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Abstract

This paper presents experiences with high-speed TCP/IP
networking on a gigabit-per-second Myrinet network,
using a Myrinet messaging system called Trapeze. We
explore the effects of common optimizations above and
below the TCP/IP protocol stack, including zero-copy
sockets, large packets with scatter/gather I/O, checksum
offloading, message pipelining, and interrupt suppres-
sion. Our experiments use extended FreeBSD 4.0 ker-
nels on a range of Intel and Compaq Alpha platforms.
These experiments give a snapshot of the FreeBSD
TCP/IP implementation running at bandwidths as high
as 956 Mb/s. We also report some results using Gigabit
Ethernet products from Alteon Networks, which yielded
a TCP bandwidth of 988 Mb/s using zero-copy sockets
on a 500 MHz Compaq Alpha 21264 workstation.

1 Introduction

Over the next few years, new high-speed network stan-
dards — primarily Gigabit Ethernet — will consoli-
date an order-of-magnitudegain in network performance
already achieved with specialized cluster interconnects
such as Myrinet and SCI. As these technologies gain ac-
ceptance in LANs and server farms, they will place new
performance pressure on network software. Although
the latest desktop-class computers are capable of out-
standing I/O performance, there is little quantitative ba-
sis to: (1) predict the performance they will actually
deliver using standard TCP/IP networking on the new
generation of networks, (2) quantify the importance of
proposed optimizations (e.g., Jumbo Frames, zero-copy
buffering, checksum offloading) to achieving the poten-
tial hardware performance, or (3) judge when alterna-
tives such as user-level networking (e.g., VIA) are jus-
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tified. In most cases published performance results are
based on research prototypes using previous-generation
technology.

This paper presents experiences with high-speed
TCP/IP networking on a gigabit-per-secondMyrinet net-
work [3]. Our work is based on the Trapeze messaging
system [10, 5, 1, 9], which consists of a messaging li-
brary and custom firmware for Myrinet. Using Trapeze
firmware, Myrinet delivers communication performance
at the limit of I/O bus speeds on many platforms, closely
approaching the full gigabit-per-second wire speed on
the most powerful hosts. This makes Trapeze/Myrinet
a good vehicle for probing the limits of both the hard-
ware and the networking software. In the experiments
presented here, we exercised a Trapeze/Myrinet net-
work with a network device driver supporting a standard
kernel-based TCP/IP protocol stack on a range of DEC
Alpha and Intel-based platforms. Our purpose is to pro-
vide a quantitative snapshot of the current state of the art
for point-to-point TCP/IP communication on short-haul
networks with low error rates, low latency, and gigabit-
per-second bandwidth.

The kernel used in our experiments is FreeBSD 4.0,
a descendent of the Berkeley 4.4 BSD code base, which
incorporates several years worth of TCP/IP refinements.
It is now widely accepted that current TCP implemen-
tations are capable of delivering a high percentage of
available link speeds with large transfers, reflecting the
success of these earlier efforts. However, on gigabit-
per-second networks the performance of even the best
TCP/IP implementations is dependent on key optimiza-
tions for low-overhead data movement, both above and
below the protocol stack. One goal of this paper is to
provide quantitative data to support insights into the ef-
fects and importance of these optimizations on current
workstation/PC technology.

This paper outlines the key optimizations important
for obtaining hardware potential from TCP/IP, their im-
plementation in the network interface, network driver,



and kernel socket code, and their effect on delivered
TCP bandwidth, UDP latency, and CPU utilization at
the sender and receiver. Below the TCP/IP stack, the
Trapeze NIC firmware and network driver support page-
aligned payload reception, interrupt suppression, large
frames (MTUs), TCP checksum offloading, and an adap-
tive message pipelining scheme that balances low la-
tency and high bandwidth. Above the protocol stack,
at the socket layer, we have implemented new kernel
support for zero-copy data movement in TCP as an ex-
tension to a zero-copy stream interface implemented by
John Dyson. We show the effect of each of these fac-
tors on TCP/IP networking performance. We also report
some results using similar features with Gigabit Ethernet
adapters and switches from Alteon Networks.

