
USENIX Association

Proceedings of the General Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Monkey See, Monkey Do: A Tool for TCP Tracing and Replaying

Yu-Chung Cheng†∗, Urs Hölzle‡, Neal Cardwell‡, Stefan Savage†, and Geoffrey M. Voelker†

†University of California, San Diego
{ycheng,savage,voelker}@cs.ucsd.edu

‡Google
{urs,ncardwell}@google.com

Abstract
The performance of popular Internet Web services is gov-
erned by a complex combination of server behavior, net-
work characteristics and client workload – all interacting
through the actions of the underlying transport control pro-
tocol (TCP). Consequently, even small changes to TCP or
to the network infrastructure can have significant impact
on end-to-end performance, yet at the same time it is chal-
lenging for service administrators to predict what that im-
pact will be. In this paper we describe the implementa-
tion of a tool calledMonkeythat is designed to help ad-
dress such questions. Monkey collects live TCP trace data
near a server, distills key aspects of each connection (e.g.,
network delay, bottleneck bandwidth, server delays, etc.)
and then is able to faithfully replay the client workload in a
new setting. Using Monkey, one can easily evaluate the ef-
fects of different network implementations or protocol op-
timizations in a controlled fashion, without the limitations
of synthetic workloads or the lack of reproducibility of live
user traffic. Using realistic network traces from the Google
search site, we show that Monkey is able to replay traces
with a high degree of accuracy and can be used to predict
the impact of changes to the TCP stack.

1 Introduction

There are many factors that conspire to limit the perfor-
mance of Internet Web sites, including server response
time, client workload, network characteristics and protocol
behavior. However, each of these factors can vary consider-
ably between sites and their interactions vary as well. Con-
sequently, it is challenging to knowa priori which of many
potential optimizations will have an appreciable impact on
a given site. It is rarely cost effective to test these alterna-
tives exhaustively. Instead, administrators must make ed-
ucated guesses based on their understanding of their site’s
unique demands.

In response to this problem, a variety of of synthetic load
testing tools have been developed [2, 3, 12, 19]. These

∗Cheng performed this work on an internship at Google.

tools are largely based on analytic Web workload models
that have been developed and validated against measure-
ments in individual settings [4, 5, 9, 13, 14]. This synthetic
approach has enormous benefits, since it is easy to set up
and has the flexibility to explore a variety of workload pa-
rameters. At the same time, the underlying models require
continual re-validation with up-to-date empirical data and,
by their very nature, synthetic models are unlikely to match
any particular site’s workload with high accuracy. More-
over, few of these tools attempt to model the network con-
ditions of the client population and therefore are poor pre-
dictors for changes in a site’s implementation that are sen-
sitive to network characteristics.

Another potential alternative is to implement protocol or
network changes on a test server and then redirect a subset
of real users to that server to evaluate the changes impact.
This approach has the benefit of being highly realistic, but
also suffers from the risk that some users will be negatively
impacted. Ideally, this risk should only be taken when there
is a strong reason to believe the change will offer a signifi-
cant benefit.

Our work represents a middle road – offering a high de-
gree of realism while not exposing real users to risks during
testing. The tool we have developed, calledMonkey, uses
captured traces to accurately replay an emulated workload
that is effectively identical to the site’s normal operating
conditions. To do this, Monkey infers delays caused by the
client, the protocol, the server, and the network in each cap-
tured flow and then faithfully replays each flow according
to these parameters to recreate the original workload. This
approach allows a site administrator to recreate a real work-
load in a modified test environment – and thereby evaluate
the impact of individual protocol, server or network opti-
mizations. For example, a site with typically short data
flows might wish to explore the effect of modifying TCP’s
initial congestion window setting, or investigate the bene-
fits of using the TCP SACK or DSACK options to reduce
spurious packet retransmissions.

To our knowledge, Monkey is the first tool of its kind
and our initial experiences have been extremely positive.

Using traces gathered from the popular Google search site,
we have been able to replay Google client workloads with
high accuracy. Moreover, we have been able to success-
fully predict the impact of changes made to the Google
TCP implementation on overall client response time.

In the remainder of this paper we discuss related work
and then describe the design challenges and trade-offs in
the Monkey system. We then describe the details of Mon-
key’s trace collection and trace replay components and fi-
nally discuss our experiences using Monkey at Google to
predict the impact of protocol changes.

2 Related Work

In his 1999 HotOS paper, Mogul offers a general indict-
ment on the statement of systems benchmarking in use to-
day. He argues strongly that relevant benchmarks must
predict absolute performance in a production environment,
rather than simply focusing on quantified, repeatable re-
sults in a carefully constructed laboratory setting [11]. Un-
fortunately, this goal has proved elusive in practice and few
tools available today can offer strong predictions about fu-
ture performance.

Most existing HTTP load testing tools, such as
SPECweb99 [2], WebStone [19], Web Polygraph [3],
httperf [12] are based on synthetic models of Web traffic
[4, 5, 9, 13, 14]. These models are developed analytically
and then validated experimentally with measurement stud-
ies. In particular, such tools are focused on creating real-
istic traffic mixes as a function of overall load – a role for
which they have been very successful. However, these tools
typically are run on local area networks and ignore the im-
pact of variable wide-area network characteristics or proto-
col interactions with different client operating systems.

An exception is the Nahum et al. study [14], which in-
vestigated the impact of WAN conditions on WWW server
performance by combining synthetic experiments with an
emulated wide-area network [14]. While their experiments
only included static HTTP transactions, they still found that
variations in round-trip time (RTT), packet loss rate, as well
as different TCP versions (Reno, NewReno, SACK) had
significant impact on end-to-end response time. However,
Nahum’s study did not attempt to replicate the workload or
network conditions of aparticular Web site and reflected
the impact of a particular synthetic parameterization.

