
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

Business Issues in Free Software Licensing

Donald K. Rosenberg
Stromian Technologies

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

BUSINESS ISSUES IN FREE
SOFTWARE LICENSING

Donald K. Rosenberg, Stromian Technologies

I. BACKGROUND: FREE SOFTWARE
MOVEMENT AND SOFTWARE VENDORS

There are some odd ideas circulating about Linux and
the Free Software or Open Source movements. We can
call these ideas primitive because they are simplistic
and not well thought-out, and because they go back to
the reductio ad absurdum of the primitive peoples who
believed (and still believe, we hear) in what
anthropologists like to talk about as the “cargo cults.”

According to the anthropologists, these movements
began among South Seas peoples in the 19th century,
when they awaited the arrival of large ships which
would restore to them all the wonderful goods their
peoples had owned once, long ago. After World War
II these cults took the form of waiting for aircraft to
descend from the skies with their abundant cargoes.
We are told that the believers even constructed runways
with mock aircraft on them, hoping to attract the
passing air traffic.

We all smile—how much more we know than they—
but today there is a firm body of thought on the one
hand that eventually all software in the future will be
produced, shared, and enjoyed on the Bazaar model:
freely developed and given away by loosely-organized
programmers around the world, and superior in quality
and design to the commercial products of today. Given
the behavior of much modern commercial software, one
can understand why the believers hope so fervently for
the millennium.

But commercial vendors are just as likely to make the
same mistake: we see articles and columnists hyping
the idea that if a software firm can just take the leap of
faith into arms of Open Source, they will attract legions
of the world’s smartest programmers, working
ceaselessly and without compensation to improve the
code the vendor has thrown among them. It does not
help that any announcement that a company is releasing
source code is regarded by the business community as a
desperate act of last resort.

What should be the approach of a commercial software
vendor to the Open Source space? And what do they
really want, anyway?

II. WHAT ARE SOFTWARE VENDORS TRYING
TO ACCOMPLISH?

Software vendors want to a) protect their financial
investment in their code, product, and channels of
distribution and b) to recover that investment, along
with a profit. Somehow they want to make sure their
work is not appropriated, and that there will be
revenues which will keep the doors open and the
families fed.

These two themes—protection of property and recovery
of investment—will dominate the rest of the talk.

III. HOW CAN THEY DO IT?

A. Current Open Source Models

Protecting the property and tapping the correct place in
the distribution stream for revenue are the chief
purposes of commercial software licensing. There is a
great variety of licenses available—the key thing to
remember is that they should reflect the business goals
of the vendor.

GNU General Public License

The goals of the Free Software Foundation are to keep
its GNU software (and any other software using the
GNU GPL) completely free and Open Source.
Nevertheless, many vendors can make money from it
by providing related services. Two highly-successful
examples are O’Reilly & Associates, who publish
books about Open Source products, and Red Hat
Software, a branding company described by its
Chairman, Bob Young, as “a company that gives away
its software and sells its sales promotion items.” Red
Hat distributes the Linux OS for money on CD (as well
as for free from its Web site), and like numerous other
companies, sells software support.

The GPL is a good thing for an operating system: it is
something that all users want kept free and open; all
developers want equal access to the system so that none
can take advantage of operating system secrets. Most
tool and application vendors, however, will not want to
go into the Open Source arena until they understand
how it works, and how they are going to structure their
company, products, and services to make money in this
arena.

There are different ways to go about this; to pick just a
couple of examples of products that make their source
code available for free, let’s look at Scriptics and
Aladdin. Both succeed by segmenting their product

line into free product and revenue product, on the basis
of licensing.

Scriptics

The popular scripting language and toolkit, Tcl/Tk,
claims a million users. Scriptics is a new firm founded
by the developer to commercialize Tcl/Tk. While
keeping the core material and its improvements free, the
firm will develop niche applications for money.
Because the user has the right to modify and distribute
the source code, John Osterhout recognizes that he has
to keep the free side of his business happy in order for
Scriptics to remain the center of Tcl/Tk development.
He intends to do this by keeping the scripting language
and toolkit good enough so that the free side attracts
new users. In turn the Scriptics Web site aims to be the
principal online resource for Tcl/Tk, attracting
prospects and converting them to users. Profits from
the commercial side of the operation will pay for the in-
house developers working on Open Source Tcl/Tk.

Thus Scriptics divides the free/revenue sides of the
business by focussing one on core technology, and the
other on niche adaptations of or extensions to that core.