Using Trapeze/Myrinet with zero-copy sockets,net-
perf attained a peak point-point bandwidth close to the
link speed at 956 Mb/s on a 500 MHz Alpha 21264
PC platform equipped with prototype LANai-5 adapters
from Myricom. At this speed, bandwidth is limited
by the LANai-5 CPU. Newer controllers with upgraded
CPUs promise still higher bandwidths. In fact, we mea-
sured bandwidth of 988 Mb/s on the same platform over
the Alteon network, which uses a faster CPU on the
adapters. The previous point-to-point record reported
at netperf.orgwas 750 Mb/s, measured on a pair of
mainframe-class SMP servers interconnected by HiPPI.
We are not aware of any better result on public record.

This paper is organized as follows. Section 2 gives an
overview of the Trapeze network interface, and Section
2.2 outlines the various optimizations for low-overhead
TCP/IP communication. Section 3 presents performance
results. We conclude in Section 4.

2 TCP/IP with Trapeze/Myrinet

This section presents background material important for
understanding the performance results in Section 3. We
first give an overview of the Trapeze messaging system,
with a focus on the features relevant to TCP/IP network-
ing. We then outline the optimizations used above and
below the TCP/IP protocol stack to reduce data move-
ment overhead and per-packet handling costs.

2.1 Trapeze Overview

The Trapeze messaging system consists of two compo-
nents: a messaging library that is linked into the kernel
or user programs, and a firmware program that runs on
the Myrinet network interface card (NIC). The Trapeze
firmware and the host interact by exchanging commands
and data through a block of memory on the NIC, which
is addressable in the host’s physical address space using

programmed I/O. The firmware defines the interface be-
tween the host CPU and the network device; it interprets
commands issued by the host and controls the movement
of data between the host and the network link. The host
accesses the network using macros and procedures in
the Trapeze library, which defines the lowest level API
for network communication across the Myrinet. Since
Myrinet firmware is customer-loadable, any Myrinet site
can use Trapeze.

Trapeze was designed primarily to support fast kernel-
to-kernel messaging alongside conventional TCP/IP net-
working. Trapeze currently hosts kernel-to-kernel RPC
communications and zero-copy page migration traffic
for network memory and network storage, a user-level
communications layer for MPI and distributed shared
memory, a low-overhead kernel logging and profiling
system, and TCP/IP device drivers for FreeBSD and
Digital UNIX. These drivers allow a native TCP/IP pro-
tocol stack to use a Trapeze network through the stan-
dard BSDifnet network driver interface. Figure 1 de-
picts this structure.

Trapeze messages are shortcontrol messages(maxi-
mum 128 bytes) with optional attachedpayloadstypi-
cally containing application data not interpreted by the
networking system, e.g., file blocks, virtual memory
pages, or a TCP segments. The data structures in NIC
memory include two message rings, one for sending and
one for receiving. Each message ring is a circular array
of 128-byte control message buffers and related state,
managed as a producer/consumer queue shared with the
host. From the perspective of a host CPU, the NIC pro-
duces incoming messages in the receive ring and con-
sumes outgoing messages in the send ring.

Trapeze has several features useful for high-speed
TCP/IP networking:

� Separation of header and payload. A Trapeze
control message and its payload (if any) are sent
as a single packet on the network, but the con-
trol message and payload are handled separately
by the firmware and message system. In partic-
ular, payloads are transferred to and from aligned
page frames of host memory, which the driver allo-
cates from the virtual memory page pool. This en-
ables the zero-copy optimizations described in Sec-
tion 2.2.1, assuming the driver is able to place the
TCP/IP headers in the control message portion of
the packet.

� Large MTUs with scatter/gather DMA. Since
Myrinet has no fixed maximum packet size (MTU),
the maximum payload size of a Trapeze network is
easily configurable. Trapeze supports scatter/gather
DMA so that payload buffers may span multiple
noncontiguous page frames. Scatter/gather allows
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Figure 1: Using a Trapeze endpoint for kernel-based TCP/IP networking.

us to run TCP with MTUs of 64 KB or larger, yield-
ing very low per-packet overheads in the network-
ing code.

� Adaptive message pipelining. The Trapeze
firmware pipelines DMA transfers on the I/O bus
and network link to minimize large packet la-
tency [10]. The pipelining scheme adaptively
reverts to larger unpipelined DMA transfers in
bandwidth-constrained scenarios [9]. This tech-
nique enables Trapeze to combine low large-packet
latencies with high bandwidth under load.

