
USENIX Association

Proceedings of the General Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Reliability and Security in the
CoDeeN Content Distribution Network

Limin Wang∗, KyoungSoo Park, Ruoming Pang, Vivek Pai and Larry Peterson
Department of Computer Science

Princeton University

Abstract

With the advent of large-scale, wide-area networking
testbeds, researchers can deploy long-running distributed
services that interact with other resources on the Web.
The CoDeeN Content Distribution Network, deployed on
PlanetLab, uses a network of caching Web proxy servers
to intelligently distribute and cache requests from a po-
tentially large client population. We have been running
this system nearly continuously since June 2003, allow-
ing open access from any client in the world. In that time,
it has become the most heavily-used long-running service
on PlanetLab, handling over four million accesses per day.
In this paper, we discuss the design of our system, focus-
ing on the reliability and security mechanisms that have
kept the service in operation.

Our reliability mechanisms assess node health, prevent-
ing failing nodes from disrupting the operation of the
overall system. Our security mechanisms protect nodes
from being exploited and from being implicated in ma-
licious activities, problems that commonly plague other
open proxies. We believe that future services, especially
peer-to-peer systems, will require similar mechanisms as
more services are deployed on non-dedicated distributed
systems, and as their interaction with existing protocols
and systems increases. Our experiences with CoDeeN and
our data on its availability should serve as an important
starting point for designers of future systems.

1 Introduction
The recent development of Internet-scale network
testbeds, such as PlanetLab, enables researchers to de-
velop and deploy large-scale, wide-area network projects
subjected to real traffic conditions. Previously, such
systems have either been commercial enterprises (e.g.,
content distribution networks, or CDNs), or have been
community-focused distributed projects (e.g., free file-
sharing networks). If we define a design space of la-
tency versus throughput and tightly-controlled versus de-
centralized management, we can see that existing CDNs
and file-sharing services occupy three portions of the

∗current contact: Dept of EECS, Case Western Reserve University

space. The remaining portion, latency-sensitive decen-
tralized systems, remains more elusive, without an easily-
identifiable representative. In this paper, we describe
CoDeeN, an academic Content Distribution Network de-
ployed on PlanetLab, that uses a decentralized design to
address a latency-sensitive problem.

To reduce access latency, content distribution networks
use geographically distributed server surrogates, which
cache content from the origin servers, and request redi-
rectors, which send client requests to the surrogates.
Commercial CDNs [2, 23] replicate pages from content
providers and direct clients to the surrogates via custom
DNS servers often coupled with URL rewriting by the
content providers. The infrastructure for these systems is
usually reverse-mode proxy caches with custom logic that
interprets rewritten URLs. This approach is transparent to
the end user, since content providers make the necessary
changes to utilize the reverse proxies.

Our academic testbed CDN, CoDeeN, also uses
caching proxy servers, but due to its non-commercial na-
ture, engages clients instead of content providers. Clients
must currently specify a CoDeeN proxy in their browser
settings, which makes the system demand-driven, and al-
lows us to capture more information on client access be-
havior. Given the high degree of infrastructural overlap,
our future work may include support for non-commercial
content providers, or even allowing PlanetLab members
to automatically send their HTTP traffic to CoDeeN by
using transparent proxying.

As shown in Figure 1, a CoDeeN instance consists of a
proxy operating in both forward and reverse modes, as
well as the redirection logic and monitoring infrastruc-
ture. When a client sends requests to a CoDeeN proxy,
the node acts as a forward proxy and tries to satisfy the
requests locally. Cache misses are handled by the redirec-
tor to determine where the request should be sent, which
is generally another CoDeeN node acting as the reverse
proxy for the origin server. For most requests, the redirec-
tor considers request locality, system load, reliability, and
proximity when selecting another CoDeeN node. The re-
liability and security mechanisms can exclude nodes from
being candidates, and can also reject requests entirely for
various reasons described later.

Client

CoDeeN Node
As Fwd Proxy

Client

CoDeeN Node
As Fwd Proxy

Client

CoDeeN Node
As Fwd Proxy

CoDeeN Node
Reverse Proxy

CoDeeN Node
Reverse Proxy

Content Provider
(origin server)

Content Provider
(origin server)

Figure 1: CoDeeN architecture – Clients configure their
browsers to use a CoDeeN node, which acts as a forward-mode
proxy. Cache misses are deterministically hashed and redirected
to another CoDeeN proxy, which acts as a reverse-mode proxy,
concentrating requests for a particular URL. In this way, fewer
requests are forwarded to the origin site.

Although some previous research has simulated
caching in decentralized/peer-to-peer systems [13, 26],
we believe that CoDeeN is the first deployed system, and
one key insight in this endeavor has been the observation
that practical reliability is more difficult to capture than
traditional fail-stop models assume. In our experience,
running CoDeeN on a small number of PlanetLab nodes
was simple, but overall system reliability degraded sig-
nificantly as nodes were added. CoDeeN now runs on
over 100 nodes, and we have found that the status of these
proxy nodes are much more dynamic and unpredictable
than we had originally expected. Even accounting for the
expected problems, such as network disconnections and
bandwidth contention, did not improve the situation. In
many cases, we found CoDeeN unsuccessfully compet-
ing with other PlanetLab projects for system resources,
leading to undesirable behavior.

The other challenging aspect of CoDeeN’s design, from
a management standpoint, is the decision to allow all
nodes to act as “open” proxies, accepting requests from
any client in the world instead of just those at organiza-
tions hosting PlanetLab nodes. This decision makes the
system more useful and increases the amount of traffic
we receive, but the possibility of abuse also increases the
chances that CoDeeN becomes unavailable due to nodes
being disconnected. However, we overestimated how long
it would take for others to discover our system and under-
estimated the scope of activities for which people seek
open proxies. Within days of CoDeeN becoming stable
enough to stay continuously running, the PlanetLab ad-
ministrators began receiving complaints regarding spam,
theft of service, abetting identity theft, etc.

After fixing the discovered security-related problems,
CoDeeN has been running nearly continuously since
June 2003. In that time, it has received over 300 mil-
lion requests from over 500,000 unique IP addresses (as
of December 2003), while generating only three com-

plaints. Node failure and overload are automatically de-
tected and the monitoring routines provide useful infor-
mation regarding both CoDeeN and PlanetLab. We be-
lieve our techniques have broader application, ranging
from peer-to-peer systems to general-purpose monitoring
services. Obvious beneficiaries include people deploying
open proxies for some form of public good, such as shar-
ing/tolerating load spikes, avoiding censorship, or pro-
viding community caching. Since ISPs generally employ
transparent proxies, our techniques would allow them to
identify customers abusing other systems before receiv-
ing complaints from the victims. We believe that any dis-
tributed system, especially those that are latency-sensitive
or that run on non-dedicated environments, can benefit
from our infrastructure for monitoring and avoidance.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss system reliability and CoDeeN’s moni-
toring facilities. We discuss the security problems facing
CoDeeN in Section 3, followed by our remedies in Sec-
tion 4. We then show some preliminary findings based on
the data we collected and discuss the related work.

2 Reliability and Monitoring
Unlike commercial CDNs, CoDeeN does not operate on
dedicated nodes with reliable resources, nor does it em-
ploy a centralized Network Operations Center (NOC) to
collect and distribute status information. CoDeeN runs
on all academic PlanetLab sites in North America, and,
as a result, shares resources with other experiments.1

Such sharing can lead to resource exhaustion (disk space,
global file table entries, physical memory) as well as con-
tention (network bandwidth, CPU cycles). In such cases,
a CoDeeN instance may be unable to service requests,
which would normally lead to overall service degrada-
tion or failure. Therefore, to maintain reliable and smooth
operations on CoDeeN, each instance monitors system
health and provides this data to its local request redirector.