Aladdin

Aladdin’s Ghostscript splits itself into different
free/revenue versions using different licenses: a
separate enterprise called Artifex distributes a
commercial version called Aladdin Ghostscript, and
there are free versions under the Aladdin Free Public
License and GNU Ghostscript. The Aladdin Free
Public License resembles the GPL and has additional
restrictions. You can’t accept money for the free
program except for cost of disks and copying, you can’t
put the free version on a disk with any paid-for
software; the bundling restriction helps kill commercial
distribution of the free product. On the other hand, the
licensed commercial user can use Ghostscript in his
application and also get interim updates to the code;
free users wait for the annual update.

Thus Aladdin divides the business into free/revenue by
segmenting the technology into core technology vs.
paid latest updates to that core.

But these examples do not mean that any vendor can
release the source code for a product, and expect the
community to enthusiastically pick it up and improve it.
The vendor needs to provide a good infrastructure for
maintaining the source tree, including bug lists and
version control, and in all the enterprises named
above—Red Hat, Scriptics, and Aladdin—there are
paid staffs of programmers who maintain and improve

the source code, and then make it available (at some
point) for free to the community. All of this effort is not
merely a matter of being seen to cooperate with the
Open Source community by making contributions; it is
all part of maintaining a leadership position as the
authoritative source of the free product.

Different licenses are used to maintain different degrees
of control in upholding this leadership. Red Hat and
Scriptics ride bareback: Red Hat faces competition
from other Linux distributions, and by offering a better
version of Tcl/Tk, it is theoretically possible for another
party to make Scriptics a secondary player in the free
version of Tcl/Tk. Much more restrictive are the recent
licenses such as the Sun Community Source License,
which makes it clear that although the source is open to
examination, modifications will be tightly controlled by
Sun through a testing and revenue-license program, and
that only Sun may maintain a source tree for the code.
It will be interesting to see what success these
restrictive licenses will enjoy.

Restrictive as the Sun Community Source License is, it
is at least fairly clear when it comes to the user. A
more difficult problem has been introduced into the
Linux community by the free or public versions of the
license for the Troll Tech Qt library.

Q Public License

The library is a toolkit: the user is free to use and
distribute it and his derivative application--unless it's a
commercial application. Commercial distribution is
effectively stopped by requiring the derivative
application to give away its source code and permit
further distribution and modification. Commercial
users must buy the Qt toolkit under the Professional
Edition License; the developer pays a round sum for the
Qt toolkit and the right to distribute runtimes.

The chief objection to the old Qt Free Edition License
was that it did not permit the Qt toolkit itself to be
modified in any way when it was distributed. The
license also contained incorrect and confusing language
about use of the GPL or a BSD-type license as
alternatives. These are the perils of writing your own
license and not getting it right. The new QPL, however,
has cleared away the confusion and now also permits
the distribution of separate patches to the Qt source
code, so the Open Source Initiative (OSI)
(www.opensource.org) says the license now meets the
Open Source Definition (OSD).

There are still plenty of voices objecting, however, to
Qt’s licensing, even under the new QPL, and the voices
are raised because Qt is the technology underlying

KDE, the highly successful free Linux desktop. Note
that a developer can never use the Q Public License on
anything but some sort of UNIX platform (basically
Linux), and that Windows (and the Mac) are reserved
for the Professional Edition.

The motives are clear: Troll Tech wants to control the
toolkit, and to prevent forking; therefore, no
modifications are permitted. The firm makes the
product free on Linux in hope of collecting
improvements from users, and wants to reserve the
Windows and Macintosh platforms for their revenue
product. Troll Tech wants to use the Q Public License
to promote their technology, spread its use and
familiarity, and lure people (some will say trick them)
to the Professional Edition.

B. Licensing Dependencies

In some respects the business model for the Qt toolkit is
not unlike other free/commercial segmentation. If you
want to distribute for money, you pay Troll Tech
money. But the stinger is that persons developing
software on the free and highly popular KDE desktop
suddenly find that they owe money to a third party,
Troll Tech, for use of the underlying QT toolkit. As
long as the application was free, there was no problem;
as soon as the developer wanted make money (or even
just to collect a little revenue to cover his costs), the
licensing terms undergo a change of state that is
working to undermine the formerly unified Linux
desktop.

This is an issue of license dependencies; it can be a
problem as bad as software dependencies.

In the case of Qt, the solution to the dilemma may not
include the survival of Troll Tech. Although some
people think Qt is such great technology that Troll Tech
will be able to get what they want, others are so
horrified by this problem that we have forking in what
had seemed to be a common Linux desktop. Debian
dropped Qt and KDE from its distribution, posting an
explanation on the site; Eric Troan explained on the
Red Hat site that Red Hat could not put Qt and KDE
software on the basic development CD if its licensing
terms were so different from the other development
software there.