One item missing from this list isinterrupt suppres-
sion. Handling of incoming messages is interrupt-driven
when Trapeze is used from within the kernel; incom-
ing messages are routed to the destination kernel mod-
ule (e.g., the TCP/IP network driver) by a common in-
terrupt handler in the Trapeze message library. Inter-
rupt handling imposes a per-packet cost that becomes
significant with smaller MTUs. Some high-speed net-
work interfaces reduce interrupt overhead by amortiz-
ing interrupts over multiple packets during periods of
high bandwidth demand. For example, the Alteon Giga-
bit Ethernet NIC includes support for adaptive interrupt
suppression, selectively delaying packet-receive inter-
rupts if more packets are pending delivery. Trapeze im-
plements interrupt suppression for a lightweight kernel-
kernel RPC protocol [1], but we do not use receive-side
interrupt suppression for TCP/IP because it yields lit-
tle benefit for MTUs larger than 16KB at current link
speeds.

2.2 Low-Overhead Data Movement

This section describes the optimizations used above and
below the TCP/IP protocol stack to reduce data move-
ment overhead for copying and checksumming data.
These overheads increase with the volume of data moved
per unit of time; at gigabit-per-second bandwidths, data
movement overhead can consume a large share of CPU
cycles. Unfortunately, faster CPUs do not help apprecia-
bly because copying is memory-intensive.

We describe the data movement optimizations as ex-
tensions to the conventional FreeBSD send/receive path,
which is based on variable-sized kernel network buffers
called mbufs [8]. Standardmbufscontain their own
buffer space, whileexternal mbufshold pointers to other
kernel buffers, e.g., file buffers or the virtual memory
page frames used as Trapeze payload buffers. Packet
data is stored in linked chains ofmbufspassed between
levels of the system; the TCP/IP protocol stack adds and
removes headers and checksums by manipulating the
mbufsin the chain. On a normal transmission, the socket
layer copies IP message from a user memory buffer into
a chain, which is passed through the TCP/IP stack to the
network driver. On the receiving side, the driver con-
structs a chain containing each incoming packet header
and payload, and passes the chain through the TCP/IP
stack to the socket layer. When the receiving process
accepts the data, e.g., with areadsystem call, a socket-
layer routine (soreceive) copies the payload into user
memory and frees the kernelmbufchain.



2.2.1 Zero-Copy Sockets

Conventional TCP/IP communication incurs a high cost
to copy data between kernel buffers and user process vir-
tual memory at the socket layer. This situation has moti-
vated development of techniques to reduce or eliminate
data copying bypage remappingbetween the user pro-
cess and the kernel when size and alignment properties
allow [6, 4, 7]. A page remapping scheme should pre-
serve the copy semantics of the existing socket interface.

In general, zero-copy optimizations assume MTUs
matched to the page size of the endstation hardware and
operating system. Ideally, each packet payload is an
even multiple of the page size, and is stored in buffers
that naturally align on page boundaries. On the receive
side, the NIC must separate the headers and payload into
separate buffers, leaving the payload page-aligned. This
can be done with special support to recognize TCP/IP
packets on the NIC, or by constructing receivembuf
chains that optimistically assume that received packets
are TCP packets. In Trapeze, the sending host explicitly
separates header and payload portions of each packet;
the Trapeze driver optimistically assumes that data in the
first mbufof an outgoing chain is header data, and places
its data in the control message. The link layer preserves
this separation on the receiving side.

We implemented zero-copy TCP/IP extensions at the
socket layer in the FreeBSD 4.0 kernel, using code de-
veloped by John Dyson for zero-copy I/O through the
read/writesystem call interface. The zero-copy exten-
sions require some buffering support in the network
driver, but are otherwise independent of the underly-
ing network, assuming that it supports sufficiently large
MTUs and page-aligned sends and receives. Section 3
reports results from zero-copy TCP experiments on both
Trapeze/Myrinet and Alteon Gigabit Ethernet hardware.

The page remapping occurs in a variant of the
uiomovekernel routine, which directs the movement of
data to and from the process virtual memory for all vari-
ants of the I/O read and write system calls. Our zero-
copy socket code is implemented as a new case along-
side Dyson’s code inuiomoveco, which is invoked from
socket-layersosendand soreceivewhen a process re-
quests the kernel to transfer a page or more of data to
or from a page-aligned user buffer.