In a latency-sensitive environment such as CoDeeN,
avoiding problematic nodes, even if they (eventually) pro-
duce a correct result, is preferable to incurring reliability-
induced delays. Even a seemingly harmless activity such
as a TCP SYN retransmit increases user-perceived la-
tency, reducing the system’s overall utility. For CoDeeN
to operate smoothly, our distributed redirectors need to
continually know the state of other proxies and decide
which reverse proxies should be used for request redirec-
tion. In practice, what this entails is first finding a healthy
subset of the proxies and then letting the redirection strat-
egy decide which one is the best. As a result, CoDeeN in-
cludes significant node health monitoring facilities, much
of which is not specific to CoDeeN and can be used in
other latency-sensitive peer-to-peer environments.

1Resource protection in future PlanetLab kernels will mitigate some
problems, but this feature may not exist on non-PlanetLab systems.

Two alternatives to active monitoring and avoidance,
using retry/failover or multiple simultaneous requests, are
not appropriate for this environment. Retrying failed re-
quests requires that failure has already occurred, which
implies latency before the retry. We have observed fail-
ures where the outbound connection from the reverse
proxy makes no progress. In this situation, the forward
proxy has no information on whether the request has been
sent to the origin server. The problem in this scenario is
the same reason why multiple simultaneous requests are
not used – the idempotency of an HTTP request can not
be determineda priori. Some requests, such as queries
with a question mark in the URL, are generally assumed
to be non-idempotent and uncacheable. However, the CGI
mechanism also allows the query portion of the request to
be concatenated to the URL as any other URL compo-
nent. For example, the URL “/directory/program/query”
may also be represented as “/directory/program?query”.
As a result, sending multiple parallel requests and waiting
for the fastest answer can cause errors.

The success of distributed monitoring and its effective-
ness in avoiding problems depends on the relative differ-
ence in time between service failures and monitoring fre-
quency. Our measurements indicate that most failures in
CoDeeN are much longer than the monitoring frequency,
and that short failures, while numerous, can be avoided by
maintaining a recent history of peer nodes. The research
challenge here is to devise effective distributed monitor-
ing facilities that help to avoid service disruption and im-
prove system response latency. Our design uses heartbeat
messages combined with other tests to estimate which
other nodes are healthy and therefore worth using.

2.1 Local Monitoring
Local monitoring gathers information about the CoDeeN
instance’s state and its host environment, to assess re-
source contention as well as external service availability.
Resource contention arises from competition from other
processes on a node, as well as incomplete resource iso-
lation. External services, such as DNS, can become un-
available for reasons not related to PlanetLab.

We believe that the monitoring mechanisms we employ
on PlanetLab may be useful in other contexts, particularly
for home users joining large peer-to-peer projects. Most
PlanetLab nodes tend to host a small number of active
experiments/projects at any given time. PlanetLab uses
vservers, which provide a view-isolated environment with
a private root filesystem and security context, but no other
resource isolation. While this system falls short of true
virtual machines, it is better than what can be expected on
other non-dedicated systems, such as multi-tasking home
systems. External factors may also be involved in affect-
ing service health. For example, a site’s DNS server fail-
ure can disrupt the CoDeeN instance, and most of these
problems appear to be external to PlanetLab [17].

The local monitor examines the service’s primary re-
sources, such as free file descriptors/sockets, CPU cycles,
and DNS resolver service. Non-critical information in-
cludes system load averages, node and proxy uptimes,
traffic rates (classified by origin and request type), and
free disk space. Some failure modes were determined by
experience – when other experiments consumed all avail-
able sockets, not only could the local node not tell that
others were unable to contact it, but incoming requests ap-
peared to be indefinitely queued inside the kernel, rather
than reporting failure to the requester.

Values available from the operating system/utilities
include node uptime, system load averages (both via
“/proc”), and system CPU usage (via “vmstat”). Uptime is
read at startup and updated inside CoDeeN, while load av-
erages are read every 30 seconds. Processor time spent in-
side the OS is queried every 30 seconds, and the 3-minute
maximum is kept. Using the maximum over 3 minutes re-
duces fluctuations, and, at 100 nodes, exceeds the gap be-
tween successive heartbeats (described below) from any
other node. We avoid any node reporting more than 95%
system CPU time, since we have found it correlates with
kernel/scheduler problems. While some applications do
spend much time in the OS, few spend more than 90%,
and 95% generally seems failure-induced.

Other values, such as free descriptors and DNS resolver
performance, are obtained via simple tests. We create and
destroy 50 unconnected sockets every 2 seconds to test
the availability of space in the global file table. At our
current traffic levels, 50 sockets are generally sufficient to
handle two seconds of service on a single node. Any fail-
ures over the past 32 attempts are reported, which causes
peers to throttle traffic for roughly one minute to any
node likely to fail. Similarly, a separate program period-
ically calls gethostbyname() to exercise the node’s
DNS resolver. To measure comparable values across
nodes, and to reduce off-site lookup traffic, only other
(cacheable) PlanetLab node names are queried. Lookups
requiring more than 5 seconds are deemed failed, since re-
solvers default to retrying at 5 seconds. We have observed
DNS failures caused by misconfigured “/etc/resolv.conf”
files, periodic heavyweight processes running on the name
servers, and heavy DNS traffic from other sources.

2.2 Peer Monitoring
To monitor the health and status of its peers, each CoDeeN
instance employs two mechanisms – a lightweight UDP-
based heartbeat and a “heavier” HTTP/TCP-level “fetch”
helper. These mechanisms are described below.
2.2.1 UDP Heartbeat
As part of its tests to avoid unhealthy peers, CoDeeN uses
UDP heartbeats as a simple gauge of liveness. UDP has
low overhead and can be used when socket exhaustion
prevents TCP-based communication. Since it is unreli-
able, only small amounts of non-critical information are

sent using it, and failure to receive acknowledgements
(ACKs) is used to infer packet loss.

Each proxy sends a heartbeat message once per second
to one of its peers, which then responds with information
about its local state. The piggybacked load information
includes the peer’s average load, system time CPU, file
descriptor availability, proxy and node uptimes, average
hourly traffic, and DNS timing/failure statistics. Even at
our current size of over 100 nodes, this heartbeat traffic is
acceptably small. For larger deployments, we can reduce
heartbeat frequency, or we may divide the proxies into
smaller groups that only exchange aggregate information
across groups.

Heartbeat acknowledgments can get delayed or lost,
giving some insight into the current network/node state.
We consider acknowledgments received within 3 seconds
to be acceptable, while any arriving beyond that are con-
sidered “late”. The typical inter-node RTT on CoDeeN is
less than 100ms, so not receiving an ACK in 3 seconds
is abnormal. We maintain information about these late
ACKs to distinguish between overloaded peers/links and
failed peers/links, for which ACKs are never received.

Several policies determine when missing ACKs are
deemed problematic. Any node that does not respond to
the most recent ACK is avoided, since it may have just
recently died. Using a 5% loss rate as a limit, and under-
standing the short-term nature of network congestion, we
avoid any node missing 2 or more ACKs in the past 32,
since that implies a 6% loss rate. However, we consider
viable any node that responds to the most recent 12 ACKs,
since it has roughly a 54% chance of having 12 consecu-
tive successes with a 5% packet loss rate, and the node is
likely to be usable.

By coupling the history of ACKs with their piggy-
backed local status information, each instance in CoDeeN
independently assesses the health of other nodes. This
information is used by the redirector to determine which
nodes are viable candidates for handling forwarded re-
quests. Additionally, the UDP heartbeat facility has a
mechanism by which a node can request a summary of
the peer’s health assessment. This mechanism is not used
in normal operation, but is used for our central reporting
system to observe overall trends. For example, by query-
ing all CoDeeN nodes, we can determine which nodes are
being avoided and which are viable.

