Proceedings of the™JUSENIX Tcl/Tk Conference

Austin, Texas, USA, February 14-18, 2000

A MULTI-THREADED SERVER
FOR SHARED HASH TABLE ACCESS

Andrej Vckovski and Jason Brazile

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510; 528864910 548
5738; Email: office@usenix.org; WWWittp://www.usenix.orgRights to individual papers remain with the author or the author's employer. Permission is

granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must ba theludprbduced paper.
USENIX acknowledges all trademarks herein.

A Multi-threaded Server for Shared Hash Table Access

AndrejVckovski andJasorBrazile
Netcetea AG
{andrej.vclovski,jason.lbazile} @netcetea.ch

Abstract

This paperpresentsa multi-threadedsoclet sener al-
lowing accesgo sharedhashtables. It is implemented
usingTcl 8.1 multi-threadingcapabilitiesandrunsmul-
tiple Tcl interpretergo serviceclient requests.The ap-
plicationis designedasa pre-threadedener which al-
lows a singleworking threadto handlemary requests.
Thecentralshareddataobjectis a hashtablewith struc-
tured valueswhich allows accesdy all threads. Syn-
chronizationis basecn areader/writetock implemen-
tation usingthe synchronizatiorprimitivesavailablein
Tcl, i.e., mutexes and condition variables. The appli-
cationachievesinsertratesthat are significantlyhigher
than what current commercial databasemanagement
systemsachieve. The usageof third-level languagepro-
grammingin C andapplication-specifiscriptingin Tcl
allowsadesignbasednalight-weight,robustkernelon
the one handand easily modifiableapplication-domain
codeon the other The experienceswith thread-safety
andotherthreadingeaturesn Tcl 8.1 have beenlargely
positivein thisreal-world application.

1 Introduction

Therearetwo motivatingfactorsfor presentinghis sys-
tem. First, it providesan exampleof the usageof some
of the multi-threadingcapabilitiesintroducedwith Tcl

8.1. Second,it providesa generalsolutionto the fre-

guentdesireto have shareddirectaccesstabular datain

the context of transaction-orientedpplicationssuchas
programswith anHTML graphicaluserinterface.

The original motivation for this application, however,

differsslightly. Theinitial purposevasto supportadata
feedhandlerto provide a cachefor pseudo-real-timé-

nancialmarket information. We describethe initial re-
guirementsn afirst sectionwhichis followedby a dis-
cussionof the systemarchitecture.

Then,we give an overview of two centralimplementa-
tion aspectsa pre-threadedoclet sener andsynchro-
nizedaccesso Tcl hashtables.In thefinal section,we

discussour experienceswith the Tcl threadingAPI and

someperformanceesults.

2 Application background

Severallarge datavendorssuchasReutersBloomben,
Bridge and othersprovide numerouskinds of financial
market information,suchasstockquotesusingvarious
formatsand mechanismsAlso, mary stockexchanges
worldwide provide directaccesgo their datausingvari-
ousformatsand mechanisms.A commoncharacteris-
tic of all thesedata providing mechanismgs that the
datais deliveredasa sequencef incrementalipdatego
somebaseinformation. Suchincrementaupdatesusu-
ally containa uniquelD identifying the item beingup-
datedandthenasetof key/valuepairsproviding the new
attributesof thatitem. Suchattributesmight be for ex-
amplethe last paid price andits associatedime stamp
for agivenfinancialinstrument.

Thereare basicallytwo typical accesgatternsto that
sortof information.A usereitherrequestsll or selected
attributesof afinancialinstrumentrequest/responsey

the usersubscribeso afinancialinstrumentith thein-

tentionto receve all further updatego thatitem (sub-
scribe/notify). Sincethe updaterateson datafeedscan
be quite high (severalhundredupdatemessagepersec-
ond)it is commonto storeall informationin mainmem-
ory, especiallyas memory cost currently allows main

memorysizesof several gigabytes. Thus, such main

memorycacheseedto supportinsertionof incremen-
tal updateson the onehandwhile beingableto answer
userqueriesfor currentdataon the other

The applicationpresentedhereneedsto handlevarious
datafeedsasdescribechbore. Therefore,it wasneces-
saryto provide anervironmentthatallows quickchange
cycles. If 6 differentdataformatshave to be supported

andeverydataformatdefinitionchange®nceayear the
overallchangeatemightbeonechangesvery 2 months.
Also, thefeedhandlerbeingasenerordaemorprocess,
needsto be very robust becausat will have very long
runtimesandbe accessetty mary clients. For theim-
plementationtherewerebasicallythreeimplementation
alternatves:

e Use a commercial(disk-baseddatabasenanage-
ment system(DBMS) that can be tunedto cache
tablesentirely in main memory (for performance
reasons)

e Use a commercial main-memory database
(MMDB)

e Developaspecificcachemanager

The first two options had been rejected becauseof
price/performancéssues(e.g.,an RDBMS that hasto
provide theseupdateratesis very expensve to build
and maintain) as well as robustnessand compleity
(MMDB) issues.