The open-source tcpreplay tool represents a very differ-
ent approach to this problem [20]. Tcpreplay takes a packet
dump and replays each recorded packet without transport
or upper protocol knowledge – typically to exercise fire-
wall and security systems. Although it can also be used to
replay traces against a server, tcpreplay does not separate
out network, client and server conditions and therefore it
will not reflect the impact of any changes to the test envi-
ronment.

A slightly more advanced approach is found in the

tcplib[7] tool, which simulates TCP applications (TELNET
and FTP in particular) through a combination of determin-
istic application characteristics combined with statistical
modeling of user behavior. The authors observed that wide-
area TCP/IP traffic cannot be accurately modeled with sim-
ple analytical expressions, but instead requires a combina-
tion of detailed knowledge of the end-user applications and
measured probability distributions of user workloads. Un-
like Monkey, tcplib does not reproduce particular traces,
but generates traffic according to the general characteris-
tics revealed in a set of measurement experiments.

Zhang et al. [21] studied flow rates with traces captured
from a large backbone ISP and discovered that short flow
rates are over 90% application-limited or limited by slow-
start behavior. Most Google flows fall into this category,
where HTTP response time is highly correlated to server
application delay and client slow-start behavior. Barford et
al. [6] studied the cause of delays in general HTTP flows
using a similar analysis, and under synthetic loads found
that long response times are mainly contributed by server
and client delays. These results are generally consistent
with our traces of Google.1 While we were not able to di-
rectly reuse the analyses from these studies, their approach
informed our inference techniques.

3 Design

Monkey is designed to emulate a real workload by emu-
lating client behavior (e.g., request timing, client delays,
and protocol implementation), server behavior (e.g., ser-
vice delay and protocol implementation), as well as net-
work conditions (e.g., RTT, bandwidth and loss rate). Our
current prototype is particularly focused on evaluating how
changes in server implementation – particularly the TCP
stack – affect HTTP response time.

Monkey consists of two distinct components:Monkey
Seeand Monkey Do. Monkey See captures TCP packet
traces at a standalone packet sniffer adjacent to the Web
server being traced (in our case on a network tap in front of
a Google search server). It then performs offline trace anal-
ysis to extract observable link delays, packet losses, bottle-
neck bandwidth, packet MTUs, and HTTP event timings.
This connection information is stored in a database to be
used in the subsequent replay step.

Monkey Do consists of a network, client, and server em-
ulator residing on the same LAN. The network emulator is
responsible for emulating the characteristics of client up-
stream and downstream links. The client emulator models
client request timings and protocol behavior and directs its
packets through the emulated virtual links. The server em-
ulator models server delays and protocol behavior. Finally,

1The most significant differences result from Barford’s use of Linux
clients, whereas Goggle client population is primarily Windows based.
Windows clients delay ACKs during slow start leading to significant “ar-
tificial” delay for short flows

132.239.1.2 Google
Server

Trace
Capturing

HTTP GET /search?q=monkey

TCP Delay ACK policy, Receiver Buffer Size

C->S Path: delay 90ms, 1% loss, 384KBps, MTU 1460
S->C Path: delay 90ms, 0% loss, 384KBps, MTU 1460

Trace Info of 132.239.1.2

Client
Emulator

Network
Emulator

(Dummynet)

HTTP/TCP Info Network Info

Google
Server

Address Remapping
132.239.1.2:3404 ->

192.168.0:10001

LAN LAN

Monkey See

Monkey Do

Dummynet Pipe

Network Link

Program Flow

Figure 1: The Monkey Architecture. Monkey consists of two
components: Monkey See and Monkey Do. Monkey See traces
and analyzes TCP connections, while Monkey Do replays the
connections by emulating both client and network behavior.

a packet sniffer at the test server captures traffic during a
replay experiment so that it can be analyzed and compared
to the original trace.

In the remainder of this section, we describe the Google
service environment examined in our study and the design
challenges and implementation details.

3.1 Assumptions

In its current form, Monkey is not a completely general
tool. We have built Monkey in the context of the Google
service environment and consequently we have been able
to make simplifying assumptions based on our knowledge
of this context. While most of these assumptions are com-
mon to any popular Web site, it is prudent to understand
them before exploring the details of Monkey’s design and
implementation.

1. High-performance local network. Monkey collects
traces directly in front of, not inside, the Google server
cluster. The delay between the sniffing host and server
end is less than 0.5 ms and Monkey ignores this delay
in RTT and bandwidth estimations.

2. Short flows. Because most Google flows are rather
short, ranging from 3–20 data packets, Monkey as-
sumes client downstream and upstream network path
dynamics, such as RTT and loss, do not change during
the lifetime of a connection.

3. No reverse-path congestion. Using passive TCP anal-
ysis on server-side traces, it is not possible to perfectly
infer exactly which packets are lost. Consequently,
Monkey assumes that all losses occur on the server to
client path. Similarly, Monkey assumes that queue-
ing and congestion primarily occur on the server to
client path. This is consistent with our bandwidth
measurements in Section 3.2. Moreover, in a previous
measurement of loss distributions to and from pop-
ular Web sites, Savage [17] found that over 90% of
losses happen on the client downstream link and sug-
gests that our assumption is reasonable.

4. Well-provisioned servers. We assume that the server
cluster is well provisioned with processing capacity.
In particular, we assume that the server will never
queue packets for longer than a millisecond, and that
delays longer than this are caused by application de-
lays (e.g., search) or TCP flow/congestion control.
This assumption holds true for the servers we used,
but may be invalid in less well-provisioned infrastruc-
tures.