2.2.2 HTTP/TCP Heartbeat

While the UDP-based heartbeat is useful for excluding
some nodes, it cannot definitively determine node health,
since it cannot test some of the paths that may lead to
service failures. For example, we have experienced site
administrators port filtering TCP connections, which can
lead to UDP packets being exchanged without obstruc-
tion, but all TCP connections resulting in failure after
failed retransmission attempts.

To augment our simple heartbeat, we also employ a tool
to fetch pages over HTTP/TCP using a proxy. This tool,
conceptually similar to the “wget” program [10], is instru-
mented to specify what fails when it cannot retrieve a page
within the allotted time. Possible causes include socket al-
location failure, slow/failed DNS lookup, incomplete con-
nection setup, and failure to retrieve data from the remote
system. The DNS resolver timing measurements from this
tool are fed into the instance’s local monitoring facilities.
Since the fetch tool tests the proxying capabilities of the
peers, we must also have “known good” web servers to
use as origin servers. For this reason, each CoDeeN in-
stance also includes a dummy web server that generates a
noncacheable response page for incoming requests.

The local node picks one of its presumed live peers to
act as the origin server, and iterates through all of the pos-
sible peers as proxies using the fetch tool. After one it-
eration, it determines which nodes were unable to serve
the requested page. Those nodes are tested to see if they
can serve a page from their own dummy server. These
tests indicate whether a peer has global connectivity or
any TCP-level connectivity at all.

Over time, all CoDeeN nodes will act as an origin
server and a test proxy for this testing. We keep a history
of the failed fetches for each peer, and combine this with
the UDP-level heartbeats to determine if a node is viable
for redirection. To allow for network delays and the pos-
sibility of the origin server becoming unavailable during
one sweep, a node is considered bad if its failure count ex-
ceeds the other nodes by more than two. At current scale,
the overhead for this iteration is tolerable. For much larger
deployments, a hierarchical structure can limit the number
of nodes actively communicating with each other.

2.3 Aggregate Information
Each CoDeeN proxy stores its local monitoring state as
well as its peer summary to disk every 30 seconds, allow-
ing offline behavior analysis as well as anomaly detection.
The summary is also published and updated automatically
on the CoDeeN central status page [16] every five min-
utes. These logs provide the raw data that we use in our
analysis in Section 5. A sample log entry, truncated to fit
in the column, is shown in Figure 2.

Most of the fields are the measurements that have been
mentioned earlier, and the columns in the tabular output
represent data about the other nodes in CoDeeN. Values
in these lines are usually the counts in base-32 format,
where ’w’ represents 32. The exception is SysMxCPU,
which is the percentage value divided by 10 and rounded
up. Based on collected information through UDP heart-
beat and HTTP tests, each redirector decides the “Live-
ness” for each CoDeeN node, indicating whether the local
node considers that peer node to be viable.

In this particular example, this node is avoiding six of
its peers, mostly because they have missed several UDP

FdTstHst: 0x0
ProxUptm: 36707
NodeUptm: 111788
LoadAvgs: 0.18 0.24 0.33
ReqsHrly: 5234 3950 0 788 1004 275 2616
DNSFails: 0.00
DNSTimes: 2.48
SysPtCPU: 2 2 1 3 2 4

Liveness: ..X.. .. X..X.XXX.
MissAcks: 10w00 00 001 00000 0w066 00010 000v0 00020
LateAcks: 00000 00 000 00000 00000 00000 00000 00000
NoFdAcks: 00000 00 000 00000 00000 00000 00000 00000
VersProb: 00000 00 000 00000 00000 00000 00000 00000
MaxLoads: 41022 11 111 11141 20344 11514 14204 11111
SysMxCPU: 81011 11 111 11151 10656 11615 15564 11111
WgetProx: 00w00 00 100 00010 0w110 00000 000s0 00010
WgetTarg: 11w11 10 301 01021 1w220 00111 101t0 11121

Figure 2:Sample monitoring log entry

ACKs. The eighth node, highlighted in boldface, is being
avoided because it has a WgetTarg count of 3, indicating
that it has failed the HTTP fetch test (with itself as the
target) three times out of the past 32. More analysis on
the statistics for node avoidance is presented in Section 5.

3 Security Problems
To make the system more useful and increase the amount
of traffic we receive, we allow all CoDeeN nodes to act
as “open” proxies, accepting requests from any client in
the world. However, this choice also opens the doors to
many security problems. In this section, we discuss some
of the problems we encountered during the early develop-
ment and testing of CoDeeN, and the measures we took to
deal with these problems. For the purposes of discussion,
we have broadly classified the problems into those deal-
ing with spammers, bandwidth consumption, high request
rates, content theft, and anonymity, though we realize that
some problems can fall into multiple areas.

3.1 Spammers
The conceptually simplest category of CoDeeN abuser is
the spammer, though the mechanisms for spamming using
a proxy server are different from traditional spamming.
We encountered three different approaches – SMTP tun-
nels, CGI/formmail POST requests, and IRC spamming.
These mechanisms exist without the use of proxies, but
gain a level of indirection via proxies, complicating in-
vestigation. When faced with complaints, the administra-
tors of the affected system must cooperate with the proxy
administrators to find the actual spammer’s IP address.

SMTP tunnels – Proxies support TCP-level tunnel-
ing via the CONNECT method, mostly to support end-
to-end SSL behavior when used as firewalls. After the
client specifies the remote machine and port number, the
proxy creates a new TCP connection and forwards data in
both directions. Our nodes disallow tunneling to port 25
(SMTP) to prevent facilitating open relay abuse, but con-
tinually receive such requests. The prevalence and magni-
tude of such attempts is shown in Figure 3. As a test, we
directed these requests to local honey-pot SMTP servers.

10
0

10
1

10
2

10
3

10
4

10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

failed SMTP CONNECTs per day

Fr
ac

tio
n

of
 n

od
e−

da
ys

 <
 X

Figure 3: CONNECT activity for 38 nodes – Almost 40% of
the samples show no activity, while 20% show over 1000 at-
tempts/day. The maximum seen is over 90K attempts to one
node in one day.

In one day, one of our nodes captured over 100K spam e-
mails destined to 2,000,000 addresses. Another node saw
traffic jump from 3,000 failed attempts per day to 30,000
flows in 5 minutes. This increase led to a self-inflicted
denial-of-service when the local system administrator saw
the activity spike and disconnected the PlanetLab node.

POST/formmail – Some web sites use a CGI program
called formmail to allow users to mail web-based feed-
back forms to the site’s operators. Unfortunately, these
programs often store the destination e-mail address in the
form’s hidden input, relying on browsers to send along
only the e-mail address specified in the form. Spammers
abuse those scripts by generating requests with their vic-
tims’ e-mail addresses as the targets, causing the exploited
site to send spam to the victim.

IRC – Spammers target IRC networks due to their
weak authentication and their immediate, captive audi-
ence. Most proxies allow CONNECTs to ports above the
protected port threshold of 1024, which affects IRC with
its default port of 6667. IRC operators have developed
their own open proxy blacklist [4], which checks IRC par-
ticipant IP addresses for open proxies. We were alerted
that CoDeeN was being used for IRC spamming, and
found many of our nodes blacklisted. While the blacklists
eliminate the problem for participating IRC networks, the
collateral damage can be significant if other sites begin to
refuse non-IRC traffic from blacklisted nodes.

3.2 Bandwidth Hogs
CoDeeN is hosted on PlanetLab nodes, with the hosts ab-
sorbing the bandwidth costs. Since most nodes are hosted
at high-bandwidth universities, they attract people per-
forming bulk data transfers. Due to lack of locality, such
transfers provide no benefit to other CoDeeN users – they
cause cache pollution and link congestion.

