
USENIX Association

Proceedings of the
FREENIX Track:

2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Sandboxing Applications

Vassilis Prevelakis
vp@prevelakis.net

Department of Computer and Information
Science

University of Pennsylvania

Diomidis Spinellis
dds@aueb.gr

Department of Technology and
Management

Athens University of Economics and
Business

Abstract

Users frequently have to choose between functionality and security. When running popular Web browsers
or email clients, they frequently find themselves turning off features such as JavaScript, only to switch them
back on in order to view a certain site or read a particular message. Users of Unix (or similar) systems can
construct a sandbox where such programs execute in a restricted environment. Creating such a sandbox is
not trivial; one has to determine what files or services to place within the sandbox to facilitate the execution
of the application. In this paper we describe a portable system that tracks the file requests made by
applications creating an access log. The same system can then use the access log as a template to regulate
file access requests made by sandboxed applications. We present an example of how this system was used
to place Netscape Navigator in a sandbox.

1. Introduction
The sad truth is that whichever operating system one
may be using, running large monolithic programs is a
security risk. The original Unix philosophy of having
simple dedicated tools that could be combined to
carry out complex tasks is being abandoned. Instead,
huge programs such as Netscape Communicator and
the Star Office suite have been constructed by simply
piling up one marginally useless feature after another.
Nevertheless, users like fancy features and will use
such programs despite our many philosophical and
stylistic objections. Therefore, our rear guard action
must be to alleviate the detrimental effects the use of
such programs may have on the security posture of
our system.

The concept of creating restricted environments for
programs that are considered unsafe is by no means
new. Unix itself offers many restrictions to what
processes can and cannot do. Where additional
security is required (e.g. by the ftp daemon) the
chroot(2) system call is used to restrict access to a
specific area of the filesystem. In this paper we
examine how these access restrictions can be used to
create a safe execution environment, and describe a
tool that supports the construction and operation of
such sandbox-type environments. We illustrate our

approach by sandboxing Netscape Communicator and
discuss the wider implications of the use of such
mechanisms.

2. Access Restrictions
Let us consider the classic dilemma. A typical user
receives a Microsoft Word file and would like to see
what is inside but is afraid of what will happen to his
workstation if the file contains a virus. One solution
would be to place the program (Word) along with the
suspect file in a controlled environment (which from
now on we will refer to as sandbox) and open it there.
If the file is infected, the effects of the virus will be
localized, but not entirely eliminated as we shall see
later on.

The sandbox must contain all the files needed for
executing the application. Gathering a list of these
files is a non trivial task. Applications depend in
utilities such as lpr or mail, and on shared libraries,
loadable modules, configuration files, and the
operating system files required by various C library
functions (IP service names, localized messages, time
zone specifications, etc.). A key consideration is to
make sure that the program does not escape from the
sandbox, and that the sandbox system never assigns
the program greater privileges than it would have if it
ran outside the sandbox. Thus, the sandbox must
disable access to setuid programs, or not allow them
to be executed with permissions other then the ones

This work was supported by DARPA under contract
F39502-99-1-0512-MOD P0001.

given to the user running the application. Moreover,
to prevent the application from gathering information
about the system by accessing files such as
/etc/password and /etc/hosts we need to
substitute them with “sanitized” versions that contain
just the information that the application requires to
perform its tasks.

More sophisticated systems like Janus [1] support
centralized policies with fine grained control over the
resources that the process may use (e.g. file
descriptors, memory, file system space etc.). Our
approach dynamically evaluates the requirements of a
given program, creating a sandbox specification that
will not affect its operation. In doing so we strive to
balance what we would like to control against the
effort in specifying these restrictions.

3. Approach Overview
Our target audience is the typical Linux or *BSD
user, i.e. people with their own PC where they have
root access, but are not Unix gurus or security
specialists. This orientation has strongly influenced
our approach. Our sandbox is based on system-
provided services such as chroot and mount.
Access to these system calls has important
implications regarding system security. However,
since our user already has root access we need not
worry about the user abusing these calls and can
concentrate on automating the generation of secure
sandboxes.