Finally, resentment about Qt’s licensing has caused
movements to spring up to clone Qt. Harmony, a
project to clone a Free Qt, is still active, I’ve been told,
and the GNOME movement has sprung up to put out a
rival toolkit distributed under the GPL and LGPL, just
like Linux. There are desktop projects based on
GNOME, and Red Hat is working on one of them. It

will take the Linux community a while to get over this
split, which has its origins in licensing dependency.

At the end of this paper is a diagram of a simple
scheme of purposes and dependencies:

Base Layer – Operating System – GPL

Operating systems stand to benefit the most from the
GPL because they are the broadest-base software; the
users of an operating system will always outnumber the
users of any particular application on that system.
There is more choice in applications than in operating
systems. The GPL may do its best work at this level,
forcing a standardization of all licenses, and
aggressively keeping it open and free of all closed
material. Openness is highly important for operating
systems; applications can get away with more-limiting
licenses because their usage is more limited.

In this Base Layer of the OS, vendors can earn money
on source code distribution, and they can earn money
on binary distribution (so long as source code goes out
with it). Linux distributions using the GPL are more or
less successful businesses

Second Layer, Part A: Toolkits

At the next level, software may be either free or
commercial, but it is essential that there be a firewall
here (the vertical red division); the same toolkit should
not be capable of changing state. The firewall
represents not a separation of products for
free/commercial, but clear licenses for those products.
Tcl/Tk, for instance, lets you use it for commercial
products or for free products.

Second Layer, Part B: Extensions and Libraries for
Toolkits

At this next higher level, extensions and libraries need
to adopt the same licensing (either free or commercial)
as the toolkits they serve. Otherwise we're back in the
"checkerboard" or "change-of-state" license.
Developers must watch licensing dependency as closely
as software dependencies.

Third Layer: Tools and Applications

Of the applications which are not tools, we can expect a
larger proportion of these to be binary or proprietary.
The proprietary applications can build upon both

proprietary and free foundations, provided they respect
the licensing of the layers upon which they are built.

Tools, however, need to follow the same choice as
toolkits, being either on the Free side or the Proprietary
side, so that their products likewise have unambiguous
licenses.

At this third level, vendors have a strong desire for
proprietary code to protect their development
investment, and distribution in binaries is common for
many products. The LGPL is often not enough to allow
for use of proprietary code, and so BSD-style licenses
fit here, as do products like the Apache-based
Stronghold. The Aladdin Free Public License operates
at this level in the Free category, while the Perl Artistic
License, which is useable for closed, embedded
commercial work fits into the Free and Proprietary
category (we might ask whether this license would
work as well for an application as it does for a
language/script).

C. Further Innovation and Cooperation
Between Commercial and Open Source
Software

So far we’ve talked about some of the common ways a
software vendor can ally with the Open Source
movement (such as distribution and support), and we’ve
seen that a license must be carefully written to achieve
the business goals of the licensor. We’ve also seen that
it is not a matter of tossing the software out there and
expecting brownies to work on it during the night—a
software vendor must provide the infrastructure and
encouragement in order to form a coding community
around the software.

This brings us to the question of a strategy for use of
Open Source to gain advantage for proprietary
software. In a world in which a technology must be
brought to market quickly and just as quickly achieve
nearly universal distribution merely in order to survive,
there are many products which are stymied by the
chicken-and-egg problem: how to get the user or client
piece out there, when there are few users of the server
component, and, reciprocally, how to get the larger
server engine adopted, when it cannot be demonstrated
that there are many correspondent client pieces out
there waiting to be served. The traditional approach to
this is to give the client piece away, hoping that low
price will make rapid adoption more likely. The vendor
still has the obligation to maintain and distribute the
client piece.

I would like to suggest that an Open Source model
could be adopted for the client piece. To take a

concrete example, the VRML standard for 3D viewing
over the Web (currently being renamed and updated
into the Web3D standard), depends on users having a
VRML browser attached to their Web browser. For a
variety of reasons, efforts at developing and distributing
VRML-standard browsers have not been successful,
and have been largely abandoned. A company wishing
to promote a server-side (that is, development) VRML
product should release an Open Source VRML browser
project. Because the browser would be useful as a
reader for all VRML objects, not just those from the
particular vendor, the developer community might well
take an interest in perfecting and maintaining such a
browser, because it would have uses far wider than
serving a single vendor. The vendor’s benefit would be
seeing the VRML market expand, and growing close
ties to the VRML developer community that would
both provide Open Source support for the browser, and
be the likeliest customer pool for the server product.

There is room for all sorts of combinations of profitable
cooperation between commercial software vendors and
Open Source software—we have hardly begun to try
them all.