Webcam Trackers– Sites such as SpotLife.com pro-
vide a simple means to use digital cameras as auto-
updating web cameras. Thissubscription-basedservice

allows the general public to broadcast their own “we-
bcams”. We noticed heavy bandwidth usage of the
SpotLife site, with individual IP addresses generating
multiple image requests per second, far above the rate lim-
its in the official SpotLife software. SpotLife claims to
bundle their software with over 60% of digital cameras,
and a community of high-rate downloaders has formed,
to SpotLife’s consternation. These users clearly have
enough bandwidth to access webcams directly, but use
CoDeeN to mask their identity.

Cross-Pacific Downloads– CoDeeN nodes in Wash-
ington and California received very high bandwidth con-
sumption with both source and destination located along
the Eastern rim of Asia. The multi-megabyte downloads
appeared to be for movies, though the reason that these
clients chose a round-trip access across the Pacific Ocean
is still not clear to us. A direct connection would presum-
ably have much lower latency, but we suspect that these
clients were banned from these sites, and required high-
bandwidth proxies to access them effectively. Given the
high international bandwidth costs in Asia, Western US
proxies were probably easier to find.

Steganographers– While large cross-Pacific trans-
fers were easy to detect in access logs, others were less
obvious. This class had high aggregate traffic, spread
across uniformly-sized, sub-megabyte files marked as
GIFs and JPEGs. Large images sizes are not uncom-
mon in broadband-rich countries such as South Korea, but
some size variation is expected given the unpredictability
of image compression. We downloaded a few of these
large files and found that they generated only tiny images
on-screen. From the URL names, we assume that these
files contain parts of movies stuffed inside image files to
hide their actual payload. Although there is existing re-
search on steganography [18], we have not found the ap-
propriate decryption tools to confirm our guess.

3.3 High Request Rates
TCP’s flow/congestion controls mitigate the damage that
bulk transfers have on other CoDeeN users. In contrast,
another class of users generated enough requests that we
were concerned that CoDeeN might be implicated in a
denial-of-service attack.

Password Crackers– We found an alarming number
of clients using CoDeeN to launch dictionary attacks on
Yahoo, often via multiple CoDeeN nodes. At one point,
we were detecting roughly a dozen new clients per day.
Since Yahoo can detect multiple failed attempts to a single
account, these users try a single password across many ac-
counts. The attacks appear to be for entertainment, since
any victim will be random rather than someone known to
the attacker. The problem, again, is that the requests ap-
pear to come from CoDeeN, and if Yahoo blocks the IP
address, then other PlanetLab services are affected.

Google Crawlers – Like password crackers, we
found a number of clients performing Google web/image
searches on a series of sorted words. These were clearly
mechanical processes working from a dictionary, and their
requests were evenly spaced in time. We speculate that
these clients are trying to populate their own search en-
gines or perhaps build offline copies of Google.

Click-Counters – Ad servers count impressions for
revenue purposes, and rarely do we see such accesses not
tied to actual page views. The one exception we have seen
is a game site called OutWar.com. Points are obtained
when people click on a player’s “special link”, which
delivers a Web page containing ad images. The system
apparently counts hits of the player’s link instead of ad
views, which seems to invite abuse. We have noticed a
steady stream of small requests for these links, presum-
ably from players inflating their scores.

3.4 Content Theft
The most worrisome abuse we witnessed on CoDeeN was
what we considered the most sophisticated – unauthorized
downloading of licensed content.

Licensed Content Theft – Universities purchase
address-authenticatedsite licenses for electronic journals,
limited to the IP ranges they own. PlanetLab’s acceptable
use policies disallow accessing these sites, but CoDeeN
unintentionally extended this access worldwide. We dis-
covered this problem when a site contacted PlanetLab
about suspicious activity. This site had previously experi-
enced a coordinated attack that downloaded 50K articles.
Unfortunately, such sites do not handle theX-Forwarded-
For header that some proxies support to identify the orig-
inal client IP address. Though this header can be forged,
it can be trusted whendenyingaccess, assuming nobody
would forge it to deny themselves access to a site.

Intra-domain Access – Many university Web pages
are similarly restricted by IP address, but are scat-
tered within the domain, making them hard to identify.
For example, a department’s web site may intersperse
department-only pages among publicly-accessible pages.
Opportunities arise if a node receives a request for a local
document, whether that request was received directly or
was forwarded by another proxy.

3.5 Anonymity
While some people use proxies for anonymity, some
anonymizers accessing CoDeeN caused us some concern.
Most added one of more layers of indirection into their
activities, complicating abuse tracking.

Request Spreaders– We found that CoDeeN nodes
were being advertised on sites that listed open proxies and
sold additional software to make testing and using proxies
easier. Some sites openly state that open proxies can be
used for bulk e-mailing, a euphemism for spam. Many
of these sites sell software that spreads requests over a

collection of proxies. Our concern was that this approach
could flood a single site from many proxies.

TCP over HTTP – Other request traffic suggested
that some sites provided HTTP-to-TCP gateways, named
http2tcp, presumably to bypass corporate firewalls. Other
than a few archived Usenet messages on Google, we have
not been able to find more information about this tool.

Non-HTTP Port 80 – While port 80 is normally re-
served for HTTP, we also detected CONNECT tunnels
via port 80, presumably to communicate between ma-
chines without triggering firewalls or intrusion detection
systems. However, if someone were creating malformed
HTTP requests to attack remote web sites, port 80 tunnels
would complicate investigations.

Vulnerability Testing – We found bursts of odd-
looking URLs passing through CoDeeN, often having the
same URI portion of the URL and different host names.
We found lists of such URLs on the Web, designed to re-
motely test known buffer overflow problems, URL pars-
ing errors, and other security weaknesses. In one in-
stance, these URLs triggered an intrusion detection sys-
tem, which then identified CoDeeN as the culprit.

4 Protecting CoDeeN
Our guiding principle in developing solutions to address
these security problems is to allow users at PlanetLab sites
as much access to the Web as they would have without
using a proxy, and to allow other users as much “safe”
access as possible. To tailor access policies, we classify
client IP addresses into three groups – those local to this
CoDeeN node, those local to any site hosting a PlanetLab
node, and those outside of PlanetLab. Note that our secu-
rity concerns focus on how we handle possibly malicious
client traffic, and not node compromise, which is outside
the scope of this paper.

4.1 Rate Limiting
The “outside” clients face the most restrictions on using
CoDeeN, limiting request types as well as resource con-
sumption. Only their GET requests are honored, allow-
ing them to download pages and perform simple searches.
The POST method, used for forms, is disallowed. Since
forms are often used for changing passwords, sending e-
mail, and other types of interactions with side-effects, the
restriction on POST has the effect of preventing CoDeeN
from being implicated in many kinds of damaging Web in-
teractions. For the allowed requests, both request rate and
bandwidth are controlled, with measurement performed
at multiple scales – the past minute, the past hour, and
the past day. Such accounting allows short-term bursts
of activity, while keeping the longer-term averages under
control. Disallowing POST limits some activities, notably
on e-commerce sites that do not use SSL/HTTPS. We are
investigating mechanisms to determine which POST ac-
tions are reasonably safe, but as more transactions move

to secure sites, the motivation for this change diminishes.
To handle overly-aggressive users we needed some

mechanism that could quickly be deployed as a stopgap.
As a result, we added an explicit blacklist of client IP ad-
dresses, which is relatively crude, but effective in handling
problematic users. This blacklist was not originally part of
the security mechanism, but was developed when dictio-
nary attacks became too frequent. We originally analyzed
the access logs and blacklisted clients conducting dictio-
nary attacks, but this approach quickly grew to consume
too much administrative attention.

The problem with the dictionary attacks and even the
vulnerability tests is that they elude our other tests and
can cause problems despite our rate limits. However, both
have fairly recognizable characteristics, so we used those
properties to build a fairly simple signature detector. Re-
quests with specific signatures are “charged” at a much
higher rate than other rate-limited requests. We effectively
limit Yahoo login attempts to about 30 per day, frustrat-
ing dictionary attacks. We charge vulnerability signatures
with a day’s worth of traffic, preventing any attempts from
being served and banning the user for a day.