5. Flow independence. We assume that bottlenecks are
independent and disjoint – individual connections do
not interfere with each other. While in the real world
it is possible that connections might share the same
bottleneck link, our model would not capture such in-
teractions during replay. Given the dominance of “last
mile” bottlenecks, the small size of each flow, and the
rarity of concurrent searches per user, we do not think
this assumption is unreasonable. The largest potential
exception is client proxies, but in our experience large
proxies are also well provisioned with network band-
width. However, if this assumption were violated, our
replay might underestimate the typical response time.

3.2 Monkey See

Monkey See captured packet traces usinglibpcap [1] on
a PC host equipped with two Gigabit Ethernet cards (one
each for inbound and outbound traffic). Because we use
the standard interrupt-driven Linux kernel to acquire pack-
ets, high data rates can overwhelm the host (in fact, during
our trace collections at Google our network cards dropped

an average of 90,000 packets per second). To manage the
packet drop rate, we reduce the amount of data captured by
sampling flows with randomly selected values for the last
octet. In our experiments we sub-sampled the traffic by a
factor of 90 using this technique. Further, Monkey prunes
connections that have incomplete connection handshakes,
incomplete terminations (no FIN or RST) and incomplete
data sequences. We also prune connections for which it
is impossible to infer bandwidth estimates – typically ex-
tremely short flows that have no ACK pairs.

Once a trace is captured, Monkey See uses several anal-
yses to extract key network and client characteristics and
record these parameters into a replay database for each flow
captured.

Path MTU, Delay and Loss. Client downstream and
upstream path MTUs are extracted from the MSS TCP op-
tions contained in the client and server SYN packets re-
spectively.

Monkey estimates the path propagation delays by halv-
ing the minimum RTT estimate. Since we are primarily
concerned with overall response time potential propagation
asymmetries are irrelevant. We use the minimum RTT be-
cause low bandwidth links, such as dial-up modems, can
have very large variability in queuing delay. The minimum
RTT is typically estimated between the server SYN-ACK
and the first client ACK since packet queuing delays are
usually small at this point.

As mentioned earlier, we assume the upstream path
(ACK channel) has no loss. The downstream path (data
channel) loss rate is estimated by counting the percentage
of server data retransmissions. However, retransmissions
may be spurious and cause Monkey to overestimate the
loss rate. To address this problem, we employ the follow-
ing heuristic. Assuming that packet reordering is rare, any
duplicate acknowledgment sent in response to a retransmis-
sion indicates that the retransmission was spurious. There-
fore, we can compute the packet loss rate as the number of
retransmissions minus the number of duplicate acknowl-
edgments, divided by the number of total server packets
sent. In an environment using the TCP DSACK option [8],
we could disambiguate spurious retransmissions even in
the presence of packet reordering, but it is not in use on
Google servers.

Link Bottleneck Bandwidth . Monkey uses the packet
pair technique to measure bottleneck bandwidth. As men-
tioned in Section 3, Monkey assumes that packet queuing
and congestion only happen at the end of the server to client
path – the path from client to server is never congested.
Hence, packets sent in a burst remain back-to-back when
they arrive at the bottleneck link, e.g., modem, DSL lines,
etc. If the client acknowledges packets immediately, Mon-
key obtains the bottleneck queue bandwidth by measuring
the ACK time spacing. Sariou’s sprobe tool [16] uses a
similar technique, but Monkey measures all possible ACK
pairs while sprobe only uses one.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

%
 c

lie
nt

s

[Kbps]

56K

gzip
nongzip

inflated-nongzip

Figure 2: CDF of estimated bandwidth of dialup clients from
level3.net . Over 80% are below 56 Kbps. The non-gzipped
connections over-estimate application-level bandwidth, while the
inflated-nongzip line reflects the adjustment of a compression fac-
tor of 2.5. The gzipped connections are not affected by modem
compressions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000

%
 c

lie
nt

s

[Kbps]

56K

512K

1.5M

6M

Figure 3:CDF of estimated bandwidth of DSL users from pac-
bell.net. 9% have less than 56 Kbps and 90% connections have
bandwidth beyond the maximum rate 6 Mbps. Note that time is
measured with millisecond granularity, therefore bandwidth esti-
mates over 1.5 Mbps (1460 bytes/1ms) can have large errors.

A challenge in using this technique is that TCP can de-
lay an ACK for up to several hundred milliseconds [18]
while waiting to receive another packet. This delay can
lead to either under-estimates or over-estimates depending
on the timing. Therefore Monkey discounts bandwidth es-
timates taken on ACK pairs that cover sequence numbers
corresponding to data packets sent in separate bursts. On
average, we are able to extract approximately three or four
bandwidth estimates for each connection.

We have run two unit-tests to verify Monkey’s band-
width estimation. The first test measures the dial-up band-
width for clients from level3.net with DNS hostnames con-
taining the keyworddialup . We noticed that many of
these connections present higher effective bandwidth than
the maximum downstream modem speed of 56 Kbps. The

cause for this discrepancy is that modern modems employ
on-line compression. Since we cannot infer the actual com-
pression ratio, we adjust the over-estimated bandwidth with
a conservative compression factor of 2.5 for transactions
containing non-gzipped HTML text [10]. As shown in Fig-
ure 2, after this adjustment, Monkey estimates that 80%
of connections have bandwidths less than 56 Kbps. The
second test measures the ADSL bandwidth for hostnames
containing the keyworddsl from pacbell.net. As shown in
Figure 3, 88% of connections have bandwidths between 56
Kbps and the highest subscriber speed of 6 Mbps. Higher
rates in the graph represent over estimates.

