
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

Design and Implementation of
a Transaction-Based Filesystem on FreeBSD

Jason Evans
The Hungry Programmers

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Design and Implementation of a Transaction-Based
Filesystem on FreeBSD

Jason Evans
The Hungry Programmers

jasone@hungry.com, http://www.hungry.com/˜jasone

Abstract

Transactional database management systems
(DBMS’s) have special data integrity require-
ments that standard filesystems such as the
Berkeley Fast Filesystem do not address. This
paper briefly describes the requirements a trans-
actional DBMS makes of a transaction-based
filesystem, then goes on to describe the design
and implementation of such a filesystem, re-
ferred to as a block repository1, which is part of
the SQRL DBMS project.

The implementation of SQRL’s block repository
is different than most traditional filesystems in
that it is purposely implemented in user-land us-
ing raw devices and threads. Its performance is
more tunable to the needs of transaction process-
ing than would be the case if it were integrated
into the kernel.

1 Introduction

Transactional database management systems go
to great lengths to never lose or corrupt data,
even in cases of unexpected system failure. Algo-
rithms that achieve atomic writes of data stored
on disk are complex and can be very slow, de-
pending on what support is available from the
underlying filesystem. Traditional filesystems
such as the Berkeley Fast Filesystem (FFS) guar-
antee atomic updates of filesystem metadata in
order to avoid filesystem corruption caused by
system failures, but no atomicity guarantees are
made for file writes.2 This means that in order
to avoid possible file corruption, programmers of
transaction-based applications have to do extra
work to make atomic changes to files.

One of the simplest, though not most efficient,
methods of implementing atomic writes on FFS
is to use triple redundancy:

a = open("A", O_RDWR);

b = open("B", O_RDWR);

c = open("C", O_RDWR);

...

[Write changes to A.]

fsync(a);

[Write changes to B.]

fsync(b);

[Write changes to C.]

fsync(c);

...

If there is a system failure during writing, there
are only three possible inconsistent states, all of
which are fixable:

1. A 6= B = C. Fix: A B.

2. A 6= B 6= C. Fix: B A, C A.

3. A = B 6= C. Fix: C B.

A more practical implementation of
atomic writes on FFS takes advan-
tage of atomic metadata updates:

1: Definitions for emphasized words appear in the “Terms
and Abbreviations” section toward the end of this paper.
2: FFS does not implement atomic file updates because the

associated overhead is unacceptable for general use, since
most applications do not need atomicity guarantees when
writing to files.

/* "A" contains valid data. */

...

a_new = open("A_new", O_RDWR | O_CREAT,

0644);

[Write data to A_new.]

fsync(a_new);

rename("A_new", "A");

Recovery is as simple as deleting “A new”, if it
exists.

Transactional DBMS’s must be able to atomi-
cally write data to persistent storage. As shown
above, atomic writes can be achieved using stan-
dard filesystems. However, the performance of
such schemes is far from ideal. The filesystem
discussed in this paper is specially designed to
meet the specific needs of a transactional DBMS.
The filesystem discussed in this paper, here-
after referred to as a block repository or BR,
has many architectural similarities to journaled
filesystems. It differs though from most jour-
naled filesystems in at least the following ways:

� Provides a simple block-oriented interface,
as opposed to a file-oriented interface. The
BR provides a mechanism for implementing
data storage, but almost no policy.

� Implemented in user-land for improved per-
formance and control. Rather than reading
and writing data via system calls, a library
is linked into the application. The block
repository library assumes exclusive access
of all storage resources that are allocated
to it. This is undesirable for typical multi-
process applications, but a useful simplifica-
tion for single-process server applications.

� Data are stored on multiple devices, called
backing stores. In this regard, the BR inte-
grates and relies on some concepts normally
found in volume management software.

2 Backing Store Creation

A block repository consists of four or more back-
ing stores. A backing store is a file or raw de-
vice that consists of a header and data space, as

shown in Figure 1. The backing store header is
triple-redundant so that atomic header updates
can be guaranteed. The three copies of backing
store header data are striped so that the first por-
tion of each copy can be compared in order to de-
tect and repair data corruption before reading in
the remainder of the three copies of the header
data. If the three copies of header data were not
striped, then the first copy’s notion of the header
size would have to be trusted, which is not safe.

Data

Copy A, last 8192 bytes

Copy B, last 8192 bytes

Copy C, last 8192 bytes

Data blocks

0

Header

Copy A, bytes 0-8191

Copy B, bytes 0-8191

Copy C, bytes 0-8191

Copy A, bytes 8192-16535

Copy B, bytes 8192-16535

Copy C, bytes 8192-16535

Figure 1: Backing Store Structure

The data stored in each copy of the backing store
header is shown in Figure 2.