Reducing the impact of traffic spreaders is more diffi-
cult, but can be handled in various ways. The most le-
nient approach, allowing any client to use multiple nodes
such that the sum does not exceed the request rate, re-
quires much extra communication. A stricter interpreta-
tion could specify that no client is allowed to use more
than K proxies within a specified time period, and would
be more tractable. We opt for a middle ground that pro-
vides some protection against abusing multiple proxies.

In CoDeeN, cache misses are handled by two proxies
– one acting as the client’s forward proxy, and the other
as the server’s reverse proxy. By recording usage informa-
tion at both, heavy usage of a single proxy or heavy aggre-
gate use can be detected. We forward client information
to the reverse proxies, which can then detect clients using
multiple forward proxies. While forwarding queries pro-
duces no caching benefit, forwarding them from outside
users allows request rate accounting to include this case.
So, users attempting to perform Yahoo dictionary attacks
(which are query-based) from multiple CoDeeN nodes
find that using more nodes does not increase the maxi-
mum number of requests allowed. With these changes,
login attempts passed to Yahoo have dropped by a factor
of 50 even as the number of attackers has tripled.

4.2 Privilege Separation
To address the issue of restricting access to content, we
employ privilege separation, which works by observing
that when a proxy forwards a request, the request as-
sumes the privilege level of the proxy since it now has the
proxy’s IP address. Therefore, by carefully controlling
which proxies handle requests, appropriate access privi-
leges can be maintained. The ideal solution for protect-

ing licensed content would be to insert an ’X-Forwarded-
For’ header, but it requires cooperation from the content
site – checking whether both the proxy address and for-
warded address are authorized. Although this is a simple
change, there are some sites that do not handle the header.
For such sites, content protection requires CoDeeN to
identify what content is licensed and we take an approx-
imate approach. Using Princeton’s e-journal subscrip-
tion list as a starting point, we extracted all host names
and pruned them to coalesce similarly-named sites, merg-
ing journal1.example.com and journal2.example.com into
just example.com. We do not precisely associate subscrip-
tions with universities, since that determination would be
constantly-changing and error-prone.

When accessing licensed content, we current only al-
low requests that preserve privilege. Clients must choose
a CoDeeN forward proxy in their own local domain in
order to access such content. Theselocal clientsare as-
sumed to have the same privilege as the CoDeeN forward
proxy, so this approach does not create additional expo-
sure risks. These requests are sent directly to the con-
tent provider by the forward proxy, since using a reverse
proxy would again affect the privilege level. All other
client requests for licensed content currently receive error
messages. Whether the local client can ultimately access
the site is then a decision that the content provider makes
using the CoDeeN node’s IP address. Though we can-
not guarantee the completeness of the subscription list,
in practice this approach appears to work well. We have
seen requests rejected by this filter, and we have not re-
ceived any other complaints from content providers. In
the future, when dealing with accesses to licensed sites,
we may redirect clients from other CoDeeN sites to their
local proxies, and direct all “outside” clients to CoDeeN
proxies at sites without any subscriptions.

A trickier situation occurs when restricted content is
hosted in the same domain as a CoDeeN node, such as
when part of a university’s Web site is restricted to only
those within the university. Protecting these pages from
outside exposure cannot use the coarse-grained blacklist-
ing approach suitable for licensed content. Otherwise, en-
tire university sites and departments would become inac-
cessible. To address this problem, we preserve the priv-
ilege of local clients, and de-escalate the privilege of re-
mote clients. We determine if a request to example.edu
originates locally at example.edu, and if so, the request is
handled directly by the CoDeeN forward proxy. Other-
wise, the request is forwarded to a CoDeeN node at an-
other site, and thereby gets its privilege level dropped to
that of the remote site through this “bouncing” process.
To eliminate the exposure caused by forwarding a request
to a site where it is local, we modify our forwarding logic
– no request is forwarded to a CoDeeN proxy that has the
same domain as the requested content.

Since our security mechanisms depend on comparing
host names, we also disallow “outside” accesses to ma-
chines identified only by IP addresses. After implement-
ing this approach, we found that some requests using nu-
merical IP addresses were still being accepted. In the
HTTP protocol, proxies receive requests that can contain
a full URL, with host name, as the first request line. Ad-
ditional header lines will also identify the host by name.
We found some requests were arriving with differing in-
formation in the first line and in the Host header. We had
not observed that behavior in any Web browser, so we as-
sume such requests were custom-generated, and modified
our redirector to reject such abnormal requests.

4.3 Effectiveness of the Solutions
We have received a handful of queries/complaints from
system administrators at the local PlanetLab sites, and all
but one have been false alarms. Most queries have been
caused by system administrators or others using/testing
the proxies, surfing through them, and then concluding
that they are open proxies.

We have been using CoDeeN daily, and have found that
the security restrictions have few effects for local users.
Using non-Princeton nodes as our forward proxy, we have
found that the restrictions on licensed sites can be overly
strict at times. We expect that in the future, when we
bounce such requests to completely unprivileged proxies,
the special handling for those sites will not be noticeable.
These bounced requests will obtain the privilege level of
those proxies (i.e., no subscriptions), and will be able to
access unrestricted portions of those sites. By changing
the configuration information, we have also been able to
use CoDeeN as an outside user would see it. Even on
our high-speed links, the request rates limits have not im-
pacted our daily browsing.

Restricting outside users from using POST does not ap-
pear to cause significant problems in daily use. Searches
are commonly handled using the GET method instead of
the POST method, and many logins are being handled via
HTTPS/SSL, which bypasses the proxy. The most no-
ticeable restrictions on outsiders using POST has been the
search function on Amazon.com and some chat rooms.
Over two months, local users have generated fewer than
300 POST requests, with the heaviest generator being
software update checkers from Apple and Microsoft.

Our security measures have caused some confusion
amongst malicious users, and they could not figure out
whether or not CoDeeN is a network of real “open” prox-
ies. We routinely observe clients testing proxies and then
generating requests at very high rates, sometimes exceed-
ing 50K reqs/hour. However, rarely do CoDeeN nodes see
more than 20K valid reqs/hour. Some clients have gener-
ated over a million unsuccessful requests in stretches last-
ing longer than a day.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

06/01 07/01 08/01 09/01 10/01 11/01 12/01

of

 c
lie

nt
s

pe
r d

ay

Date

Figure 4:Daily Client Population (Unique IP) on CoDeeN

0

1

2

3

4

5

6

7

8

9

10

06/01 07/01 08/01 09/01 10/01 11/01 12/01

of

 re
qs

 p
er

 d
ay

 x
 1

00
00

00

Date

all requests
successful requests

Figure 5:Daily Requests Received on CoDeeN

5 Results
In this section, we analyze the data we collected during
six months of CoDeeN’s operation. These results not only
show the status of CoDeeN over time, but also provide
insights into the monitoring and security measures.

5.1 Traffic
Since starting our public beta test at the end of May, the
number of unique IP addresses used to access CoDeeN
has passed 500,000, with the daily values shown in Fig-
ure 4. Some of these clients appear to be human, while
others are programs that interact with proxies. Now, our
daily traffic regularly exceeds 7,000 unique IPs.

The daily traffic served by CoDeeN now hovers above
more than 4 million requests, and peaks at 7 million, as
seen in Figure 5. The total count of daily requests, includ-
ing those that are rejected, is approaching 7 million per
day and peaks at 9 million. We began logging rejected
requests in late July, so earlier figures are not available.