TCP Delayed ACK Policies. When replaying a connec-
tion, it is critical to understand the behavior of the client-
side TCP implementation. In particular, for short flows one
of the most critical parameters is the delayed ACK policy.
Since most Google flows (indeed, most Web flows in gen-
eral) are short and never exit TCP’s slow start phase, the
rate of client ACKs may dominate the overall HTTP re-
sponse time equation. In particular, while the Linux TCP
stack does not delay acknowledgments when it believes the
sender is in slow start, Windows clients delay ACKs uni-
formly. Monkey infers the delayed ACK policy in slow
start by comparing the number of ACKs and data packets
observed before the first loss occurs or the connection ends.

TCP Receiver Buffer Size. In addition to delayed ac-
knowledgments, small TCP receiver buffers at the client
can significantly limit server response time due to block-
ing on TCP flow control. Monkey records the advertised
receiver window (RWIN) in the first HTTP request packet
as the client buffer (we do not record the RWIN value con-
tained in the initial SYN packet because Windows clients
frequently use a small RWIN value in the SYN and then in-
crease RWIN upon sending the HTTP request). Note, due
to time constraints, the current implementation of Mon-
key Do does not emulate client TCP receiver window size.
However, in an offline analysis we have determined that
fewer than 0.4% of connections are limited by TCP flow
control in our traces. For server applications with larger
flows we expect that a better emulation of client buffering
would be necessary.

TCP Connection Termination. Some client TCP im-
plementations, notably Windows, send TCP RST to close
connections rather than using an explicit FIN handshake.
Consequently, it is ambiguous if a RST is due to an abort
or a normal TCP close. Monkey assumes that if a RST
is delivered after the end of an HTTP response, the client
has received the data and intends to close the connection.
Note that, since the choice of RST or FIN does not affect
the HTTP response time, we have not emulated the RST
termination behavior in Monkey Do.

HTTP messages. Monkey records the content and the
timings of each HTTP message from the original trace. No-
tice that we do not need to decompress or parse the contents
of the messages since Monkey only replays up to the HTTP

level.

3.3 Monkey Do

Monkey Do uses a client emulator, a network emulator, and
a server emulator to replay traced connections, as shown
at the bottom of Figure 1. All emulators run on separate
machines on a well-provisioned LAN.

3.3.1 Network emulator

The network emulator uses Dummynet [15] to recreate the
network conditions that were inferred from the trace dur-
ing replay. For each HTTP connection, Monkey creates
two Dummynet “pipes” as the forward and backward path
with the corresponding delay, loss, and bandwidth inferred
from the original trace. Currently Dummynet can support
approximately 4000 simultaneous pipes (unique and inde-
pendent network paths) while still forwarding packets be-
tween the client and server emulator with less than a mil-
lisecond of delay added.

Monkey configures the Dummynet pipe queue lengths
based on the suggested value in [15]. For modem con-
nections with bandwidths less than 56 Kbps, both the up-
link and downlink pipe queue lengths are 5 packets. For
DSL and cable modem connections have bandwidths rang-
ing from 56 Kbps to 6 Mbps, Monkey sets the uplink queue
to 10 packets and the downlink queue to 30 packets [15].
For the remaining high-speed connections, Monkey uses
the default queue length of 40 packets.

At the start of replay, Monkey reads connection informa-
tion from the replay database. For each connection, Mon-
key creates a new replay TCP connection identifier (source
IP, source port, destination IP, and destination port) and
maps it to the original TCP connection identifier. This map-
ping enables the client and network emulators to associate
replayed connections initiated at the client emulator with
the appropriate emulated network conditions at the network
emulator. Figure 1 shows an example mapping for single
connection.

Since Dummynet cannot do MTU emulation, Monkey
uses the TCPMAXSEG socket option in our replayed
client and server sockets to model MTU in our replay net-
work. 2

3.3.2 Client emulator

The client emulator replays client HTTP requests in-
sequence by establishing connections to the server em-
ulator through the network emulator. For each connec-
tion, Monkey creates user-level sockets using the same
TCP addresses as the replayed TCP connections. It then
configures the TCP receiver buffer size and delayed ACK

2Since Linux often uses the internal path MTU instead of the user-
specified TCPMAXSEG socket option, we patched the kernel to always
obey the user-specified TCP MSS.

policies as recorded in Monkey Do (Section 3.2) using
the TCPRCVBUF and Linux-specific TCPQUICKACK
socket options, respectively.

To accurately emulate client behavior, Monkey needs to
determine client event timings such as the connection start
and termination times, and the HTTP request time. Since
Monkey only uses server-side traces, it infers the timing of
events at the client based upon an estimate of the one-way
network delay (half the measured RTT). It models the client
connection time as the SYN packet time in the trace minus
this network delay, the HTTP request time as the first client
packet minus network delay, etc.

3.3.3 Google server emulator

Finally, we describe our server emulator, how it emulates
the HTTP behavior of a Google server interacting with a
client, and how we parameterize it to model HTTP perfor-
mance during replay. This is necessary because we can-
not rely on a production server to accurately replicate the
trace’s application-level delays due to changes in the con-
tents of Google’s search result cache at different points in
time.

The behavior and performance of a Google server fun-
damentally depends upon the nature of a Google search re-
quest and response. A Google search request is usually
short (1–3 packets). A Google search response is usu-
ally longer (3–15 packets) and consists of two parts: a
short, 3 KB search-independent Google header (the Google
search form), and then the search results (see Figure 5a).
Figures 5b and 5c illustrate packet timings of two typical
Google search flows. In these figures, the x-axis shows the
time at which packets are sent and received by the Google
server and the y-axis shows the relative packets sequence
number from the start of the connection. The small hash
marks connected by lines show data packets for the HTTP
response sent by the server, and the large crosses show the
time and ACK sequence number of client ACKs received
at the server. Figure 5b shows a typical uncompressed
HTTP response consisting of 15 response packets and 8
client ACKs. Figure 5c shows a typical gzipped HTTP re-
sponse consisting of only 4 response packets and 4 client
ACKs; note that the use of compression significantly re-
duces the number of packets exchanged between the server
and client.