For a zero-copy read,uiomovecomaps kernel buffer
pages directly into the process address space. If the
read is from a file, it creates a copy-on-write mapping
to a page in FreeBSD’s unified buffer cache; the copy-
on-write preserves the file data in case the user process
stores to the remapped page. In the case of a receiver
read from a socket, copy-on-write is unnecessary be-
cause there is no need to retain the kernel buffer after
the read; ordinarilysoreceivesimply frees the kernel

buffers once the data has been delivered to the user pro-
cess. The remapping case instead frees just thembuf
headers and any physical page frames that previously
backed remapped virtual pages in the user buffer. Thus
most receive-side page remappings actually trade page
frames between the process and the kernel buffer pool,
preserving equilibrium.

On the send side, copy-on-write is used because the
sending process may overwrite its send buffer once the
send is complete. The send-side code maps each whole
page from the user buffer into the kernel address space,
references it with an externalmbuf, and marks the page
as copy-on-write. Thembufchains and their pages are
then passed through the TCP/IP stack to the network
driver, which attaches them to outgoing messages as
payloads. When each mbuf is freed on transmit com-
plete, the external free routine releases the page’s copy-
on-write mapping. The new socket layer code han-
dles only anonymous virtual memory pages; we do not
support zero-copy transmission of memory backed by
mapped files because this would duplicate the func-
tionality of thesendfileroutine already implemented by
David Greenman.

2.2.2 Checksum Offloading

Checksum offloading eliminates host-side checksum-
ming overheads by performing checksum computation
with hardware assist in the NIC. TCP/IP checksum of-
floading is supported by Myricom’s recently released
LANai-5 adapter, and by other high-speed network in-
terfaces including Alteon’s Gigabit Ethernet NICs based
on the Tigon-II chipset.

The NIC and the host-side driver must act in con-
cert to implement checksum offloading. The LANai-
5 and Alteon NICs support checksum offloading in the
host-PCI DMA engine, which computes the raw 16-bit
ones-complement checksum of each DMA transfer as
it moves data to and from host memory. Using this
checksum need not demand any significant change to
the IP stack: simply setting a MHWCKSUM flag in the
header of anmbufchain bypasses the software check-
sum computation inin cksum. However, using hardware
checksumming for IP protocol family is complicated by
three factors:

� Movement of each packet may occur in multiple
DMA transfers to or from distinct host memory
buffers. If the hardware makes each partial check-
sum available to the NIC firmware separately (as
Myricom’s LANai-5 NIC), then firmware and/or
host software must combine these partial check-
sums (using one’s complement addition) to obtain
a complete checksum.



� TCP or UDP checksumming actually involves two
checksums: one for the IP header (including fields
overlapping with the TCP or UDP header) and a
second end-to-end checksum covering the TCP or
UDP header and packet data. In a conventional sys-
tem, TCP or UDP computes its end-to-end check-
sum before IP fills in its overlapping IP header
fields (e.g., options) on the sender, and after the IP
layer restores these fields on the receiver. Check-
sum offloading involves computing these check-
sums below the IP stack; thus the driver or NIC
firmware must partially dismantle the IP header in
order to compute a correct checksum.

� Since the checksums are stored in the headers at the
front of each IP packet, a sender must complete the
checksum before it can transmit the packet head-
ers on the link. If the checksums are computed by
the host-NIC DMA engine, then the last byte of the
packet must arrive on the NIC before the firmware
can determine the complete checksum.

Trapeze currently supports TCP checksum offload-
ing only on LANai-5 receivers. Checksum offloading
is not supported on the sending side, in part because
Trapeze uses message pipelining to minimize latency of
large packets. With message pipelining the front of a
packet may be transmitted on the link before the tail
of the packet arrives on the NIC, and therefore before
the checksum can be determined. One solution is to ap-
pend the end-to-end checksum to the tail of the outgo-
ing packet; while this would depart from the standard
IP packet format, it is transparent to the end hosts be-
cause the Trapeze firmware and driver can reconstruct
the packet at the receiving side. Of course, this approach
would compromise interoperability in a standards-based
network containing some endstations that do not support
checksum offloading. The alternative, apparently im-
plemented in Alteon’s NICs, is to use store-and-forward
packet transmission at the sender, which increases large-
packet latencies (see Section 3.4).