5.2 Response Performance
Since reliability has been one of the main thrusts of our
current work, the response time behavior of CoDeeN is
largely a function of how well the system performs in

0

2

4

6

8

10

12

14

16

18

06/01 07/01 08/01 09/01 10/01 11/01 12/01

%
 o

f R
ed

ire
ct

ed
 R

eq
ue

st
s

ta
ki

ng
 >

5/
10

se
c

 w
ith

 M
IS

S
/0

00

Date

>5sec
>10sec

Figure 6:Percentage of Non-serviced Redirected Requests

0

5

10

15

20

25

30

06/01 07/01 08/01 09/01 10/01 11/01 12/01

%
 o

f R
ed

ire
ct

ed
 R

eq
ue

st
s

ta
ki

ng
 >

5/
10

se
c

 w
ith

 s
iz

e
<1

0K
B

Date

all requests (>5sec)
successful requests (>5sec)

all requests (>10sec)
successful requests (>10sec)

Figure 7:Percentage of Redirected Requests (< 10KB)

avoiding bad nodes. In the future, we may work to-
wards optimizing response time by improving the redi-
rector logic, but that has not been our focus to date.

The results of our efforts to detect/avoid bad nodes can
be seen in Figure 6, which shows requests that did not
receive any service within specific time intervals. When
this occurs, the client is likely to stop the connection or
visit another page, yielding an easily-identifiable access
log entry (MISS/000). These failures can be the result of
the origin server being slow or a failure within CoDeeN.
The trend shows that both the magnitude and frequency
of the failure spikes are decreasing over time. Our most
recent change, DNS failure detection, was added in late
August, and appears to have yielded positive results.

Since we cannot “normalize” the traffic over CoDeeN,
other measurements are noisier, but also instructive. Fig-
ure 7 shows the fraction of small/failed responses that take
more than a specific amount of time. Here, we only show
redirected requests, which means they are not serviced
from the forward proxy cache. By focusing on small re-
sponses, we can remove the effects of slow clients down-
loading large files. We see a similar trend where the fail-
ure rate decreases over time. The actual overall response

0

2

4

6

8

10

12

14

16

18

20

06/01 07/01 08/01 09/01 10/01 11/01 12/01

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

)

Date

all redirected requests
successful redirected requests

redirected requests with size <10K

Figure 8:Average Response Time of Redirected Requests

times for successful requests, shown in Figure 8, has a
less interesting profile. After a problematic beginning, re-
sponses have been relatively smooth. As seen from Fig-
ure 5, since the beginning of October, we have received
a rapidly increasing number of requests on CoDeeN, and
consequently, the average response time for all requests
slightly increases over time. However, the average re-
sponse time for small files is steady and keeps decreas-
ing. This result is not surprising, since we have focused
on reducing failures rather than reducing success latency.

5.3 Node Stability
The distributed node health monitoring system employed
by CoDeeN, described in Section 2.2, provides data about
the dynamics of the system and insight into the suitability
of our choices regarding monitoring. One would expect
that if the system is extremely stable and has few status
changes, an active monitoring facility may not be very
critical and probably just increases overhead. Conversely,
if most failures are short, then avoidance is pointless since
the health data is too stale to be useful. Also, the rate
of status changes can guide the decisions regarding peer
group size upper bounds, since larger groups will require
more frequent monitoring to maintain tolerable staleness.

Our measurements confirm our earlier hypothesis about
the importance of taking a monitoring and avoidance ap-
proach. They show that our system exhibits fairly dy-
namic liveness behavior. Avoiding bad peers is essential
and most failure time is in long failures so avoidance is
an effective strategy. Figure 9 depicts the stability of the
CoDeeN system with 40 proxies from four of our CoDeeN
redirectors’ local views. We consider the system to be sta-
ble if the status of all 40 nodes is unchanged between two
monitoring intervals. We exclude the cases where the ob-
server is partitioned and sees no other proxies alive. The
x-axis is the stable period length in seconds, and they-
axis is the cumulative percentage of total time. As we can
see, these 4 proxies have very similar views. For about
8% of the time, the liveness status of all proxies changes

0

20

40

60

80

100

10 100 1000 10000 100000

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

System Stable Time Period (seconds)

pr-1
ny-1
uw-1
st-1

Figure 9:System Stability View from Individual Proxies

0

20

40

60

80

100

10 100 1000 10000 100000

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

System Stable Time Period (seconds)

pr-1
ny-1
uw-1
st-1

(a) Divided into 2 Groups

0

20

40

60

80

100

10 100 1000 10000 100000 1e+06

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

System Stable Time Period (seconds)

pr-1
ny-1
uw-1
st-1

(b) Divided into 4 Groups

Figure 10:System stability for smaller groups

every 30 seconds (our measurement interval). In Table 1,
we show the 50th and the 90th percentiles of the stable
periods. For 50% of time, the liveness status of the sys-
tem changes at least once every 6-7 minutes. For 90% of
time, the longest stable period is about 20-30 minutes. It
shows that in general, the system is quite dynamic – more
than what one would expect from few joins/exits.

The tradeoff between peer group size and stability is an
open area for research, and our data suggests, quite natu-
rally, that stability increases as group size shrinks. The
converse, that large groups become less stable, implies
that large-scale peer-to-peer systems will need to sacri-
fice latency (via multiple hops) for stability. To measure
the stability of smaller groups, we divide the 40 proxies
into 2 groups of 20 and then 4 groups of 10 and measure
group-wide stability. The results are shown in Figure 10
and also in Table 1. As we can see, with smaller groups,
the stability improves with longer stable periods for both
the 50th and 90th percentiles.

The effectiveness of monitoring-based avoidance de-
pends on the node failure duration. To investigate this is-
sue, we calculate node avoidance duration as seen by each
node and as seen by the sum of all nodes. The distribution
of these values is shown in Figure 11, where “Individ-

40-node 2 × 20-node 4 × 10-node
50% 90% 50% 90% 50% 90%

pr-1 445 2224 1345 6069 3267 22752
ny-1 512 3451 1837 10020 4804 25099
uw-1 431 2085 1279 5324 3071 19579
st-1 381 2052 1256 5436 3008 14334

Table 1:System Stable Time Period (Seconds)

10
2

10
4

10
6

0

20

40

60

80

100

Failure Duration (seconds)

%
 o

f
#

 o
f
O

c
c
u

rr
e

n
c
e

s

Individual
System−Wide

(a) CDF by # of Occur-
rences

10
2

10
4

10
6

0

20

40

60

80

100

Failure Duration (seconds)

%
 o

f
T

o
ta

l
T

im
e

 (
%

)

Individual
System−Wide

(b) CDF by Total Time

Figure 11:Node Failure Duration Distribution. Failures span-
ning across a system-wide downtime are excluded from this
measurement, so that it only includesindividual node failures.
Also, due to the interval of node monitoring, it may take up to
40 seconds for a node to be probed by another nodes, thus fail-
ures that last a shorter time might be neglected.

ual” represents the distribution as seen by each node, and
“System-Wide” counts a node as failed if all nodes see it
as failed. By examining the durations of individual failure
intervals, shown in Figure 11a, we see that most failures
are short, and last less than 100 seconds. Only about 10%
of all failures last for 1000 seconds or more. Figure 11b
shows the failures in terms of their contribution to the to-
tal amount of time spent in failures. Here, we see that
these small failures are relatively insignificant – failures
less than 100 seconds represent 2% of the total time, and
even those less than 1000 seconds are only 30% of the
total. These measurements suggest that node monitoring
can successfully avoid the most problematic nodes.