Figure 4 shows the interaction of a Google client and
server as a time line of packet exchanges. To reproduce the
server behavior in the replay, we measure the server delays
in the original trace and emulate them in the replay. First
the client establishes the connection and sends the HTTP
request. The server typically spends several milliseconds
processing this request, a period of time we call there-
sponse delay. Next, the server simultaneously queries the
appropriate database and sends out the Google header to
the client. Therefore, we can measure theresponse delay
as the difference between the timestamps of the last request

Client Web Server

SYN

accept()

FIN

FIN

connect()

write(HEADER)

write(RESULT)

HTTP GET

...

read()

Response Delay

SYN+ACK

ACK

close()

HTTP 200 OK

Query Delay

Client

Delay

DB Server

Figure 4:Time line of packet flows and major events in a Google
search replay. First the client connects to the server. After the
handshake, the client might delay a small interval before it sends
out the HTTP request. Upon returning fromaccept() , the
server initiates aread() to receive the HTTP request. When
read returns, the server might not respond immediately if the orig-
inal trace indicates a server response delay. Finally, the server
writes the header, stalls to model the server search delay, sends
out the search result, and closes the connection.

packet and the first response packet (which consists of the
Google header).

Finally, the server waits until the result database returns
the result – thequery delay. Measuring thequery delay
can be challenging since the time at which the server starts
to send search result data is not explicitly apparent from
Monkey’s vantage point. This information is not directly
available from the packet payload, due to HTTP compres-
sion, nor can it be inferred purely from inter-packet delays
since similar pauses can be caused by congestion or flow
control. Instead, we analyze two aspects of TCP’s behavior
to differentiate application-level delays (attributed to
query overhead) from network-level delays. First, since
TCP packet delivery is ACK triggered3, if the client has
acknowledged all outstanding server data packets, but
the server has not sent more data, we can infer that the
server has blocked waiting for application data. Second,
since Linux’s TCP implementation always packs data into
packets of the Maximum Segment Size (MSS), we can tell
that the server’s sending buffer is empty after it sends a

3Google servers use a version of Linux that includes the NewReno
variant of TCP’s congestion control algorithm

 0

 5

 10

 15

 20

 25

 0 200 400 600

[K
B

yt
es

]

[ms]

data

ack
 0

 2

 4

 6

 0 200 400 600 800 1000 1200 1400

[K
B

yt
es

]

[ms]

data

ack

Figure 5:A Google Search and the corresponding TCP time-sequence graphs. (a) Google Search typically consists of a header and the
search result. The header is sent immediately but the search result is generated after 20–500 ms. (b) The TCP time-sequence graph of a
non-gzipped Google Search transaction. The first three packets consist of the header, followed by a search delay, then the search results.
(c) The TCP time-sequence of a gzipped Google Search transaction. Most gzipped transactions uses 1 packet for the header, and 2 to 4
packets for the search result. In (b) and (c). The small hash marks connected by lines show data packets for the HTTP response sent by
the server, and the large crosses show the time and ACK sequence number of client ACKs received at the server. The arrows point to the
first data packet that contains search result.

sub-MSS-sized packet. Based on these two observations,
we develop an algorithm to estimate thequery delayas
follows:

GOOGLE-QUERY-DELAY(tcp segments)
1 s← tcp segments[1]
2 p← s
3 c← tcp segments[2]
4 while c 6= NIL
5 do if c.snd time > p.snd time and
6 c.snd time > p.ack time
7 then return (s.snd time, c.snd time)
8 else
9 if c.size < MSS

10 then return (s.snd time, c.snd time)
11 p← c
12 c← c.next
13

In the above algorithm,tcp segments[i] refers to theith
segment sent by the server (i.e.,tcp segments[0] refers to
the SYN/ACK packet). The key goal of the algorithm is
to detect which is the last packet of the Google header and
which is the first query result packet and return the differ-
ence in their timestamps. For each pair of sequential pack-
ets, starting with the first data packet, we check if there is
significant delay between the packets – that they are not
sent in the same burst – and that the previous packet was
acknowledged before the current packet was sent. If so, we
estimate query delay as the interval between the first and
current data packets. For example, in Figure 5a, Monkey
correctly estimates thequery delayas the interval between
the 1st packet and 3rd packet. However, if the query delay

is dominated by the round-trip time or if the client delays
the ACK of the previous packet, then this test will fail. In-
stead we check if the current packet is less than full-sized
as an indicator that this is the end of a header sequence (this
heuristic will fail only if the size of last packet that contains
the header isexactlyMSS bytes). For example, in Fig-
ure 5b, the 1st packet is acked after the 2nd packet is sent,
but 1st packet size is1287 < 1460 = MSS, hence the
query delayis the interval between the 1st and 2nd packet.
If neither test is satisfied then we consider the next pair of
packets until completion.

After Monkey infers the server delay information from
the trace, the server emulator uses it to mimic a Google
server. It accepts requests from clients, emulates the server
delays by idling, then writes HTTP responses. The server
emulator runs on the same kernel as the Google servers so
that kernel and protocol implementations are unchanged.

4 Methodology

In this section, we describe the types of connections in the
Google search traces we use to evaluate Monkey, and the
hardware platform we use for performing our experiments
in Section 5.