Based on this premise, our approach for sandboxing
applications is based on the following steps:

1. Run the application with known benign input to
create access logs specifying its file access
behavior.

2. Use the logs to create an access list that can be
morphed into a typical chroot environment (like
the one used by ftpd). The user can augment
this list based on the particular requirements of
the application.

3. Create the sandbox as a chroot environment
based on the access list.

4. Run the application with untrusted input in the
sandboxed environment thus denying it access to
unauthorized files.

Nowadays, operating system releases every few
months are commonplace. This places an enormous
burden on the developers of software that requires
“special” access to the operating system (e.g. kernel

modules). While external kernel interfaces (system
calls, ioctls etc.) evolve slowly, internal kernel data
structures and interfaces are more volatile. Further-
more, subtle but annoying differences between the
various systems make the support of kernel based
programs a full time job. We, therefore, decided to
stay in user land and invest our resources (time) on
making the system portable and flexible.

4. The FMAC Tool
To support the approach we outlined, we designed the
File Monitoring and Access Control (FMAC) tool.
The tool implements a filesystem that mirrors the
system’s existing file structure. With the FMAC
filesystem mounted on the workstation, applications
are run with a chroot operation that limits their
access to the FMAC managed filesystem. The FMAC
tool supports two modes of operation:

passive whereby FMAC logs file requests while
allowing them to go through, and

active when FMAC only honors file access requests
that are authorized by a user-specified access
list.

Initially applications are run with FMAC in passive
mode to create the access log (step 1 of our
approach). After the sandbox specification has been
created (step 2) FMAC is run in active mode (step 3)
and applications can be executed with untrusted input
in the FMAC chroot environment (step 4).

We implemented two versions of the FMAC tool: one
based on a user-level NFS server and one on a Perl
filesystem [2]. The user-level NFS server is efficient
and highly portable. It is available on most *BSD
and Linux distributions. The Perl filesystem trades
runtime efficiency for flexibility. It runs without any
modifications on any platform supporting Perl
filesystems (currently Linux on Alpha and Intel
CPUs). In the following paragraphs we describe the
two FMAC implementations.

4.1 FMAC as an NFS Server
The FMAC NFS server runs as a user-level process
without the need for NFS server support to be present
in the kernel. The FMAC filesystem is mounted by
the standard NFS client, so the system must be able to
mount filesystems using the NFS protocols.

The FMAC tool uses a different port from the well-
known NFS port, so that it can coexist with a standard
NFS server. All requests from the FMAC filesystem

are processed by the tool which performs a lookup in
the access list in order to determine its response to the
request. If the filename is found in the access list,
then the permissions reported by the FMAC server
are constructed by performing a logical AND
operation between the permissions in the access list
and the those in the underlying filesystem. If the
filename is not present in the access list, the FMAC
server reports that the file does not exist.

Normally NFS does not allow requests to cross
filesystems (i.e. if you export two filesystems / and
/usr, a client mounting only / will not able to access
files on /usr unless this filesystem is mounted as
well). The reason for this limitation is that
inodes/vnodes are guaranteed to be unique only
within a single filesystem.

In our system we want to be able to view the entire
local file hierarchy as a single filesystem so that there
is no need for multiple mount points within the
chrooted environment.

We, therefore, modified the NFS server to allocate
file handles dynamically and maintain a lookup table.
The implication is that the NFS server is no longer
stateless. This is contrary to the NFS philosophy of
delegating state to the client, but in our case we felt
that our decision was acceptable because:

• This is not a general-purpose NFS server but an
application that is intended to run on the same
machine as the sandboxed application. If the
machine crashes so will the client.

• This only affects the passive mode when we have
to construct the file access list in memory. In the
active mode the access list is retrieved from a file.
In this case the FMAC server may be restarted
without disturbing the client.

