
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

Multilingual vi Clones:
Past, Now and the Future

Jun-ichiro itojun Hagino
KAME Project

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Multilingual vi clones:
past, now and the future

Jun-ichiro itojun Hagino/KAME Project
itojun@{iijlab,kame}.net

Yoshitaka Tokugawa/WIDE Project

 Outline

 Internal structures and issues in:
 Japanized elvis
 Multilingual nvi

 Experiences gained in asian multibyte characters support

 Note: Unicode is not a solution here
 to be discussed later

 Assumptions in normal vi/vi clones

 ASCII (7bit) only, 8bit chars just go through
 The terminal software defines interpretation

 One byte occupies 1 column on screen (except tabs)
 Assumes western languages - space between words

 Architecture of normal vi

 tty input, filesystem, tty output (curses), vi internal buffer use the
same encoding

curses

regex

vi buffer
management

tty

files

tty

 Western character encodings

 Character encoding and the language => assumptions
 Single byte encodings

 "ASCII" encoding
 ASCII character set: 94 characters

 Latin 1 encoding:
 ASCII character set
 iso-8859-1 character set, shifted 0x80

 00 80 F0
x0

x8

xF
ascii

 ISO-2022 system

 Extensible character encoding system
 By switching multiple character sets by escape sequences
 Character set contains 94, 96, 94x94, 96x96, 94x94x94 chars

 ISO-2022 subset encodings are everywhere
 Latin 1: fixed mapping with ASCII and iso-8859-1
 X11 ctext

GRGL

G1 G2 G3 G4

character sets
94, 96, 94x94, 96x96, 94x94x94

designate

invoke

 Japanese encodings

A B C 4A ;z 1

 JIS X0208 character set: 94x94 characters
 iso-2022-jp: Internet emails/netnews, UNIX
 41 42 43 1B 24 42 34 41 3B 7A 1B 28 42 31

 euc-jp: UNIX and other places
 41 42 43 B4 C1 BB FA 31

 sjis: MS-DOS and Macintosh community
 41 42 43 8A BF 8E 9A 31
 Not an ISO-2022 variant

 Same character sets, different encoding method
 Single encoding is not sufficient - they all are used in various

places!

 Asian people needs multibyte/multilingual
support

 Multibyte character sets support
 2 or more byte/letter

 Byte width != character width on screen
 Input methods: ondemand conversion from ASCII to multibytes
 Use third-party libraries, like Canna or Wnn

 Switching various external encoding methods
 For file and terminal I/O

 Seamless multilingual support

 => Clarify/remove the assumptions made in vi implmentation

 European people benefits from this as well
 Handle iso-8859-x, koi8-r, and others in proper way

 Multilingual is more desirable than monolingual (Japanize)
 Maintenance issues

 architecture of multilingual vi

 Can’t assume single encoding
 Need input method (inside or outside vi)
 Must be able to switch encodings
 tty input, input method, filesystem, tty output can use different encoding

 Internal encoding is the key issue

curses

regex

vi buffer
managementtty

files

input
method

tty

 Design goals: What is "seamless"?

 No "Chinese mode" nor "Japanese mode" in the editing session

 Any character set can be mixed in a text, without twist
 Some of character encodings can accomodate, say Chinese, Korean

and Japanese character sets at the same time
 Mixed language texts - Chinese document annotated with Japanese

 Preserves information in the file
 No implicit conversion/translation
 Implicit conversion confuses user, and it does not match the vi design
 If you need conversion, use :!

 Behaves just like normal vi, over multilingual characters
 regex, cursor movement, whatever

 "jelvis" - Japanized elvis

 First generation of implementation
 Based on elvis by Steve Kirkendall

 Internal encoding: euc-jp
 External encoding: iso-2022-jp, euc-jp, sjis

 Internal encoding: 41 42 43 B4 C1 BB FA 31

 A B C 4A ;z 1

 Internal encoding bytewidth == screen width
 2 bytes, 2 columns

 Maintenance/synchronization problem with kelvis/celvis
 => Multilingual implementation is desirable

 "nvi-m17n" - multilingualized nvi

 Current generation of implementation
 Based on nvi by Keith Bostic

 Internal encoding: internal multibyte encoding
 ASCII is 1 byte
 0x80-0xff are "multibyte tag" character
 This is similar to Mule (multilingual emacs)