3 Block Repository Creation

Figure 3 shows the block repository structure.
Before a BR can be brought online, at least a por-
tion of each of the four logical sections of the BR
must be backed by one or more backing stores.

Each backing store in the BR has a copy of the
backing store list. When a change is made to the
backing store list, the change is synchronously
written to each backing store header, in the or-
der that the backing stores are listed. Care is
taken to write backing store header changes in
this order in so as to assure the ability to re-
cover from backing store headers that disagree

null-terminated)

8

16

24

32

20

36

44

52

56

Serial Number

Block Size

Clean/Dirty

Total Size

Header Size

Data Size

Base Physical Address

Backing Stores

Magic Number

Backing Store Path (null-terminated)

Backing Store List (each element is

0

Figure 2: Backing Store Header Structure

with each other. A serial number is included in
the header to aid the detection of differences be-
tween backing store headers.

0xffffffffffffffff

0x0000000000000000

vaddr : paddr translation table (V2P)

transaction commit log (TCL)

transaction rollback log (TRL)

data space (DS) and interleaved
paddr : vaddr translation table (P2V)

0x8000000000000000

Figure 3: Block Repository Structure

4 Block Repository Startup and
Recovery

As with data modifications that are made during
normal BR operation, care must be taken during
startup and recovery to never write data in such
a way that could irreversibly corrupt the BR. The
general startup and recovery algorithm is as fol-
lows:

1. Open a backing store, S, that is part of the
BR.

2. While S is not the first backing store in S’s
backing store list:

(a) Open the backing store, S0, that is first
in S’s backing store list.

(b) Make S0 the new S.

3. Repair S if necessary.

4. Repair and roll forward all backing stores in
S’s list of backing stores to contain the same
header data, if necessary.

5. Map all backing stores.

6. Roll forward the transaction commit log
(TCL), if necessary.

5 Block Repository Operation

The block repository is designed to be able to stay
online for long periods of time. This requires that
all normal operations on the BR must allow un-
interrupted availability of data. Below are brief
descriptions of some common online BR opera-
tions.

5.1 Backing Store Operations

As mentioned earlier, a BR must be backed by
at least four backing stores for it to be brought
online. The BR design allows online insertion
and deletion of backing stores, such that the BR
can grow and shrink dramatically in size with-
out ever having to be taken offline for mainte-
nance or reconfiguration. Backings can overlap,

but there is no performance advantage or gain in
resiliency to hardware failures in doing so. The
sole reason for allowing overlapping backings is
to make it possible to seamlessly move data from
one device to another. Possible reasons for mov-
ing data from one device to another include:

� Consolidation of multiple small backings
into one larger backing.

� Migration to a different storage technology.

Figure 4 shows an in-progress example of con-
solidating multiple backings (A, B, and C) into
one backing (D). The algorithm for adding a new
backing store is as follows:

1. Insert a backing store, S, into the BR, but
mark S as invalid.

2. Begin writing all data writes that are in the
range to be backed by S to S, in addition to
any other backing stores that back any par-
ticular block.

3. Make a single sweep through the entire
range of blocks to be backed by S, read the
values of the blocks, and write them to S.

4. Mark S as valid.

5. Append S to the backing store list in each
backing store header.

A

D

B

C

Figure 4: Consolidation of Multiple Backings

A backing store, S, can only be removed if there
are one or more backing stores that also back the
same blocks as S does, or if the blocks backed by
S are not allocated, or a combination of both. The
definition of “allocated” varies, depending on the
logical section of the BR:

V2P: Once a V2P entry has been allocated, it
cannot be freed without the user explicitly
deallocating it. This limits the BR’s abil-
ity to compact and relocate entries in the
V2P to such an extent that little effort is
made to keep the V2P compact. The V2P
must be contiguously backed from the begin-
ning through the last allocated V2P entry. In
practice, this means that the backed portion
of the V2P can grow, but rarely shrinks sub-
stantially without the explicit aid of the user.

TCL, TRL: The TCL and TRL are conceptually
rings of buffer space. During normal oper-
ation, part of the buffer ring contains valid
data, and the other part is empty. At any
point in time, the portion that contains valid
data is considered to to be allocated. A back-
ing store, S, can only be removed from the
TCL or TRL when no portion of S is the sole
backing of an allocated region.

DS/P2V: The DS and P2V are subdivided into
extent groups, which are discussed in more
detail later. An extent group is the unit of
allocation from the perspective of backing
stores. If any data block within an extent
group is allocated, the entire extent group
must be backed. The P2V makes it possi-
ble to efficiently move data blocks without
affecting the user’s ability to access the data
blocks via vaddr. This means that it is prac-
tical to compact data block use, and even
empty entire ranges of the DS/P2V of valid
data, so that backing stores can be easily re-
moved.