4.2 FMAC as a Perl Filesystem
The Perl filesystem (PerlFS) is a combination of a
Linux kernel module and a Perl extension that make it
possible to write filesystem implementations in Perl
instead of C. Perl filesystems are object classes
conforming to the PerlFS interface. Compared to
typical filesystem implementations written in C, Perl
filesystems are less dependent on the underlying
operating system implementation. The PerlFS
interface abstraction isolates the filesystem
implementation from operating system changes; the
same code will run on all systems supporting PerlFS.

Like the NFS-server implementation, the Perl file-
system allows multiple partitions to be mounted under
the same directory hierarchy and dynamically

allocates unique inode numbers for existing files.
Two Perl associative arrays are conveniently used to
map inode numbers to file names and vice versa. To
avoid name aliasing problems created by hard links
across files, and the multiple ways a directory
hierarchy can be traversed to reach a file, the native
filesystem stat(2) system call is used to obtain the
original unique device/inode number pair as a basis
for creating the dynamic inode number.

The high-level interface of the Perl filesystem—
trading runtime efficiency for flexibility— allowed us
to implement the FMAC tool in less than 2000 lines
of Perl code. We utilized Perl’s excellent support for
regular expressions to experiment with different ways
to specify the file access request list. The author of
the Perl filesystem module advertises it as an alpha
version. However, after some recent improvements
that added support for the mmap functionality needed
to load executable files and shared libraries, we were
able to run a number of programs in the chrooted
environment without a problem.

5. Example
Netscape Communicator is a unified web browser and
email client (among other things). Its use creates
enormous security and privacy concerns since it has
full access to the files of the user. Moreover,
Netscape Communicator maintains files such as
bookmarks.html and cookies that may provide
hints about the browsing habits of the user. Our
objective is to be able to run this program in a
stripped down environment where:

• It will have no access to the user files.

• It will have access only to special sanitized
versions of the system files.

• The user will be able to create temporary “new”
installations of the Netscape user directories for
accessing suspicious sites.

• The program will be able to function as a browser
and a pop/imap client.

5.1 Methodology
We ran Netscape Communicator version 4.75 with
the FMAC system in passive mode and we extracted,
using FMAC in passive mode, the file hierarchy
shown in Figure 1.

We separated the files into two categories, system
files that are common to all installations (e.g. the
/netscape hierarchy) and user files that are
personal files accessible by the user. The former

category is typically read-only and consists of files
that are not owned by the user. These are the files that
will be handled by the access control part of FMAC
as we will see later on.

For most files in the system category we simply need
to ensure that access is read only. However a few of
them deserve special attention. For example the
/etc/passwd, /etc/master.passwd (or the
hashed versions of them, pwd.db and spwd.db) and
/etc/group should not be accessed directly since
they probably contain information that we would like
to keep out of the sandbox. Such information may
include user names, group assignments and most

importantly passwords. Another consideration is that
there should be no setuid program in the sandbox.

The consequence of the above is that the list of files
produced by the analysis phase must be examined to
determine which files need to be replaced by sanitized
versions.

Once the sandbox is built, we can execute the
program using a command like:

chroot /users/bob/sandbox \
 /bin/su bob -c \
 /usr/local/netscape/netscape

Notice that we use the su program in the sandbox to
reduce the process privileges to those of user bob.
Since the suid bits are ignored within the sandbox,
processes within the sandbox cannot use su to
become root.

5.2 Sandboxing using only chroot

If we do not wish to use the FMAC tool for the active
phase, we will need to create an actual file hierarchy
by copying all the files included in Figure 1 to
another part of the filesystem. We would then run the
chroot command as in the earlier example.

This approach relies only on the standard system
tools for the active phase. It also allows the sandbox
environment to be moved to other similar platforms
with little or no customization. Thus, in a company
environment we can create the Netscape sandbox in
one machine and then copy it to the machines of all
the other employees.

However, copying all these files is wasteful and more
importantly, we will need to keep track of all the
duplicates and update them every time we upgrade
the application, or the operating system. Employing
links from within the sandbox to the actual files is
quite difficult. Symbolic links cannot be used, while
hard links require that the linked files are in the same
filesystem and may only be used to link files, not
directories. Also the extensive use of hard links, may
lead to confusion.