 External encoding: any of iso-2022 variants, and others

 Internal encoding: 41 42 43 88 34 41 88 3B 7A 31
 "88" is the tag for JIS X0208 Kanji character set

A B C 4A ;z 1

 Internal encoding bytewidth != screen width

 Additional features

 Switching I/O encoding:
 :set fileencoding=iso-2022-jp

 :set inputencoding=big5

 :set displayencoding=euc-tw

 Input method support: "Canna" library from NEC
 :set cannaserver=server.itojun.org

 :set cannakey=^O

 Word boundary issues

 Asian words are not separated by spaces!

 Define word movement over Asian characters
 The exact "word" movement requires syntactic analysis and dictionary

lookup (very hard)

 Define character classes
 Kanji letters, hiragana letters, western, symbols

 Define movement over word boundary
 Solves problem for most of the cases

 GkLn$OFreenix2q>l$K$$$^$9!!
 Need for explicit language information

 Regex library

 Some of regex library uses 2^7 as flag bit
 Separate flag bit from the characters

 Character range ([a-z0-9]) as bitmap
 Impossible for multibyte chars/multilingual internal code
 Bitmap for ASCII, start-end for others

 Metacharacter (.) must match against single multibyte char

 Curses library

 Store character set information into screen buffer
 Render accordingly on redraw
 Chararcter set
 Character data (multibyte)
 Offset from the beginning of the glyph

 Multi-width characters support
 Need to erase right half, when left half is overwritten

A B C 4A ;z 1

 Multibyte with addch() is cumbersome, use addstr()
 Intermediate state is hard to manage

 Unicode as internal encoding?

 Unicode characteristics:
 Well documented external multibyte encoding (UTF8/16)
 16 or 32bit fixed wide char for internal encoding (UCS2/4)

 Asian characters are "unified"
 Some of Chinese/Korean/Japanse characters are mapped into single

Unicode codepoint
 As different characters are mapped into single codepoint, information

will be lost (inverse conversion is impossible)
 Language tagging -> "fixed-width wide char" is impossible

 Unicode is useful for "monolingual" asian processsing
 For example, ASCII + Chinese only
 Or, modal support like "Chinese mode" or "Korean mode"

 Unicode is not useful for multilingual processing
 Additional Unicode support would be good
 Unicode as a character set we support, not as the internal encoding

 nvi-m17n: next generation

 Use wide char (wchar_t) for internal code
 ISO/JIS standards suggest wide char
 Memory is now cheap

 Can’t really rely upon vendor’s locale library
 Too little support for stateful multibyte encodings

 Need massive modification to various places
 Support for multiple encoding in locale library
 Support for wide char in curses/regex/whatever

 Feedback modified locale library to the community

 Add Unicode support
 Supply file converter as external tool

 Wide character library: status

 Wide char library is not really ready
 curses, regex
 Need support for column width query (for curses)

 Bugs in vendor-supplied locale library
 Not heavily tested?

 Changing from char to wchar_t is a big leap for the source code
tree

 glibc
 Assumes Unicode (no support for stateful encodings), single encoding

in a program

 runelocale library
 Encoding switchable by $LANG, no support for stateful encodings,

single encoding in a program

 Observation

 Normal vi
 1byte/char
 Single encoding (= ASCII)

 Japanized vi (jelvis)
 Multibyte/char, bytewidth == width on screen
 Multiple encoding in a program

 Multilingual vi (nvi-m17n)
 Multibyte/char, bytewidth != width on screen
 Multiple encoding in a program

 Next multilingual vi
 Wide char, bytewidth != width on screen
 multiple encoding in a program

 Multilingualization = less assumptions!

 Future work

 Provide modified runelocale library separately to *BSD

 Right-to-left languages

 Support for other input method: cWnn (Chinese Wnn)

 References

 mailing list: nvi-m17n@foretune.co.jp
 discussions are (at this moment) mainly in Japanese language,

questions in English are welcome

 ftp://ftp.foretune.co.jp/pub/tools/jelvis/

 ftp://ftp.foretune.co.jp/pub/tools/nvi-m17n/

 Ken Lunde, "CJKV information processing", O’reilly