5.2 Block Caching

The BR implements an LRU caching policy.
Blocks that have no lockers age, and are flushed
from the cache when there is demand for block
cache space due to reading of non-cached data.
Naturally, this implies the constraint that there
must be a large enough block cache to accommo-
date all concurrently locked blocks. In practice,
for a reasonably sized block cache, this limitation
is only an issue if faulty programming causes an
accumulation of stale locks.

s t d q r w xp p p p p p
s

q
p p p p

tp p p p p
dp p
qp p
r
w
x

Figure 5: Block Lock Compatibility Matrix

5.3 Block Locking

Figure 5 shows the seven types of locks on data
blocks, and their compatibility with each other.
Following is a short description of each type of
lock:

s, t : Non-serialized (s) and serialized (t) place
holder locks. In order to obtain one of the
other lock types, a user must first obtain an
s or t lock.

d : Potential deletion lock. This is an advisory
lock that supports a deletion algorithm for a
form of B-trees.3

q : Non-exclusive read lock. This form of read
lock is compatible with w locks, and should
only be used when the reader can tolerate
dirty reads of any sort that may be intro-
duced by writers that hold w locks. The in-
teractions between q locks and w locks offer
a mechanism for allowing dirty reads, but no
policy for how to deal with the effects of dirty
reads.

r : Non-exclusive read lock.

w : Write lock that allows simultaneous q locks.

x : Exclusive write lock.

5.4 Data Block Management

Externally, data blocks are always accessed via
vaddr. Internally, the V2P maps vaddr’s to
paddr’s, and the P2V maps paddr’s to vaddr’s.
Data blocks reside in the DS. The DS and P2V
are interspersed such that one P2V block and a

Data Blocks

P2V Block

Figure 6: An Extent Group

number of DS blocks are grouped into an extent
group, as shown in Figure 6.

Extents provide a mechanism for allocating mul-
tiple data blocks that are physically near each
other. This generally improves the locality of
data access, assuming that data blocks that are
allocated in groups tend to be accessed in groups.

The block repository’s support for extents is in
most ways simple. Extents always consist of a
number of blocks that is a power of two, so that
extents can be split and collated in logarithmic
time. Once an extent is allocated, there is no
longer a deterministic way to know the bound-
aries of the extent. In other words, it begins
to be treated as some number of data blocks
that have no explicit link to each other. This
means that blocks that were allocated as an ex-
tent can be deallocated one at a time, and the
worst thing that will happen is some extent frag-
mentation. Even this fragmentation is of lim-
ited concern though, since data blocks can be
physically moved without external effects. Thus,
by compacting allocated data blocks during light
system load, extent fragmentation can be kept to
a minimum.

Figure 7 shows a fully collated extent group.
Since each extent group is followed by one P2V
block, extent groups always consist of (2n�1) data
blocks, where (6 � n � 16). Figure 8 shows what
a partially allocated extent group could look like.
Note that neither of these figures distinguishes
between allocated and free extents, though there
is bookkeeping information in the P2V block that
keeps track of allocation, so that extents can be

3: The original motivation for the block repository dis-
cussed in this paper is to support research on a highly con-
current B-tree algorithm.

collated with their neighbors as they are freed.

P2V block

4

16
32

64

256
512

1

8

128

2

Figure 7: Fully Collated Extent Tree

1 P2V block

4

16
32

64

512

1

8

128

2
4

2
1

128
64

32

4

16

4

Figure 8: Partially Allocated Extent Tree

5.5 Transaction Commit Log Process-
ing

All writes to the V2P, DS, and P2V sections of the
BR are first recorded in the transaction commit
log (TCL). At some later time, the log data are
consumed by another thread of execution, here
referred to as the cleaner. The cleaner reads the
tail end of the TCL, and writes blocks to their
permanent locations on disk. After each group
of blocks in the TCL is written out, the cleaner
marks the group as invalid, so that in the case
of crash recovery, there is no need to process por-
tions of the TCL that have already been taken
care of.

Due to the interactions between the block cache
and the TCL, there is a significant performance
advantage to having a large amount of valid data
in the TCL during normal operation. Suppose
that a particular data block, D, is being written
to quite regularly. Over time, the TCL will have
recorded many different versions of D. When
the cleaner comes across a block in the TCL that
records a version of D, it first looks to see if D
resides in the block cache. If so, the most re-
cent version of D is written to its permanent lo-
cation. If not, the cleaner can correctly assume
that when D was flushed from the block cache, it
was first written to the TCL, then written to its

permanent location on disk. This means that the
cleaner, along with how the block cache flushes
aged blocks, is in many cases able to write D to
its permanent location only once, even if D was
modified many times. Naturally, after a system
fault, the entire TCL must be processed before
the BR can be brought back online.