5.3 Sandboxing using FMAC
The FMAC system creates a virtual filesystem by
transparently providing access to the real files while
at the time enforcing access controls on the basis of a
user supplied access list.

To use FMAC we have to start the modified NFS
server or the Perl filesystem module and mount the
FMAC filesystem, inside the sandbox before closing
the sandbox.

/bin/
 /sh
 /dev/
 ...
 /etc/
 /group
 /kerberosIV
 /krb.conf
 /localtime
 /login.conf
 /networks
 /pwd.db
 /resolv.conf
 /spwd.db
 /usr/
 /X11R6
 /bin
 /lib
 /X11
 /XKeysymDB
 /app-defaults
 /locale
 ...
 /bin
 /su
 /lib
 ...
 /libexec
 /ld.so
 /local
 /netscape
 /netscape
 /share
 /zoneinfo
 ...
 /users
 /bob
 ...
 /var/
 /X11
 /app-defaults
 /db
 /kvm_bsd.db
 /mail
 /bob
 /run
 /ld.so.hints

Figure 1: Files required by the Netscape
Communicator sandbox

To facilitate the configuration of the FMAC system,
the list of accessed file produced during the passive
phase is the same has the same format as the ACL file
used in the active phase.

The ACL contains one line for each file or directory.
Its format is as follows:

For example Figure 2 contains an extract from the
Netscape ACL:

The permissions apply only to the user (i.e. the
traditional Unix “group” and “others” permissions are
gone) because only the user will be accessing the files
from within the sandbox. The permissions that may
be specified are, read, write, execute (access for
directories) and create (that allows the named file
to be created if it does not exist).

Moreover, the sandbox does not grant additional
privileges to the user – the sandbox permissions are in
addition to the existing Unix permissions that apply
to the files.

In the last two lines in Figure 2, we provide
substitutes for the password database files (pwd.db
and spwd.db).

5.4 Constructing the ACL
When running the application in passive mode we
need to exercise as much of its functionality as we

can. For example, not accessing the help files will
mean that they will be left out of the ACL.

Clearly, we can manually edit the ACL afterwards
and correct some obvious omissions, but its is usually
easier to have the FMAC system prepare it for us.

A more serious question is how to treat directories
that are going to have extensive file creation, such as
the Web page cache directories of the Communicator.
We did not want to clutter the ACL with definitions
for these files, so we decided to provide some
directories inside the chrooted environment that are
not controlled by the FMAC system. We created the
hierarchy shown in Figure 3

The directory containing the user files (/bob) is not
the real home directory of the user; it is an empty
directory belonging to the user, where Netscape will
create its state files (.netscape and nsfiles).

We could easily have retained the real path to user’s
home directory (e.g. /users/bob) so that the entry
for the user in the /etc/pwd.db did not have to be
changed. In that case, directory /bob would have to
be changed to /users/bob. However, since we are
replacing the /etc/pwd.db file anyway, we can
change the user information in the copy and make the
sandbox layout a bit simpler.

For more complex file access scenarios, it may be
easier to be able to specify unprotected file
hierarchies within the ACL file. This is still an open
question which we plan to investigate as we gather
more experience through the actual use of the FMAC
system.

When using file substitutions it is often desirable to
be able to use the replacement files in the passive
phase as well. In our earlier example, where we
changed Bob’s home directory, we wouldn’t really be
able to get sensible data out of the FMAC tool, unless
the changed /etc/pwd.db was used.

<permissions> < path> [<actual path>]

permissions is a string that denotes the access
permissions allowed for the file.

path is the path to the file requested by the
sandboxed application,

actual path is an optional argument that allows us to
provide a substitute for the requested file. Only files
may be substituted.

 __X_ /usr/lib
 R___ /var/run/ld.so.hints
 __X_ /var/run
 __X_ /var
 R_X_ /usr/libexec/ld.so
 __X_ /usr/libexec
 R_X_ /usr/bin/su
 __X_ /usr/bin
 __X_ /usr
 R___ /etc/pwd.db /var/tmp/pwd.db
 R___ /etc/spwd.db /var/tmp/spwd.db
 . . .