Also, thetypical datastructurecannot beefficiently de-

scribedasrelations. Therearemary possibleattributes
for every item (instrument),but in mostcases,only a

few of themactually have values,i.e., most‘columns’

are ‘null’. In addition, frequent changesto the set
of attributesare made,usually consistingof the addi-

tion of new attributes. Therefore a relationalapproach
would be either computationallyexpensve if the at-

tributeswould needto be normalizedin a secondta-

ble, or hardto maintainif the databasetructurehadto

be permanentlymodified. Basedon thesearguments,
we decidedto build a customfeed handlerand cache
managemergystemusingasmuchexisting technology
as possibleand focusingon simplicity, robustnessand

maintainability

3 System architecture

Basedontherequirementsliscussedbove,we chosean
implementatiorstratgy consistingof:

o A multi-threadedsocletsener
e UsingTcl's hashtablesfor datastorage

e Using one Tcl interpreterper servicingthreadto
provide easycustomizatiorof datamanipulation

Theideawasthatthesenerwouldrunathreadfor every
connectedlientandmaintainasetof sharechashtables.
Every threadwould have its own Tcl interpreterwith

which the clients would communicate,and the inter-

preterwould have specialcommandghat allow clients
to accesshe sharechashtables,i.e., insert,retrieve and
deletekeys andvalues. The sener shouldonly provide
very generalfunctionality andlet usersor client appli-
cationsimplementmosthigherlevel functionality using
Tcl coderatherthan more error prone C or C++ pro-
gramming.

This applicationneedgto run on Unix platformsandso

we choseC, Tcl 8.1 and POSIX threadsasthe imple-

mentationbasis.C++ wasconsideredsomeavhatfragile

becausén multi-threadedapplicationst is alwaysvery

importantthat one knows exactly what is going on to

preventraceconditionsand deadlocks.C++ compilers
and runtime libraries tend to include hidden overhead
into the applicationcodethat cannotbe easily tracked.

Also, we wantedto reduceoverall compleity asmuch
aspossible.

Thechoiceof amulti-threadedenerallows for aneasy
usageof shareddatastructuresge.g. asin the hashta-
blesmentionedaborve. However, unlike a forking sener
that spawvns off separatgrocesseso servicerequests,
a multi-threadedsener is lessrobustin the sensethat
thereis no addresspacesolationpreventingproblems
in servicinga requestthat canimpair overall stability.
Still, we believe that by makinga sener asgenericas
possiblewe canreducethe compleity to alevel where
it is possibleto designjmplementandtestafairly stable
multi-threadedsener.

The communicatiorwith clientsis basedon TCP using
Berkeley socletswith a simple messagdormat. A re-
guestmessageonsistsof Tcl codethatis evaluatedin
thethreads Tcl interpreter The messageesultis either
the resultof the evaluatedTcl codeor the correspond-
ing errormessageThatis, themodelis similarto Tk's
send command.

Theapplications mainthreadalsohasa Tcl interpreter
Thisinterpreteis “connectedo” standardnputandout-

put (i.e., takescommandgrom standardnput) andhas
a few additionalcommandsghat supportcreationof the

senersoclet, maintainingthenumberof currentthreads
anddoingsignalhandling.Signalhandlingis animpor-

tantrequiremenfor long-runningprocessesndis dis-

cussedn aseparateectionbelow.

In additionto threadingandhashtableextensionsgvery
Tclinterpreter(i.e.,the perclientthreadinterpreterand

main threadinterpreter)have additionalcommanddor
logging. Similar to signalhandling,usefulloggingwith
severallevelsof verbosityis alsovery importantin long
running processebecauseuchprogramsusually have
no userinterfaceandthereforerely onlog files for their
output. Signalsandlog files canbe seenasa kind of
primitive userinterfaceto daemorprocesses.

Thearchitecturaescribedabove is shavn in figure 1.

The next sectioncoversa few aspectof theimplemen-
tation.