Trapeze uses the NIC DMA engines to checksum
packet data, but header checksums are computed by
special-case code for TCP/IP in the Trapeze network
driver. The Trapeze firmware combines partial check-
sums for all DMA operations on the payload portion
of the message, then passes the partial checksum to the
host-side driver through a logical control register. The
driver then computes an IP header checksum, computes
the layer-4 header checksum using a scratch copy of the
IP header, combines the layer-4 header checksum with
the payload checksum to determine the complete end-
to-end checksum, and compares the computed check-
sums with those transmitted in the packet. Our phi-
losophy is that any instructions that manipulate the IP

header should be executed on the fast host CPU rather
than on the NIC. In contrast, the Alteon NICs perform
both header and data checksums in the NIC firmware.

3 Experimental Results

We ran our experiments on four Intel and Alpha hard-
ware configurations:

� Pentium-II/440LX . These are Dell Dimension
XPS D-300 workstations containing a 300 MHz
Intel Pentium-II processor and an Intel 440LX
chipset. Each machine has 128MB of RAM and a
Myricom Lanai 4.1 SAN adapter (M2M-PCI32C)
connected to a 32-bit 33 MHz PCI slot.

� Pentium-II/440BX. These machines use a
Pentium-II processor clocked at 450 MHz on
an Asus P2B motherboard with an Intel 440BX
chipset. Each machine has 128MB of RAM and
a Myricom Lanai 4.1 LAN adapter (M2F-PCI32)
connected to a 32-bit 33 MHz PCI slot.

� DEC Miata . These are Digital Personal Worksta-
tion 500au platforms with a 500MHz Alpha 21164
CPU, a 96KB L2 cache, a 2MB L3 cache, and the
Digital 21174 “Pyxis” chipset. These machines are
configured with 512MB of RAM and a Myricom
Lanai 4.1 SAN adapter connected to a 32-bit 33
MHz PCI slot. The Pyxis limits I/O bandwidth to
approximately 103 MB/s on the sending side.

� DEC Monet. These are Compaq XP1000 Pro-
fessional Workstations, with a 500 MHz Alpha
21264 CPU, a 4MB L2 cache, and the Digital
21272 “Tsunami” chipset. These machines are
configured with 640MB of RAM and a Myricom
Lanai 5.2 SAN adapter connected to a 64-bit
33 MHz PCI slot. The Lanai-5 is described in
http://www.myri.com:80/scs/PCI64X/PCI64X-
spec.html. We also report some Gigabit Ethernet
measurements from this platform, using Alteon
ACENIC adapters based on the Tigon-II chipset
(firmware revision 12.3.8), interconnected through
an ACEswitch 1080 (firmware revision 5.0.24).

All systems run kernels built from the same FreeBSD
4.0 source pool, which was current as of 4/15/99. The
hosts are interconnected through diverse Myrinet switch
models, which have no measurable effects on the results.

To take timings, we usednetperfversion 2.1pl3 built
from the FreeBSD ports collection. We modifiednetperf
to collect CPU utilization by reading the system timers
directly from kernel memory vialibkvm, in order to cor-
rectly charge interrupt overhead to thenetperfprocess.
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Figure 2: TCP Bandwidth

All tests were run on isolated machines, and the vast
majority of the interrupts serviced came from the gigabit
NIC.

3.1 TCP Bandwidth

We measured unidirectional point-to-point TCP band-
width usingnetperf -l60 -C -c, which sends as much data
as it can in 60 seconds, then computes the average band-
width over the interval. Socket buffers were set to 512
KB for all tests with an MTU of 4KB or greater. Tests
with smaller MTUs used 64 KB socket buffers. Note that
thenetperfsender and receiver do not access the data in
these tests.

Figure 2 shows the average Trapeze TCP bandwidth
on all four platforms as a function of the MTU. To show
the effects of copying and checksumming, we tested
with the zero-copy optimizations enabled and disabled,
and with checksumming enabled and disabled. All
checksumming is done in software except on the receiv-

ing side of the Monet configuration, which uses check-
sum offloading on the LANai-5 adapter as described in
Section 2.2.2.