5.4 Reasons to Avoid a Node
Similar to other research on peer-to-peer systems, we ini-
tially assumed that churn, the act of nodes joining and
leaving the system, would be the underlying cause of
staleness-related failures. However, as can be seen from
the stability results, failure occurs at a much greater rate
than churn. To investigate the root causes, we gather the
logs from 4 of redirectors and investigate what causes
nodes to switch from viable to avoided. Therefore, our
counts also take time into account, and a long node fail-
ure receives more weight. We present each reason cat-
egory with a non-negligible percentage in Table 2. We
find that the underlying cause is roughly common across
nodes – mainly dominated by DNS-related avoidance and
many nodes down for long periods, followed by missed

Site Fetch Miss ACKs Node Down Late ACKs DNS
pr-1 6.2 18.3 29.6 13.6 32.1
ny-1 4.7 16.1 31.7 14.0 33.9
uw-1 10.4 16.8 30.0 12.8 29.7
st-1 5.0 14.7 27.2 15.4 34.3

Table 2:Average Percentage of Reasons to Avoid A Node

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

4

Days since August 27, 2003

of

 a
vo

id
an

ce
 c

ou
nt

s

fetch
miss acks
node down
late acks
no FDs
DNS

Figure 12:Daily counts of avoidance on ny-1 proxy

ACKs. Even simple overload, in the form of late ACKs, is
a significant driver of avoidance. Finally, the HTTP fetch
helper process can detect TCP-level or application-level
connectivity problems.

In terms of design, these measurements show that a
UDP-only heartbeat mechanism will significantly under-
perform our more sophisticated detection. Not only are
the multiple schemes useful, but they are complementary.
Variation occurs not only across nodes, but also within a
node over a span of multiple days. The data for the ny-1
node, calculated on a daily basis, is shown in Figure 12.

5.5 DNS behaviors
As described earlier, during our HTTP fetch tests, we
measure the time of local DNS lookups. When local name
servers are having problems, DNS lookups can take many
seconds to finish, despite usually taking only a few mil-
liseconds. We further investigate how DNS lookups be-
have on each proxy by looking at DNS failure rates and
average response time for successful queries. If a DNS
lookup takes longer than 5 seconds, we regard it as a DNS
failure, since this value is the resolver’s default timeout.

Figures 13 and 14 show the DNS failure rates and DNS
average lookup time for successful queries on 2 of our
sampling proxies, ny-1 on east coast and st-1 on west
coast. DNS lookup time is usually short (generally well
below 50ms), but there are spikes of 50-100ms. Recall
that these lookups are only for the controlled set of the
intra-CoDeeN “fetch” lookups. Since these mappings are
stable, well-advertised, and cacheable, responses should
be fast for well-behaved name servers. Anything more
than tens of milliseconds implies the local nameservers

0

20

40

60

80

100

0 5 10 15 20 25

%
 F

ai
le

d

Time (days)

(a) ny-1 proxy

0

20

40

60

80

100

0 5 10 15 20 25

%
 F

ai
le

d

Time (days)

(b) st-1 proxy

Figure 13:DNS lookup failure at different proxies

0

100

200

300

400

500

0 5 10 15 20 25

A
vg

 R
es

p
T

im
e

(m
s)

Time (days)

(a) ny-1 proxy

0

100

200

300

400

500

0 5 10 15 20 25

A
vg

 R
es

p
T

im
e

(m
s)

Time (days)

(b) st-1 proxy

Figure 14:DNS lookup time at different proxies

are having problems. These statistics also help to reveal
some major problems. For example, the st-1 proxy has a
period of 100% DNS failure rate, which is due to the name
server disappearing. The problem was resolved when the
node’s resolv.conf file was manually modified to point to
working name servers.

Though DNS failure rates on individual proxies are
relatively low, the combined impact of DNS failures on
web content retrieval is alarming. Downloading a com-
mon web page often involves fetching the attached objects
such as images, and the corresponding requests can be for-
warded to different proxies. Supposing an HTTP session
involves 20 proxies, Figure 15 shows the probability of in-
curring at least one DNS failure in the session. From the
cumulative distribution we can see that for more than 40%
of time we have DNS failure probability of at least 10%,
which would lead to a pretty unpleasant surfing experi-
ence if we did not avoid nodes with DNS problems. Note
that these problems often appear to stem from factors be-
yond our control – Figure 16 shows a DNS nameserver
exhibiting periodic failure spikes. Such spikes are com-
mon across many nameservers, and we believe that they
reflect a cron-initiated process running on the nameserver.

To avoid such problems, we have taken two approaches
to reduce the impact of DNS lookups in CoDeeN. The first
is a change in redirector policy that is intended to send
all requests from a single page to the same reverse proxy
node. If a request contains a valid “referer” header, it is
used in the hashing process instead of the URL. If no such
header exists, the last component of the URL is omitted
when hashing. Both of these techniques will tend to send
all requests from a single page to the same reverse proxy.

0

100

0 5 10 15 20 25

%
 F

ai
le

d

Time (days)

(a) Aggregate DNS failure rate over 25 days

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

Failure Percentage (%)
Cu

m
ul

at
ive

 S
am

pl
e

Pe
rc

en
ta

ge
 (%

)

(b) Cumulative distribution DNS failure rate

Figure 15: DNS failure rate of 20 nodes, i.e. the probability
of at least one node having DNS difficulty. The abnormal peak
around day 5 in (a) is caused by the same peak in Figure 13(b).
Thus when computing the cumulative distribution in (b) we only
considered the last 15 days.

Not only will this result in fewer DNS lookups, but it will
also exploit persistent connections in HTTP. The second
modification to reduce the problems stemming from DNS
is a middleware DNS brokering service we have devel-
oped, called CoDNS. This layer can mask local DNS re-
solver failure by using remote resolvers, and is described
elsewhere [17].

5.6 Requests Rejected for Security Reasons
In Section 3, we explored the idea of rejecting requests
that could cause security problems or abuse system re-
sources. Figure 17 shows a snapshot of the statistics
about various reasons for rejecting requests. Three ma-
jor reasons include clients exceeding the maximum rate,
requests using methods other than GET and requests with
no host field, indicating non-standard browsers. Most of
the time, these three comprise more than 80% of the re-
jected traffic. The query count represents the number of
bandwidth capped CGI queries which include all sorts of
malicious behaviors previously mentioned. Disallowed
CONNECTs and POSTs indicate attempts to send spam
through our system. CONNECTs alone constitute, on the
average, over 5% and sometimes 30% of all rejected re-
quests. From this graph, we can get an idea of how many
scavenging attempts are being made through the open
proxies like CoDeeN.

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12

Fa
ilur

e R
ate

 (%
)

DNS Failures Rate

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 2 4 6 8 10 12Re
spo

nse
 Ti

me
 (m

s)

Time (hours)

DNS Response Time

Figure 16:DNS failures, response times for the Stanford proxy

0 10 20 30 40 50
0

2

4

6

8

10

12

14
x 10

5

Days since July 22, 2003

of

 re
jec

te
d

re
qu

es
ts

head
post
rate − static
rate − query
no host
other
connect

Figure 17:Daily counts of rejected requests on CoDeeN

We assume most of this traffic is being generated au-
tomatically by running some custom programs. We are
now studying how to identify these malicious programs
versus normal human users and innocuous programs like
web crawlers, in order to provide an application-level QoS
depending on client classification.

6 Related Work
Similar to CoDeeN, peer-to-peer systems [20, 22, 24] also
run in a distributed, unreliable environment. Nodes join
or depart the system from time to time, and node failures
can also happen often. Besides maintaining a member-
ship directory, these systems typically follow a retry and
failover scheme to deal with failing nodes while routing
to the destinations. Although practically, these trials can
be expected by peer-to-peer system users, the extra de-
lays in retrying different next hops can cause latency prob-
lems. For latency-sensitive applications implemented on a
peer-to-peer substrate, multiple hops or trials in each op-
eration become even more problematic [7]. The Globe
distribution network also leverages hierarchy and loca-
tion caching to manage mobile objects [3]. To address
multiple-hop latency, recent research has started pushing
more membership information into each node in a peer-
to-peer system to achieve one-hop lookups [12, 21]. In
this regard, similar arguments can be made that each node
could monitor the status of other nodes.