Figure 2: Structure of Communicator ACL file.

FMAC protected
directories

sandbox

usr dev etc bin tmp bob

unprotected
directories

Figure 3: Layout of sandbox allows for both
protected and unprotected hierarchies.

We solve this problem by allowing the user to specify
a template ACL file when running the FMAC tool in
passive mode. This template file would contain file
substitutions like the ones mentioned above. The
contents of the template file are included in the ACL
produced by FMAC, so it is not necessary to include
the template file when running FMAC in active mode.

6. Discussion
Access control, like other security related problems
has no clear-cut solution; rather, it requires a
compromise that balances costs against perceived
risk.

The costs include execution overheads, memory
requirements, application configuration, and, most
importantly, the definition of the capabilities that the
restricted process is allowed to have. For example,
setting up a Windows 2000 system under VMware in
order to read files generated by Microsoft Word
requires an investment in time and expertise that may
not be justified by the end result.

The FMAC tools attempt to strike an acceptable
balance by providing:

Ease of configuration. Allowing the FMAC tool to
learn from the trial runs of the application, reduces
the initial work required for constructing the sandbox.
Anybody who has manually configured an
anonymous ftp server that uses the chroot facility
can testify how difficult it is to determine the files and
the permissions required for the its correct operation.

Portability. By being a user level program, FMAC
has minimal installation overhead and is largely
independent of the release or type of the operating
system.

Security. The access restrictions imposed by the
FMAC tool are in addition to the restrictions that are
placed by the underlying file system. Thus, using the
FMAC tool will not degrade the security posture of
the system.

In the next paragraphs we will discuss some of the
problems and caveats that are associated with the use
of the FMAC tools.

The chroot and mount calls require superuser
access. It is, therefore, imperative that we lower the
capabilities of the process immediately after the two
calls complete and before execing the application.
We must also make sure that no hooks exist in the
sandbox that may allow the boxed application to
escape. For example, although a shell must be present
within the sandbox, we can use a restricted shell that

provides only the bare essentials for the execution of
the program. Users may not even have access to this
program as they will be talking to the application.
Moreover, files served via the FMAC system always
have their suid and sgid bits cleared.

Particular care must be paid when running the
application with the FMAC system in passive mode.
During this phase, the application runs with all the
privileges enjoyed by the user. Hostile activity on the
part of the application will not be detected and may
affect the security posture of the application when it
runs with the FMAC in active mode.

Creating an access list file which is as complete as
possible is also important because it reduces the need
to go back and update the access list file later on. The
user should try to use all the features of the
application that are likely to be required in the future.
For example, one feature that is seldom used during
the active phase is the on-line help system. It is often
required during the operational lifetime of the system,
so it must be exercised during the passive phase so
that the access list allows access to the help files.

The primary objective of the FMAC system is to
prevent a user-level application such as Netscape
Communicator from performing tasks that adversely
affect the security of the user running the program, or
the security of the machine hosting the application.
Confining the program to a sandbox significantly
reduces the possibility of undesired side effects.
However, it is not a guarantee. A large and
complicated program such as Netscape
Communicator interacts with the system in many
ways and it depends on a large number of system
resources for its correct execution. For example when
we follow a URL leading to the PDF file, the browser
will automatically launch the Acrobat reader to
display the page. Postscript files, streaming audio,
video, etc. all require their own special helper
applications. Placing inside the sandbox all the
programs and devices that the helper programs need
for their correct operation, will essentially negate the
use of the sandbox.

On the other hand implementing workarounds for
performing all these special tasks in a secure way,
involves disproportionate amounts of work. For
example, the simple act of sending a Web page to the
printer involves the execution of lpr which is setuid
root. The FMAC system will not allow lpr to run as
root and the operation will fail. This may be
overcome by depositing files in a “spool” directory
and having a daemon running outside the sandbox
send them to the printer. Clearly this will appeal to
few people and even if deemed adequate,

implementing it will add to the overhead of
configuring the sandbox.