The graphs show the bandwidth costs of copying and
checksumming, primarily on the older platforms with
less memory system bandwidth. The effect is most ap-
parent on the P-II/440LX, which is capable of a peak
bandwidths of only 450 Mb/s if it is forced to copy the
data, while peak bandwidth almost doubles to 780 Mb/s
when the zero-copy optimizations are enabled. The cost
of checksumming is more pronounced with zero-copy
enabled, since the checksum code must bring the data
into the CPU cache. On the P-II/440BX, superior mem-
ory system bandwidth allows the system to achieve close
to its peak bandwidth even while copying or checksum-
ming, but not both, and only for very large MTUs when
the CPU is not already busy with packet-handling over-
heads. This is also visible on the Miata, which has com-
parable memory system bandwidth, but the effect is less
pronounced because the I/O bus limits the achievable



bandwidth. The Monet has adequate memory system
bandwidth to deliver a peak bandwidth of 956 Mb/s for
sufficiently large MTUs, even while copying and check-
summing. Even so, copying and checksumming have a
significant effect on the available CPU cycles remaining
to process the data at these speeds, as Section 3.2 shows.

Figure 2 also shows the difficulty of achieving high
bandwidth using the small 1500-byte MTUs of the Gi-
gabit Ethernet standard. In addition to increasing packet
handling overheads, small MTUs defeat the zero-copy
optimizations. The combined effect causes the host CPU
to saturate at bandwidths as low as 300 Mb/s, and none
of the platforms is capable of using more than half of the
available link speed. Section 3.2 examines the overheads
in more detail. All platforms are capable of achieving
most of their peak bandwidth at MTUs large enough to
contain a TCP/IP header and a page of data; the Intel
platform bandwidths rise faster because zero-copy kicks
in at the 4KB page size, while the Alpha platforms use
an 8KB page size.

While we were pleased with the Trapeze bandwidth
results on Monet, which we believed to be an open-
source record, we measured even higher bandwidths
with Alteon’s new Gigabit Ethernet products. The
Monet delivers point-to-point TCP bandwidth of 988
Mb/s with zero-copy sockets over Alteon. The higher
bandwidth is apparently due to lower overheads in the
Alteon controller, which sports dual 100 MHz MIPS
R4000-like processors delivering several times the pro-
cessing capacity of the LANai-5 CPU. We anxiously
await the LANai-7 from Myricom.

3.2 CPU Utilization

The potential for high bandwidth has little value in prac-
tice if communication overheads leave no CPU power
to process the data. CPU utilization is just as im-
portant as bandwidth, since bandwidths will drop if
application processing saturates the CPU. All the op-
timizations we explore are fundamentally directed at
reducing overhead; they increase the delivered band-
width only indirectly by delaying saturation of the host
CPUs. Overheads are reduced by reducing packet han-
dling costs with larger MTUs, reducing interrupt costs
with larger MTUs or interrupt suppression, and reducing
data-touching costs through zero-copy page remapping
or checksum offloading.

Figures 3 and 4 show the average CPU utilizations on
the sender and receiver respectively for the bandwidth
tests reported in Section 3.1. Some of the results vary
noticeably due to several factors. On the receiver, this
may be affected by incomplete support for page color-
ing in the Alpha FreeBSD port; the runs show a bimodal
distribution on the Alpha receiver configurations when

copying is used. In the zero-copy sender results, irreg-
ularities result whennetperfreuses a send buffer page
before the driver determines that the previous transmit
on that buffer is complete. The Trapeze driver detects
this case and conservatively copies the page, although
netperfdoes not actually store to the buffer in this exper-
iment; if the process did store to the page then a copy-
on-write would result. The sender-side zero-copy opti-
mizations trigger with varying probabilities on different
configurations, and are affected by CPU speed, the pro-
cess send buffer size, and the Trapeze ring size, given
that Trapeze suppresses transmit-complete notices until
a send ring entry is reused. Some step behavior results
from the TCP implementation selecting packet sizes that
are integral multiples of the page size for odd MTUs;
these effects are less pronounced on the Intel platforms,
which use 4KB rather than 8KB pages. The numbers
presented here are averages of 20 runs.

On the receiving side, all graphs show a trend of de-
clining CPU utilization with large MTUs, with much
lower CPU utilizations when data-movement costs such
as copying and checksumming are eliminated. The
downward trend with larger MTUs is most pronounced
on the faster platforms, since the bandwidth of older
platforms such as 440LX is initially limited by the CPU;
reduced overheads result in higher bandwidth rather than
lower CPU utilization. Similarly, CPU utilizations ini-
tially increase with larger MTUs on the sending side.
This is because the larger MTUs allow higher bandwidth
at the receiver, driving the sender to transmit faster.
Once peak bandwidth is attained, the CPU utilizations
begin to drop with increasing MTU. The graphs reflect
the higher CPU costs on the receiving side, primarily
due to lower interrupt overheads at the sender.