Some researchers have used Byzantine fault tolerant

approaches to provide higher reliability and robustness
than fail-stop assumptions provide [1, 5]. While such
schemes, including state machine replication in gen-
eral, may seem appealing for handling failing nodes in
CoDeeN, the fact that origin servers are not under our con-
trol limits their utility. Since we cannot tell that an access
to an origin server is idempotent, we cannot issue multi-
ple simultaneous requests for one object due to the pos-
sibility of side-effects. Such an approach could be used
among CoDeeN’s reverse proxies if the object is known
to be cached.

In the cluster environment, systems with a front
end [11] can deploy service-specific load monitoring rou-
tines in the front end to monitor the status of server farms
and decide to avoid failing nodes. These generally oper-
ate in a tightly-coupled environment with centralized con-
trol. There are also general cluster monitoring facilities
that can watch the status of different nodes, such as the
Ganglia tools [9], which have already been used on Plan-
etLab. We can potentially take advantage of Ganglia to
collect system level information. However, we are also
interested in application-level metrics such as HTTP/TCP
connectivity, and some of resources such as DNS behav-
iors that are not monitored by Ganglia.

Cooperative proxy cache schemes have been previously
studied in the literature [6, 19, 25, 27], and CoDeeN
shares many similar goals. However, to the best of our
knowledge, the only two deployed systems have used the
Harvest-like approach with proxy cache hierarchies. The
main differences between CoDeeN and these systems are
in the scale, the nature of who can access, and the type
of service provided. Neither system uses open proxies.
The NLANR Global Caching Hierarchy [15] operates ten
proxy caches that only accept requests from other proxies
and one end-user proxy cache that allows password-based
access after registration. The JANET Web Cache Ser-
vice [14] consists of 17 proxies in England, all of which
are accessible only to other proxies. Joining the system
requires providing your own proxy, registering, and us-
ing an access control list to specify which sites should not
be forwarded to other caches. Entries on this list include
electronic journals.

A new Akamai-like system, CoralCDN [8], is in the
process of being deployed. Bad nodes are avoided by
DNS-based redirection, sometimes using an explicit UDP
RPC for status checking.

7 Conclusion
In this paper, we present our experience with a contin-
uously running prototype CDN on PlanetLab. We de-
scribe our reliability mechanisms that assess node health
and prevent failing nodes from disrupting the operation of
the overall system. We also discuss our security mecha-
nisms that protect nodes from being exploited and from

being implicated in malicious activities. The intentional
dual use of CoDeeN both as a CDN and as an open
proxy network and the resource competition on Planet-
Lab nodes make it a very valuable testbed. We believe
that future services, especially peer-to-peer systems, will
require similar mechanisms as more services are deployed
on non-dedicated distributed systems, and as their interac-
tion with existing protocols and systems increases.

Our distributed monitoring facilities prove to be effec-
tive at detecting and thus avoiding failing or problematic
nodes. The net benefit is robustness against component
disruptions and improved response latency. Although
some of the aspects of these facilities seem application-
specific, they are not confined to CDN services. Other
latency-sensitive services running in a non-dedicated dis-
tributed environment can potentially benefit from them,
since they also need to do extra reliability checks. Our ex-
periences also reveal that reliability-induced problems oc-
cur almost two orders of magnitude more frequently than
node joins/leaves, which makes active monitoring neces-
sary and important for other systems such as peer-to-peer.

Our security measures consist of classification, rate
limiting, and privilege separation. They provide a model
for other Web-accessible services. For example, some of
the security mechanisms we are developing are suitable
for ISPs to deploy on their own networks to detect mis-
behaving customers before problems arise. Other systems
that allow open access to Web resources may face similar
situations, and may be able to adopt similar mechanisms.

Our experiences with CoDeeN and the data we have ob-
tained on availability can serve as a starting point for de-
signers of future systems. We demonstrate that effective
monitoring is critical for system proper operation, and se-
curity measures are important for preventing the system
from being abused.

Acknowledgments
This research is supported in part by DARPA contract
F30602–00–2–0561. We thank our shepherd, Atul Adya,
for his guidance and helpful input. We also thank our
anonymous reviewers for their valuable comments on im-
proving this paper.

References
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.

Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Watten-
hofer. FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. InProceedings of the Fourth
Symposium on Operating Systems Design and Implementation,
Dec. 2002.

[2] Akamai. Content Delivery Network. http://www.akamai.com.

[3] A. Baggio, G. Ballintijn, M. van Steen, and A. S. Tanenbaum. Effi-
cient tracking of mobile objects in Globe.The Computer Journal,
44(5):340–353, 2001.

[4] BOPM. Blitzed Open Proxy Monitor.
http://www.blitzed.org/bopm/.

[5] M. Castro and B. Liskov. Practical byzantine fault tolerance. In
Proceedings of the Third Symposium on Operating Systems Design
and Implementation, 1999.

[6] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz,
and K. J. Worrell. A hierarchical internet object cache. InUSENIX
Annual Technical Conference, pages 153–164, 1996.

[7] R. Cox, A. Muthitacharoen, and R. Morris. Serving dns using
chord. InProceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS ’02), 2002.

[8] M. Freedman, E. Freudenthal, and D. Mazieres. Democratizing
content publication with coral. InProceedings of the 1st Sym-
posium on Networked System Design and Implementation (NSDI
’04), 2004.

[9] Ganglia. http://ganglia.sourceforge.net.

[10] GNU wget. http://www.gnu.org/software/wget/wget.html.

[11] G. Goldszmidt and G. Hunt. Netdispatcher: A tcp connection
router. IBM Research White Paper.

[12] A. Gupta, B. Liskov, and R. Rodrigues. One hop lookups for peer-
to-peer overlays. InNinth Workshop on Hot Topics in Operating
Systems (HotOS-IX), 2003.

[13] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized
peer-to-peer web cache. InProceedings of the 21st Symposium on
Principles of Distributed Computing (PODC), 2002.

[14] JANET Web Cache Service. http://wwwcache.ja.net.

[15] National Laboratory for Applied Network Research (NLANR). Ir-
cache project. http://www.ircache.net/.

[16] Network Systems Group, Princeton University. CoDeeN—A CDN
on PlanetLab. http://codeen.cs.princeton.edu.

[17] K. Park, Z. Wang, V. Pai, and L. Peterson. CoDNS: Masking DNS
delays via cooperative lookups. Technical Report TR-690-04,
Princeton University Computer Science Department, Feb. 2004.

[18] N. Provos and P. Honeyman. Detecting steganographic content on
the internet. InISOC NDSS’02, Feb. 2002.

[19] M. Rabinovich, J. Chase, and S. Gadde. Not all hits are created
equal: cooperative proxy caching over a wide-area network.Com-
puter Networks and ISDN Systems, 30(22–23):2253–2259, 1998.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. InProceedings of ACM
SIGCOMM’01, Aug. 2001.

[21] R. Rodrigues, B. Liskov, and L. Shrira. The design of a robust
peer-to-peer system. InTenth ACM SIGOPS European Workshop,
2002.

[22] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), pages 329–350, Nov. 2001.

[23] Speedera. http://www.speedera.com.

[24] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet
applications. InProceedings of ACM SIGCOMM 2001, San Diego,
California, Aug. 2001.

[25] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design considera-
tions for distributed caching on the internet. InInternational Con-
ference on Distributed Computing Systems, pages 273–284, 1999.

[26] L. Wang, V. Pai, and L. Peterson. The Effectiveness of Request
Redirecion on CDN Robustness. InProceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation, Boston,
MA, December 2002.

[27] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R. Karlin,
and H. M. Levy. On the scale and performance of cooperative web
proxy caching. InSymposium on Operating Systems Principles,
pages 16–31, 1999.