4 Shared hash tablesand locking

Most objectsbeingusedby multiple clientsat the same
time have a needfor somekind of synchronization.
Sometimeghat needis eventhe key motivationfor the
objectto be usedby multiple clients. In our case,the
synchronizedobjects are hashtablesthat can be ac-
cessedy all threads.The synchronizatiorhasto guar
anteeconsisteng of thehashtableswith parallelinserts,
updates,and querieson the data. The selectionof a
synchronizatiomechanisnusuallydependstronglyon
the expectedaccesgatternsvhich cansignificantlyin-
fluencesystemperformancef, for example,animple-
mentationvariantis choserthatleadsto high lock con-
tention. The main synchronizatiorquestionswve faced
herewere similar to typical locking issuesin database
managemergystems:

e Locking granularity

e Locksharing

Locking granularity describesthe trade-of between
fine-grainedocking, which minimizeslock contention
but needsa large numberof locksto be acquiredwhen
doingoperationsnvolving mary dataitems,andcourse-
grained locking, which usesfewer locks at the ex-

penseof performance.For example,mostcommercial
databasenanagemensystemsoffer differentlevels of

lockinggranularity Onfull tablescansingletablelocks
areused,while cursoroperationgely on a logical row-

level locking or a physicalpage-leel locking. However,

suchadaptve locking granularitiesalsointroducea lot

of additionalcompleity which - especiallyin the case
of locking - increaseghe risk of errorsand deadlock

situations.

Lock sharingdescribeghe situationswherethereis an
accesgatternwhich allows readersand writers to be
distinguished. Readerscan be synchronizedusing a
sharedock (mary readerscansimultaneoushaccessa
resourcewhile writers needexclusive accesso there-
source. Again, thereis usuallya trade-of betweenus-
ing exclusive locks andsharedocks. Sharedocks are
typically moreexpensveto acquirebut reducdock con-
tention.

In our application,a few estimateshoved usthatasa
first approximation,it would be sensibleto useshared
(reader/writerJocking on the entirehashtable. Thatis,
areaderalwayslocksthe entiretablefor sharedaccess

anda writer locks the entiretablefor exclusive access.

This approachurnedoutto bevery efficientin our case
wherethereis typically only one or a few writers and
mary readers.

The (preliminary) Tcl 8.1 threadingAPI offers (simi-
lar to POSIX threads)two synchronizatiorprimitives:
Mutexes(exclusive locks or semaphoresandcondition
variables It wasthereforenecessaryo provide ourown
implementatiorof reader/writetocksbasecbnmutexes.
Consideringthe frequentneedfor reader/writerlocks
andtheirsimpleimplementationit would beworthwhile
to includeanimplementationn the Tcl API.

Oursharechashtableimplementationwasthereforepro-
tectedby a singlereader/writetock thatis acquiredde-
pendingon the type of operation. The hashtable is
basedon Tcl's hashtablewith the extensionthatthere
is additional structureimposedon the valuesentered
in the hashtable: all values('rows’) are enteredas at-
tribute/alue pairs allowing selectve 'columns’ or at-
tributesto bequeriedandupdated.

The accesgo sharedhashtablesis implementedusing
two commandprocedures. The first commandcalled
shar edhash is usedto create deleteandusehashta-

blesin aninterpreter After having eithercreateda nev

hashtable or acquireda handleto an existing hashta-

ble,aseconccommands createdn thatinterpretemvith

the samenameasthe hashtable. The hashtableis then
accessedsingthis commandmuchin the sameway as
for exampleTk widgetsor [incr Tcl] instancesareasso-
ciatedwith a commandasthe following exampleillus-

trates:

create a shared hash table
with the name 'foo’

shar edhash create foo 20

use the hash table naned
foo’ in this interpreter

Tcl code

client application -
result

Tcl code

per-client thread

client application -
result

Tcl code

per-client thread

b

client application

A

result

standard in

per-client thread

1N

per-client thread
(idle)

NEN

per-client thread
(idle)

b

Y

standard out

signal

main thread

signal handler

e N I

shared hash
tables

cache manager

Figurel: Architectureovervien

shared hash use foo

access the shared

hash table

foo set 12345 {
attrA val ueA
attrB val ueB

}

set an array with the
attributes of the hash val ue
array set res [foo get 12345]

The following subcommanddor the shar edhash
commandaresupported:

sharedhash create name ?maxattrs?

Createsa new sharedhashtable with the given
namewhich can hold at most maxatts attributes
perrow.

sharedhash use name

Makesthe sharedhashtable with the given name
accessiblen the currentinterpreterasa command
with the samename.

sharedhash names

Returnsalist of all definedsharechashtables

sharedhash forget name

Remoresareferenceo the sharechashtablefrom
this interpretey i.e., deletesthe associateccom-
mand. If that was the last reference deletesthe
hashtable.

Thehashtableis thenaccessedsingthefollowing sub-
commands:

name set key attribute-value-list
Setstheattribute-value-listo thecurrentcontentof
the hashtablesvalue associatedvith key, deleting
all previously definedattributes.

name get key ?attribute-list?
Getseitherthenamedor all attributesfor thegiven
key.

name update key attribute-value-list
Updateghecurrentvaluesassociateavith key with
theattribute-value-list

name names ?pattern?