These graphs show that copying and checksumming
optimizations are extremely important even on the plat-
forms that are capable of achieving peak bandwidth
without them. Any reduction in overhead translates di-
rectly into lower CPU utilization, leaving more cycles
available for application processing at a given band-
width. Note also that disabling checksumming yields
little benefit on the Monet receiver because of check-
sum offloading: the small incremental CPU cost is due
to checksumming the headers in the driver.

The receiver utilizations in Figure 3 again reinforce
the importance of the Jumbo Frames standard promul-
gated by Alteon and Microsoft, which would increase
the Gigabit Ethernet MTU to 9000 bytes. The Intel re-
ceiver CPUs are saturated at 1500-byte MTUs,showing
that the bandwidth limitation near 300 Mb/s for stan-
dard Ethernet MTUs is due to receiver CPU saturation
caused by the overhead of handling the larger number
of packets. Slightly higher 1500-byte bandwidths are
achieved on the Alphas due to the faster host CPUs: on
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Figure 3: Receiver CPU Utilization

Miata the 1500-byte bandwidth is limited at 313 Mb/s
by saturation of the CPU on the LANai-4 NIC, while the
faster LANai-5 NIC delivers bandwidths closer to 410
Mb/s before saturating. However, at this speed packet
handling overheads push the Monet’s Alpha 21264 host
CPU to 90% utilization, even while it is driving less than
half of the link speed. The Monet’s receiver utilization
drops below 30% with 8KB packet sizes when zero-copy
and checksum offloading are enabled, even as the deliv-
ered bandwidth more than doubles to 956 Mb/s.

Looking further, the results show that the 9000-byte
MTU of the Jumbo Frames standard is sufficient to
achieve near-peak bandwidth on all platforms. However,
Figure 3 shows that if other host overheads are present,
per-packet overheads can constrain peak bandwidth even
if Jumbo Frames are used. The 440BX platform does not
attain its peak bandwidth until 16KB MTUs, and does
not achieve its minimal CPU utilization until the MTUs
reach 57KB. Receiver CPU utilization on this platform
drops from 88% to 48% as the MTU grows from 8KB to

16KB.

3.3 TCP Overhead

To better understand the costs responsible for the CPU
utilizations presented in Figures4 and 3, we usediprobe
to derive a breakdown of receiver overheads on Miata for
selected MTU sizes at bandwidth levels held in the 300-
400 Mb/s range by a slow sender. Iprobe (Instruction
Probe) is an on-line profiling tool developed by the per-
formance group (High Performance Servers/Benchmark
Performance Engineering) of Digital/Compaq. It uses
the Digital Alpha on-chip performance counters to re-
port detailed execution breakdowns with low overhead
(3%-5%), using techniques similar to those reported
in [2]. We gathered our data using a local port of
iprobe suite-4.0to FreeBSD. This port will be integrated
into the next release ofiprobe.

Figure 5 shows the breakdown of receiver overhead
into five categories: data movement overheads for copy-
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Figure 4: Sender CPU Utilization

ing and checksumming, interrupt handling, virtual mem-
ory costs (buffer page allocation and/or page remap-
ping), Trapeze driver overheads, and TCP/IP protocol
stack overheads. With a 1500-byte MTU the Miata is
near 80% saturation at a bandwidth of 300 Mb/s. While
the overhead can be reduced somewhat by checksum of-
floading and interrupt suppression, about 55% of CPU
time is spent on unavoidable packet-handling overheads
in the driver and TCP/IP stack, and data movement costs
at the socket layer. With an 8KB payload, the bandwidth
level has increased to 360 Mb/s, while CPU time spent
in packet handling has dropped from 55% to 24%. Data
movement overheads grow slightly due to the higher
bandwidth, but the larger MTU introduces the oppor-
tunity to almost fully eliminate these overheads by en-
abling zero-copy optimizations. While the zero-copy
optimization has some cost in VM page remapping, the
reduced memory system contention causes other over-
heads to drop slightly, leaving utilizations in the 24%
range if checksums are disabled (checksum offloading is

not supported on the LANai-4 NICs used in this exper-
iment). Again, these measurements reinforce the inade-
quacy of the 1500-byte standard Ethernet for high-speed
networking, and the importance of the Jumbo Frames
standard.