4.1 Traces

For the experiments in Section 5, we use Monkey See to
capture traces of TCP connections to the Google servers
for replay with Monkey Do. Section 3.2 describes how
Monkey See selects TCP connections to capture in a trace.
Because these traces contain more than just Google search
traffic, though, we also filter the connections based upon

application criteria as well. Since we are focused on
Google search performance, we exclude all connections to
all other Google services such as page ranks, images, news,
or group search.

We also exclude search connections from ISPs that pro-
vide search services from Google through dedicated prox-
ies. These ISPs have high network bandwidth and low net-
work latencies. As a result, their connections are usually
very short and the HTTP response time is dominated by
the RTT.

Finally, of the remaining Google search connections, we
exclude searches that use persistent connections (25% of
search connections). Modeling persistent connections is
a challenging problem since the HTTP response times are
highly dependent on the TCP effective window size at the
server at the end of the previous transaction, and remains
future work.

4.2 Experimental platform

For the experiments in Section 5, the client emulator is one
machine running Linux 2.4.20, the network emulator is an-
other machine running FreeBSD 5.1, and the server em-
ulator is a third machine running a Google Linux kernel.
All machines have Pentium 4 2.66 GHz CPUs and 1 GB of
main memory, and are connected by a dedicated 100Mbit
Ethernet switch.

5 Experiments

In this section, we perform two experiments to evaluate the
effectiveness of Monkey’s replay features. First we evalu-
ate the ability of Monkey to accurately replay traces from
a Google server on the Monkey client, network, and server
emulators, demonstrating that Monkey can accurately re-
produce HTTP connection response times for a large frac-
tion of traced connections. Then we demonstrate Monkey’s
ability to predict the performance of a server optimization.

5.1 Replay validation

We start by evaluating how well Monkey can reproduce the
behavior and performance of Google search transactions.
To do this, we compare the performance of search trans-
actions to a Google server with the same search transac-
tions modeled by Monkey. In this experiment, the Monkey
server emulator uses the same kernel settings as the Google
servers that originally performed the search requests. As-
suming that Monkey models the client, network, and server
behavior and performance accurately, then the HTTP re-
sponse times of the replayed search transactions should
match the response times observed in the trace. We de-
fine the HTTP response time as the interval from the time
of the first byte of the request received to the time of the
last byte of the response sent from the server.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Relative error of HTTP response time

<200ms (980)
200-500ms (4014)

500-1500ms (1689)
>1500ms (307)

total (6990)

Figure 6:CDF of relative error in HTTP response time per con-
nection for a trace of 6990 connections. Over 86% of connections
have response time that are within±20% relative error.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Relative error of HTTP response time

<56Kbps (782)
56K-6Mbps(1481)

>6Mbps (4727)
total (6990)

Figure 7: CDF of HTTP response time in replay and original
trace, categorized in different bandwidth distributions.

For this experiment we use a trace of 6990 connec-
tions from 2:15–3:06pm on a weekday in November, 2003.
To compare search transaction performance from the trace
with search performance of the replay, we use a metric of
relative error in HTTP response time. We compute relative
error as the replay response time minus the trace response
time, divided by the original response time. A relative error
of 0.0 indicates the replay response time matched the trace
response time exactly, a negative error indicates that the
replay underestimated response time, and a positive error
indicates that the replay overestimated response time.

Figure 6 shows the CDF of the relative error in HTTP
response time across all replayed connections. The figure
shows CDFs for all connections (“total”), as well as subsets
of connections categorized by their HTTP response time;
the number in parentheses in the legend label of these CDFs
shows the number of connections in the category. For ex-
ample, the dark solid CDF curve shows the relative error
of the HTTP response time for all connections whose re-

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Relative error of HTTP response time

<10ms (1159)
10-100ms (4255)

100-500ms (1077)
>500ms (499)

total (6990)

Figure 8: CDF of HTTP response time in replay and original
trace, categorized in different minimum RTT distributions.

sponse times were less than 200 ms (“< 200ms”), and that
there were 980 out of 6990 (14%) such connections.

From this graph we make a number of observations.
First, Monkey performs reasonably well in reproducing
HTTP response times when replaying the traces. Over
86% of the connections replayed within±20% relative
error. Second, when Monkey replay performance differs
from the original trace, it tends to underestimate response
times. Over 60% of replayed connections had a negative
relative error. Third, Monkey’s ability to accurately re-
play connections correlates with the HTTP response time
of the original connection. Monkey replays connections
with fast response times more accurately than those with
slow response times. For example, over 94% of connec-
tions with response times less than 200 ms had a relative
error of±20%. And Monkey’s accuracy progressively de-
grades for slower connections. At the other extreme, only
29% of connections with response times greater than 1500
ms had the same relative error. We discuss this issue further
below.

To study Monkey’s replay ability from different perspec-
tives, we also correlate Monkey’s relative error to estimated
bottleneck bandwidth and minimum RTT. Figures 7 and 8
show the CDFs of relative error in HTTP response time ac-
cording to connections categorized by their estimated bot-
tleneck bandwidths and minimum RTTs, respectively, of
the original connections in the trace. From Figure 7, we
see that Monkey’s replay accuracy also correlates with bot-
tleneck bandwidth. Monkey does well for high-bandwidth
connections, but progressively worse for low-bandwidth
connections. Similarly, Figure 8 shows that Monkey does
well with connections with low RTT and progressively
worse for connections with higher RTT. Given the results
shown in Figure 6, the results in these graphs are not too
surprising since bottleneck bandwidth and minimum RTT
also correlate strongly with HTTP response time: higher
bandwidths and smaller RTTs result in smaller HTTP re-

sponse times.
In Figure 6 we saw that, when Monkey does not replay a

connection accurately, it tends to underestimate connection
response time. By manually inspecting various original and
replayed TCP flows, we found that Monkey’s replay tends
to have a more aggressive delayed ACK policy than the
connections from the Windows clients in the trace, which
together totaled over 90% of all connections. As a result,
Monkey’s replayed connections will tend to perform faster
than the original connections. Recall from Section 3.3.2
that Monkey uses Linux to emulate the clients in a trace.
The Linux delayed ACK timeout on average is less than the
Windows delayed ACK timeout. Linux provides a special
TCP QUICKACK setsockopt option to control ACK time-
outs, but the kernel does not always obey the option setting
and may still send an immediate ACK even when Monkey
disables it. Further, Linux always sends out an ACK after
it receives two consecutive in-sequence packets, but Win-
dows may send out only one ACK for data bursts of four
packets. As a result, the mean RTT in the replay is likely
to be smaller than the mean RTT in the original for these
connections.