Metadata Block

Data Blocks

Figure 9: Structure of Transaction Commit and
Rollback Logs

Each block of a log transaction has a metadata
record associated with it, as shown in Figure 10.
A log transaction consists of one or more data
blocks. If a log transaction consists of four blocks,
the transaction sequence numbers count from
four down to one. The transaction sequence num-
bers also serve the purpose of “flip-flops”. If the
“flip” and the “flop” are different, this indicates
there was an incomplete write as a failure oc-
curred. The flip-flops are necessary since the log
metadata are not redundant, and in the case of
log writes, redundancy would be more expensive
from a performance perspective than the flip-
flops.

(also flop).

0

16

4

12

Physical address that corresponds
to the block that this metadata
record corresponds to.

Transaction sequence number
(also flip).

Transaction sequence number

Figure 10: Log Metadata Record

6 Backup and Restore

The block repository supports both full and in-
cremental online backup. A full backup is made
using the following algorithm:

1. Note the current head of the TRL, H =
head(TRL).

2. Do a block-wise copy to backup of the V2P.

3. Do a block-wise copy of all valid DS blocks,
in such a way that during restore, each block
can be associated with its vaddr.

4. Note the current head of the TRL, H 0 =
head(TRL0).

5. Do a block-wise copy of all TRL blocks be-
tween H and H 0.

An incremental backup can be made by copying
the portion of the TCL written since the last full
backup was made.

BR restoration is accomplished by restoring a
full backup, then, in chronological order, restor-
ing any incremental backups that were made.

7 Summary

Traditional filesystems do not provide the combi-
nation of atomic data writes and a simple block-
oriented interface that transactional DBMS’s re-
quire. By integrating parts of existing filesystem
technologies, a simple streamlined data storage
mechanism can be created that meets the needs
of transactional systems without the complexity
and non-portability of explicit operating system
kernel support.

Due to the block repository’s user-land nature
and its use of multiple devices for storage, per-
formance can be highly tuned to the needs of the
individual application.

Terms and Abbreviations

BR: Block repository. For the purposes of dis-
cussion in this paper, a block repository
is similar in many ways to a conventional
filesystem, but operations are on data blocks
with a flat 64 bit numerical namespace
rather than on files in a hierarchical textual
namespace.

vaddr: Virtual address. From the user’s per-
spective, all data blocks are accessed by
specifying a vaddr.

paddr: Physical address. Internally, the BR
consists of a 64 bit “physical” address space.

V2P: vaddr to paddr translation table. The V2P
makes it possible to find the paddr of any
data block, given the vaddr.

backing store: Encapsulation of a device or
file that provides non-volatile storage for a
portion of the block repository’s paddr space.

TCL: Transaction commit log. All data writes
are first written to the TCL in such a way
that once an entire transaction has been
written to the TCL, there is enough infor-
mation to be able to sometime later write
the data to their permanent locations, even
if there is a crash in between.

TRL: Transaction rollback log. Pristine copies
of all modified data blocks are written to
the TRL before modified data are written to
the TCL. This provides a reliable method for
restoring the state of the BR to a previous
state, as well as supporting online snapshot
backups.

DS: Data space. Data blocks are stored here.

P2V: paddr to vaddr translation table. The P2V
is used for various internal algorithms to
move data blocks around without causing
any externally visible changes. The P2V also
contains part of the information that is used
to implement extents.

extent group: An extent group consists of a
P2V block and a set of DS blocks. The P2V
block stores metadata that correspond to the
DS blocks in the extent group.

Availability

The block repository described in this pa-
per is part of SQRL, which is an ongoing
project sponsored by the Hungry Programmers
(http://www.hungry.com) to create a free SQL-92
DBMS. Information and current source code for
SQRL can be found at http://www.sqrl.org/sqrl.

All software that is part of SQRL is released un-
der a very agreeable BSD-like license.

References

[Bernstein] Phillip A. Bernstein, Vassos Hadzi-
lacos, and Nathan Goodman, Concurrency
Control and Recovery in Database Systems,
Addison-Wesley Publishing Company, Inc.
(1987).

[Elmasri] Ramez Elmasri and Shamkant B. Na-
vathe, Fundamentals of Database Systems,
Second Edition, Addison-Wesley Publishing
Company, Inc. (1994).

[Folk] Michael J. Folk and Bill Zoellick, File
Structures, Second Edition, Addison-Wesley
Publishing Company, Inc. (1992).

[Gray] Jim Gray and Andreas Reuter, Transac-
tion Processing: Concepts and Techniques,
Morgan Kaufmann Publishers, Inc. (1993).

[McKusick] Marshall Kirk McKusick, Keith
Bostic, Michael J. Karels, and John S. Quar-
terman, The Design and Implementation
of the 4.4BSD Operating System, Addison-
Wesley Publishing Company, Inc. (1996).

