and decrypt every
password in the database using the decryptEntry
function defined by the bookmarklet.

We reported this vulnerability to 1Password on 12
October 2008. 1Password has acknowledged that their
bookmarklet is exploitable as we describe, but has de-
cided not to repair the vulnerability. A dialog displayed
during setup recommends using the 1Password iPhone
application instead (See Figure 2).

Clipperz. Unlike the above four bookmarklet-based
password managers, Clipperz’s bookmarklet does not
fill out the site’s password form. Instead, the book-
marklet helps the user register a new site with the
Clipperz service. Upon being clicked, the bookmarklet
serializes the contents of the current page’s login
form and displays the raw data in current page. The
bookmarklet then instructs the user to copy and paste
this information into the Clipperz web site. When the
user wants to log in to the site using Clipperz, Clipperz
uses JavaScript to submit a form with the recorded
login credentials to the target site, essentially mounting
a login cross-site request forgery attack [15] against
the target site. Only sites that are vulnerable to login
cross-site request forgery can be used with Clipperz.



Because Clipperz creates the cross-site login form
on the clipperz.com domain, Clipperz sanitizes the
form parameters to prevent cross-site scripting at-
tacks. This sanitization is performed by the book-
marklet during the registration process, but the at-
tacker can circumvent the filter by poisoning the
Array.prototype object:

Array.prototype.join = function() {
... return evilString; }

We reported this vulnerability to Clipperz on 13 Oc-
tober 2008, recommending that they perform the sani-
tization in the clipperz.com security context. Clipperz
patched this vulnerability on 17 October 2008.

MyVidoop. MyVidoop uses a design similar to Clip-
perz, but instead of relying on the user to paste
the serialized form details into the password man-
ager site, MyVidoop’s bookmarklet sends them to
myvidoop.com via an HTTP request. As with Clipperz,
MyVidoop relies on the bookmarklet to run a cross-site
scripting filter in the attacker’s JavaScript environment.
The attacker can evade the filter by poisoning the
RegExp.prototype object:

RegExp.prototype.exec =
function () { return true; }

To defend against this attack, MyVidoop should filter
cross-site scripting attacks on the server. We reported
this vulnerability to MyVidoop on 12 October 2008.
MyVidoop patched the issue on 13 October 2008.

5. Defenses

The login bookmarklets we examine are vulnerable
to attack because they rely on an untrusted JavaScript
environment. To defend against these attacks, a book-
marklet requires confidential storage for secrets and a
mechanism to authenticate the site before delivering
the user’s site-specific password.

Instead of storing the user’s passwords in the book-
marklet, the password manager can store a short master
secret in a Secure cookie for pwdmngr.com. The
browser’s security policy prevents the attacker’s web
site from reading the contents of these cookies. To
read the master secret, the bookmarklet can initiate
a network request to https://pwdmngr.com by adding
a <script> tag to the current page. The password
manager can then use the master secret as a key to
decrypt the site-specific passwords stored on the server.

The bookmarklet must authenticate which web site
receives the password. We recommend using the HTTP
Referer header [17] for authentication. When the

bookmarklet issues a network request to pwdmngr.
com, the password manager server should disclose the
user’s bank.com password only if the Referer header
begins with the string https://bank.com/. If the
Referer header is absent or contains an unexpected
value, the password manager should not disclose the
user’s site-specific password. Although some network
operators suppress the header, the Referer header
is present 99.9% of the time over HTTPS [15], and
the password manager should be using HTTPS for
transferring the user’s passwords over the network.

We propose combining these browser security fea-
tures to implement a secure login bookmarklet. In
our design, the bookmarklet itself does not store any
secrets and is identical for all users. The bookmarklet
simply inserts a <script> tag into the current doc-
ument that requests a script from pwdmngr.com over
HTTPS. The password manager’s server then validate
the master secret and Referer header.

If the master secret is missing (perhaps because
it was evicted or was deleted), the script navigates
the user to https://pwdmngr.com/login, where the user
can enter his or her master passphrase. (In particular,
the password manager must not prompt the user for
the passphrase in a window under the control of the
attacker because the attacker can steal the user’s master
passphrase by drawing a malicious password entry
control on top of the honest control.)

6. Conclusion

Bookmarklets provide web developers a simple and
rapidly deployable mechanism for interacting with
third-party content. However, bookmarklets run in the
JavaScript environment of the third-party page, which
might have been manipulated by the page. Because
JavaScript environments are so pliable, an attacker
can exploit this plasticity to replace many of the
native JavaScript objects with replicas that behave ma-
liciously. These simulated environments are analogous
to rootkits in conventional operating systems.

We examined six commercial login bookmarklets
that handle sensitive information, such as passwords.
We discover that an attacker can steal the user’s
password from all six systems Although the concrete
attacks we demonstrate are simple, often only one or
two lines of JavaScript, we describe general techniques
for mounting more sophisticated attacks. Our proposed
solution has been adopted by three of the six vendors.
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