5.2 Predictive replay

Next we evaluate Monkey’s ability topredict the perfor-
mance of optimizations made to a Google server on a given
client workload. In this experiment, we (1) trace the per-
formance of a client workload on an original Google server,
(2) trace the performance of an equivalent client workload
on an optimized Google server, and then (3) use Monkey to
replay the workload from the original Google server on our
server emulator modified with the same optimization. By
comparing the performance of the optimized Google server
trace with the performance of the replayed unoptimized
trace on the optimized server emulator, we can evaluate
Monkey’s ability to predict performance of server modi-
fications using trace replay.

For this experiment, the optimization that we make to the
Google server and server emulator is to increase the TCP
initial congestion window from 1 to 3. This optimization
makes TCP more aggressive in sending data, thereby de-
creasing overall HTTP response time.

Ideally, we would like to use the same client workload
on both the unoptimized and optimized Google servers in
steps (1) and (2). However, it is impractical to do so. For
example, we could not shadow the same workload simulta-
neously on two Google servers that differed in their initial
congestion window but were otherwise exactly the same
in terms in state and load. Instead, we use two equiva-
lent workloads to the unoptimized and optimized Google
servers. These workloads do not have the same TCP con-
nections, but their overall distributions of connection per-
formance (HTTP response time) are effectively identical.
As a result, although we cannot compare workloads on

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400
[ms]

14:15-14:40
14:40-15:06

Figure 9:CDF of HTTP response times for two halves of a trace
collected from 2:15–2:40pm and 2:40–3:06pm on a weekday in
November, 2003.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400
[ms]

cwnd1
cwnd3
replay

Figure 10: CDF of HTTP response times for tracestcwnd1,
tcwnd3, and treplay. Tracestcwnd3, tcwnd1, and treplay have
7109, 6923, and 6841 connections, respectively.

a connection-by-connection basis, we can compare their
overall distributions.

To validate this approach, we use a trace to a Google
server from 2:15–3:06pm on a weekday in November,
2003. We divide the trace in half in time, from 2:15–
2:40pm and 2:40–3:06pm, and compare the distributions
of HTTP response time for both halves of the trace. Fig-
ure 9 shows the CDFs of the HTTP response time distri-
butions of the trace halves. From the figure, we see that
the distributions are nearly identical. For the purposes of
this experiment, we therefore consider two relatively short
workload traces taken immediately after each other in time
to be equivalent workloads in terms of their HTTP response
time distributions.

To evaluate Monkey’s ability to predict performance, we
began with a tracetcwnd1 of a client workload to a Google
server with its TCP initial congestion window set to 1. We
recorded tracetcwnd1 from 1:30–2:15pm on a weekday in

November, 2003. We then changed the TCP initial conges-
tion window of the Google server from 1 to 3, and imme-
diately recorded a tracetcwnd3 of the client workload from
2:15–3:06pm (the trace used in Figure 9 above). We then
used Monkey to replay thetcwnd1 trace on the server em-
ulator running a Google kernel with a TCP initial window
of 3, resulting in a tracetreplay of replayed connections.

We evaluate the ability of Monkey to predict the perfor-
mance of an optimized server using a trace from an un-
optimized server by comparing the distributions of HTTP
response times in tracestreplay and tcwnd3. The closer
these distributions are, the better Monkey is at predicting
the performance of this server optimization on an unopti-
mized client workload.

Figure 10 shows the CDFs of the HTTP response time
distributions for tracestcwnd1, tcwnd3, andtreplay. Com-
paring the distributions of tracestcwnd1 and tcwnd3, we
see that increasing the TCP initial congestion window de-
creases HTTP response time, effectively shifting the distri-
bution left over 100 ms. Recall thattreplay is a replay of
tcwnd1 on a Google server emulator with TCP initial con-
gestion window set to 3, the congestion window value of
tracetcwnd3. Comparing the distributions oftreplay and
tcwnd3, we see that the distributions match well within the
200–550 ms response time range, demonstrating that Mon-
key can predict performance well for this optimization in
this range of client connections.

Recall from Section 5.1 that Monkey underestimates
HTTP response time for connections that originally expe-
rienced relatively large response times in the trace. As a
result, we expect thetreplay distribution to also slightly un-
derestimate thetcwnd3 distribution at large response times.
Furthermore, in this experiment, Monkey overestimates re-
sponse times for connections with response times under
100 ms. This is because with an initial congestion window
of 1, the connection is stalled waiting for a delayed ACK
from the client. This delay overlaps, and hides, the actual
search delay – leading to an overestimate.

6 Discussion

While Monkey is able to offer strong predictive power in
the Google environment, an obvious question is how well
this approach might generalize to other Web environments,
or even further to other TCP applications. In general, there
are several classes of problems presented by different envi-
ronments: network dynamics, server emulation, and client
analysis.