Even if everything is configured properly, private
information may still leak. In the Communicator
example, email messages will need to be stored inside
the sandbox so that the email application can access
them. Downloaded files, cookies and bookmarks may
also contain private information. All these can be
accessed by malicious code that manages to subvert
the application.

One workaround is to have automated scripts
regularly move files out of the sandbox and clean up
files that may contain private information.

Another category of malicious behavior that cannot
be trapped is that which exploits the application
capabilities in a manner that is roughly consistent
with the intended use of the application. One example
is the Melissa virus which sent copies of itself to
email addresses contained in the user’s address book.

Given the above, it is evident that FMAC is not a
panacea. Rather it is yet another mechanism that can
protect the user under certain circumstances. In
particular, the ability of FMAC to rapidly create a
disposable environment in which to run a potentially
nasty applet, or contact a suspicious site, makes it an
extremely useful tool.

7. Related work
Over the years there have been numerous proposals
for systems that impose discretionary access controls
on programs. These systems can be roughly placed in
three categories, in increasing order of complexity for
the execution environment.

Systems that trust programs. Programs that have
been vetted are considered trusted, while the rest are
given only limited access. Examples include
Microsoft Active X controls and the system presented
by Lai et al [3]. These systems assume that all bugs or
vulnerabilities can be detected before deployment.
This assumption has been demonstrated time and time
again as utopian. In [3] only thirty-two programs from
the entire BSD 4.3 were considered trusted.
Ironically, one of them was /etc/fingerd, a
daemon later used by the Morris Internet Worm to
break into systems.

Regulate file access. File access is considered a key
capability in most systems since it involves the long
term memory of the system. Unauthorized
modifications to files can threaten the integrity of the
system itself or the data that is stored in it. Even read-
only access can be used to leak information to hostile

parties. Controlling file accesses is, therefore,
appealing both because it has significant impact and
because file systems are often self contained OS
subsystems that can be controlled with minimal
modifications to the core operating system. Numerous
systems are included in this category. The system
described in [4] bases decisions on the file types (via
the filename extension), while in the Exokernel [5], a
credential-based system is used to specify file access.
Credentials are used to determine which parts of the
file hierarchy are accessible by an application. The
system, however, is rather limited by the fact that
permissions are hardwired into the system, the
hierarchical capability tree may be up to eight levels
deep, and the access-list based control mechanism is
inflexible. Wichers et at [6] looked at the problem
the other way round by attaching to files lists of
programs that could access them.

FMAC relies on a custom filesystem providing the
learning and chrooted access functionality. A
number of projects have provided ways to create such
filesystems, see [7] and the references therein.

Full access control. All requests made by the
application are passed through a discretionary access
control mechanism that enforces policy. The checks
may be at the operating system call level as in Janus
[1] and SubOS [8], or at the library call level [9].
Virtual machines such as the Java VM and VMware
also provide a restricted environment in which
programs may operate. Errant applications should
only be able to cause damage to the virtual machine
leaving the real system intact.

Recent versions of FreeBSD include the jail system
call which is a more powerful version of the chroot
facility that has been mentioned earlier. Like chroot,
jail restricts the controlled process to a subset of the
filesystem, but it also prevents the process and its
children from issuing privileged requests such as
creating device special nodes. The jail facility
imposes a fixed access policy that cannot be altered
without changing the implementation. Like a leash
with a fixed collar its effective use is limited by the
lack of flexibility.

Mobile code systems have to face many similar
problems because they have to accommodate
applications that are imported from the outside and
hence are potentially hostile. The SANE architecture
[10] includes a credential-based capability
mechanism, while others [11, 12, 13] propose
languages that define acceptable policies for mobile
code.

Advisories from CERT and postings on security
related forums provide ample evidence that many of
the above systems fail to provide foolproof security.
The guardians themselves often have flaws that may
allow applications to escape from the sandbox and
compromise system security.