The rightmost set of bars in Figure 5 shows the over-
head breakdown for 57K MTUs at a bandwidth of 390
Mb/s. While data movement overheads increase slightly
due to the higher bandwidth, these costs can be elimi-
nated with page remapping, which increases VM over-
heads but again causes other non-VM overheads to drop
slightly due to reduced memory system contention. In
the zero-copy experiment, the larger MTU does not af-
fect VM page remappings at all relative to the 8KB
MTU, since these costs are proportional to the number of
pages of data transferred. However, per-packet TCP/IP
and driver overheads drop from 8% to just 3% of CPU,
even as bandwidth increases by about 10%. The Miata
can handle the 390 Mb/s of bandwidth with a comfort-
able 10% CPU utilization.
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Figure 5: TCP Receiver CPU Utilization Breakdown

3.4 UDP Latency

Figure 6 shows the one-way UDP latency for various
packet sizes using Trapeze and the Alteon Gigabit Eth-
ernet on Monet. These results were obtained withnet-
perf -tUDP RR -l60, which ping-pongs a packet of the
requested size for one minute. We plotted points for
one half of the average round-trip latency for one-byte
packets and for packet sizes of 1KB to 8KB in 1KB
increments. For these experiments we disabled check-
sum offloading on the Alteon after observing unexpect-
edly high latencies with checksum offloading enabled.
The comparison is fair because Trapeze does not support
checksum offloading on this platform. The two sets of
lines for each configuration show the latency with soft-
ware checksums and with checksums disabled. Zero-
copy sockets are responsible for the lower latency in all
configurations when the 8KB page size is reached.

Message Size (bytes)

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

1 1024 2048 3072 4096 5120 6144 7168 8192

50
15

0
25

0
35

0

Gigabit Ethernet
Gigabit Ethernet Without Checksum
Trapeze/IP
Trapeze/IP Without Checksum

Figure 6: UDP One-Way Message Latency

In the Trapeze runs, the slope change at 1KB results
from use of a payload buffer. The one-byte Trapeze
packets are sent in a control message with no payload
buffer, resulting in lower latency. For the 1KB-7KB
sizes, the data is copied into a payload buffer and sent
as a Trapeze payload.

The latency results show the benefits of message
pipelining in Trapeze, which overlaps transfers on the
link with transfers on the sender and receiver I/O bus.
This overlap causes packet latencies to grow at a slower
rate as packet size increases. In fact, the experiment
understates these benefits because message pipelining is
supported only on the receiver on the LANai-5 NIC used
in this configuration, due to a change in the meaning of
certain control registers on the LANai-5.

4 Conclusion

The experiments reported in this paper give a quanti-
tative snapshot of the state of the art for TCP/IP net-
working performance on current-generation desktop-
class PCs and workstations and gigabit-per-second net-
works.

Our measurements are taken from the standard high-
quality TCP/IP implementation in the FreeBSD 4.0 ker-
nel, supplemented with support for a range of tech-
niques to reduce communication overheads. These in-
clude zero-copy sockets and several features imple-
mented in the Trapeze firmware for Myrinet, including
large MTUs with scatter/gather I/O, page-aligned pay-
load buffers, adaptive message pipelining, interrupt sup-
pression, and checksum offloading. With these features,
we have measured TCP/IP bandwidths of 956 Mb/s us-
ing Trapeze/Myrinet and 988 Mb/s using an Alteon Gi-
gabit Ethernet network. These are the highest TCP band-



widths on public record at present. The 500 MHz Alpha
21264 platform is capable of handling these bandwidths
with CPU overheads as low as 20%.
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6 Availability

Trapeze is available in source form with a BSD-
style copyright fromhttp://www.cs.duke.edu/ari/trapeze.
Our iprobe port to FreeBSD/Alpha is available from
http://www.cs.duke.edu/ari/iprobe.html. FreeBSD ex-
tensions (including Monet platform support, Alteon
driver extensions, and zero-copy sockets) are incorpo-
rated into the FreeBSD code base or are available from
the Trapeze Web site.
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