In its current form, Monkey makes several simplifica-
tions in its network model which, while appropriate for
Google, may require significant extensions for other set-
tings. For example, Monkey currently models packet losses
as independent and identically distributed. In environ-
ments with single flows long enough to stress intermediate
queues, the pattern of losses may be neither. Similarly, sev-

eral of the algorithms depend on regular acknowledgments
returning from the client – assuming the reverse path con-
gestion is rare. While many of these complexities can be
addressed with better analysis algorithms, others represent
inherent ambiguities. For example, the free-running nature
of client-based delayed ACK timers makes the source of
acknowledgment delay inherently ambiguous.

Another concern is the potential need for specific server
emulators for each new application. However, this require-
ment is limited to those applications that have strong per-
formance dependencies between sets of operations – such
as the result caching employed in the Google system. In
this setting the server emulator prevents these dependen-
cies (e.g., all results from the trace being already present
in the result cache) from skewing the results. However, for
systems in which the performance distribution is “memo-
ryless” and independent of the particular order and time
of requests there is no need for a server emulation. Con-
sequently, in most Web or content distribution environ-
ments, the trace can be directly replayed against the origi-
nal server.

Finally, the current version of Monkey does not model
client interactions. We cannot predict the impact of faster
response times on future request arrivals. In general, it is
unlikely that a complete end-to-end “closed-loop” analysis
can be extracted purely from a TCP stream.

7 Conclusions

In this paper we have described a new tool called Monkey.
Monkey collects live packet traces of TCP connections and
then replays them to mimic the original session characteris-
tics like network, server and client delays as well as packet
loss and bottleneck bandwidth limitations. Monkey allows
Web site administrators to quickly and easily evaluate the
effect of different network implementations and optimiza-
tions in a controlled fashion, without the limitations of syn-
thetic workloads or the lack of reproducibility of live user
traffic.

Using realistic, large network traces from the popular
Google search site we show that Monkey replays traces
with a high degree of accuracy. We also demonstrate that
Monkey can be used to predict the effect of changes to the
TCP stack by showing that the measured impact of changes
in the simulated environment closely corresponds to the im-
pact of measurements taken on the actual system. In the
end, we believe it is unrealistic to build a generic one-for-
all TCP replay tool. But it is possible to build replay tool
for specific applications as Monkey.

Monkey source is publicly available at:
http://ramp.ucsd.edu/monkey/

8 Acknowledgments

We thank Vikram Asrani, Gerald Aigner, and the Google
production team for their help in running experiments on
Google servers and extracting traces from Google’s inter-
nal networks. We also thank the anonymous USENIX re-
viewers and our shepherd Srini Seshan for their comments
and insights.

References

[1] Libpcap. http://tcpdump.org .

[2] Specweb99 benchmark. http://www.
specbench.org/osg/web99/ .

[3] Web polygraph.http://web-polygraph.org .

[4] G. Banga and P. Druschel. Measuring the capacity of
a web server. InProceedings of USENIX Symposium
on Internet Technologies and Systems, 1997.

[5] P. Barford and M. Crovella. Generating representative
web workloads for network and server performance
evaluation. InProceedings of ACM SIGMERTRICS,
1998.

[6] P. Barford and M. Crovella. Critical path analysis
of TCP transactions. InProceedings of ACM SIG-
COMM, January 2000.

[7] P. Danzig and S. Jamin. tcplib: A library of TCP inter-
network traffic characteristics.Tech Report USC-CS-
91-495, Computer Science Department, University of
Southern California, 1991.

[8] S. Floyd, J. Mahdavi, M. Mathis, and M. Podol-
sky. An extension to the selective acknowledgement
(sack) option for TCP.RFC 2883, July 2000.

[9] S. Manley, M. I. Seltzer, and M. Courage. A
self-scaling and self-configuring benchmark for web
servers (extended abstract). InProceedings of ACM
SIGMETRICS, 1998.

[10] P. Mitronov. Modem compression: V.44 against
v.42bis. http://www.digit-life.com/
articles/compressv44vsv42bis/ .

[11] J. C. Mogul. Brittle metrics in operating systems re-
search. InProceedings of 7th Workshop on Hot Topics
in Operating Systems, January 1999.

[12] D. Mosberger and T. Jin. httperf: A tool for measur-
ing web server performance. InProceedings of First
Workshop on Internet Server Performance (WISP),
June 1998.

[13] E. M. Nahum. Deconstructing specweb99. InPro-
ceedings of 7th International Workshop on Web Con-
tent Caching and Distribution, August 2002.

[14] E. M. Nahum, M.-C. Rosu, S. Seshan, and J. Almeida.
The effects of wide-area conditions on www server
performance. InProceedings of ACM SIGMETRICS,
June 2001.

[15] L. Rizzo. Dummynet. http://info.iet.
unipi.it/˜luigi/ip_dummynet.html .

[16] S. Saroiu, P. K. Gummadi, and S. Gribble. Sprobe:
A fast technique for measuring bandwidth in uncoop-
erative environments. InProceedings of IEEE INFO-
COM, August 2001.

[17] S. Savage. Sting: a TCP-based network measurement
tool. In Proceedings of USENIX Symposium on Inter-
net Technologies and Systems, October 1999.

[18] R. Stevens.TCP/IP Illustrated, Volume 1. Addison
Wesley, 1994.

[19] G. Trent and M. Sake. Webstone: The
first generation in http server benchmarking,
1995. http://www.sgi.com/Products/
WebFORCE/WebStone/paper.html .

[20] A. Turner and M. Bing. tcpreplay. http://
tcpreplay.sourceforge.net .

[21] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On
the characteristics and origins of internet flow rates.
In Proceedings of ACM SIGCOMM, August 2002.