8. Current Status and Future Directions
Both versions of the FMAC tools are currently fully
operational. In addition to Netscape Communicator,
the FMAC tools have been used to sandbox the
Adobe Acrobat PDF reader and the ghostview
application. We are currently investigating a
mechanism whereby applications may negotiate an
acceptable set of permissions with the FMAC system
before executing, thus dispensing with the need to run
the application in passive mode to construct the
access list. Moreover, in the current system, files may
not be added to the access list after the sandbox is
running. We plan to investigate the possibility of
asking the user for permission when trying to access a
file that is not in the access list.

We intend to continue work on the system aiming at
creating a fully fledged discretionary access control
system for files. Moreover, we are currently
investigating ways of controlling access to the
network by dynamically creating special rules for the
packet filtering facility in the kernel.

Acknowledgments

We would like to acknowledge the invaluable help of
Sotiris Ioannidis and the other members of the DSL
Lab at the University of Pennsylvania. Special thanks
are also due to Ted Faber for his careful reading of
the draft and his many right-to-the-point comments.

References
[1] Goldberg, Ian, David Wagner, Randi Thomas

and Eric A. Brewer, “A Secure Environment
for Untrusted Helper Applications,” 1996
USENIX Security Symposium.

[2] Calvelli, Claudio, “The Perl Filesystem”,
http://dd-sh.assurdo.com/perlfs, April 2001.

[3] Lai, N. and T.E. Gray, “Strengthening discre-
tionary access controls to inhibit Trojan
horses and computer viruses,” Proceedings of
the 1988 USENIX Summer Symposium,
pages 275-286, June 1988.

[4] Karger, P.A., “Limiting the damage potential
of discretionary Trojan Horses,” Proceedings
of the 1987 IEEE Symposium on Research in

Security and Privacy,” pages 32-337, April
1987.

[5] David Mazieres and M. Frans Kasshoek,
“Secure Applications Need Flexible
Operating Systems,” Proceedings of the 6th
Workshop on Hot Topics in Operating
Systems, May 1997

[6] Wichers, D., D. Cook, R. Olsson, J. Cossley,
P. Kerchen and R. Lo, “PACLSs: An Access
Control List Approach to Anti-Viral
Security,” Proceedings of the USENIX
SECURITY II Workshop, pages 71-82,
1990.

[7] Albert D. Alexandrov, Maximilian Ibel,
Klaus E. Schauser, and Chris J. Scheiman.
Extending the Operating System at the User
Level: the Ufo Global File System. USENIX
Annual Technical Conference, Anaheim,
California, January 1997.

[8] Ioannidis, Sotiris, Angelos D. Keromytis,
Steve Bellovin and Jonathan M.Smith,
“Implementing a Distributed Firewall,” 7th
ACM Conference on Computer
Communications Security, November 2000.

[9] Ko, Calvin, George Fink and Karl Levitt,
“Automated detection of vulnerabilities in
privileged programs by execution
monitoring,” Proceedings of the 10th Annual
Computer Security Applications Conference,
Orlando, FL, 1994

[10] Alexander, D. Scott, William A. Arbaugh,
Angelos D. Keromytis, and Jonathan M.
Smith, “A Secure Active Network Architec-
ture: Realization in SwitchWare”. IEEE Net-
work Special Issue on Active and Controll-
able Networks, vol. 12 no. 3, pp. 37-45.

[11] Edjlali, Guy, Anurag Acharya, and Vipin
Chaudley, “History- Based Access for
Mobile Code,” In the Proceedings of the 5th
ACM conference on Computer and
Communication Security (CCS'98). 1998

[12] Jaeger, T., A. Prakash, and A. Rubin,
“Building Systems that Flexibly Control
Downloaded Executable Context,”
Proceedings of the 6th USENIX Security
Symposium, 1996.

[13] Jajodia, S., P. Samarati, V. Subrahmanian,
and E. Bertino, “A Unified Framework for
Enforcing Multiple Access Control Policies,”
Proceedings of the ACM SIGMOD
International Conference on the Management
of Data, pages 474-485, 1997.