Returnsa list of keys matchingthe patternor all
keys

name attributes
Returnsalist of all the currentlydefinedattributes

name delete key
Remawestheentryfrom thehashtable

name for each pattern varnames attributes code

Loopsover all entrieswith keys matchingthe pat-
ternandassignghevariablenamesn varnameshe
valuesof the attributesattributes

name updatefor each pattern variablename code

Loopsover all matchingentrieswith a write lock
andexecutesodefor everyentry. Thecodecanac-
cesghecurrentelemenusingaspeciakey #cur -
rent.

name stats

Returns hash table statistics as returned by
Tcl HashSt at s.

5 Prethreaded socket server

As mentionedabove, performancewas a critical is-
sue. Therefore,we decidedto basethe sener on a
pre-threadedlesign[1]. This meansthatthe servicing
threadsare not createdfor every requestout pooledin
adwance.This approacthasa few adwantages:

e Threadscanbe easilyre-used.Initializationssuch
asthecreationof a Tcl interpretemeedsonly to be
doneonce.A threadcanservicemary requestsi.e.,
not every new requesineedsthe creationof a new
thread.

e Overallsenerdesignis moresymmetricabecause
thereis not a specialthreadthat acceptsconnec-
tionsandspavnsoff new threads.

However, there are also somedrawvbackswith a pre-
threadedsolution. As the load changesover time, it

mightbenecessarto asynchronouslgreateanddestrgy

threads.While the creationis simple,the destructiorof

runningthreadss nottrivial, especiallyif thedestruction
shouldnotbedeferred.

A servicingthreads mainfunctionis to performthefol-
lowing steps:

1. incrementhethreadcounter

. Createaninterpreter
. registerall additionalcommands

. evaluatethreadconstructofTcl code

g A W DN

. while (terminationnot needed)

(a) acquireexclusive lock to accepta connection
(b) waitfor aincomingreques{accept)

(c) releasdock

(d) incrementworking threadcounter

(e) while (notend-of-fileof soclet)

i. receveamessage
ii. evaluatetheTcl code
iii. sendthemessagevith theresultback

(f) decrementvorking threadcounter

(g) checkif therearethreadsscheduledo termi-
nate

. evaluatethreaddestructorTcl code
. deleteinterpreter

. decrementhreadcounter

© 00 N O

. terminatethread

6 Main thread

In additionto therequeshandlerthreadstheapplication
alsorunsa mainthreadthatis differentfrom therequest
handlersThemainthreadexecutegshe Tcl _Mai n pro-
cedureand handlesstandardinput. The interpreterin
themainthreadcontainsadditionalcommandgo create
a (listening)sener soclet andto control the numberof
working andfree (notboundto arequestthreads.

Longrunningapplicationsn anUNIX environmentusu-
ally needto handlesignalsfor variousreasons For ex-
ample, it might be necessaryo perform cleanupafter
the processhasbeennotified to terminate(SIGTERM
signal),theapplicationmightwantto re-readconfigura-
tion information,dumpinternalinformationto log files
or changelog levels. In multi-threadedapplications,
signal handling needsspecialconsideratioras the so-
calledasync-safetymeaninghatasystenxcall is safeto
be interruptedby an asynchronousignaldelivery) and
thread-safetymeaningmultiple threadsmay simultane-
ously call the function) areorthogonaliin the sensehat
thread-safealls arenot necessarilyasyncsafe[2]. For

thatreasonthe bestwayto handlesignalsis to blockaall

signalsin all threadsandcreatea specialsignalhandler
threadthat only waits for signalsand usesthreadsyn-
chronizationmethods(e.g., condition variables)to no-
tify otherthreaddsf necessary

Therefore the main threadin this applicationcreatesa
dedicatedsignal handlerthreadand also definesa new
Tcl commandthat allows the main threads Tcl inter-
preterto be notified by new signals. To keepthe en-
tire applicationsimple , we decidecdhotto useTcl'sevent
loop andnotificationmechanisnfor this purpose.

In additionto thesharechashtablefunctionality, thefol-

lowing commandsreavailablein themainthreads Tcl
interpreter:

server port ?nthreads ?constructor-code? ?destructor-code?

This commandcreatesa sener soclet andoption-
ally nthreadsservicingthreadswaiting for connec-
tions. It alsoallows constructoanddestructocode
blocksto be specified. Thesecodeblocksare exe-
cutedin the servicingthreads interpreteraftercre-
ation of the threador before terminationof the
thread,respectrely. This canbe used,for exam-
ple, to definevariablesand proceduresor load li-

brariesor sourcecodemodules.This codedoesnot
useTcl'ssocket function,in orderto have more
controlover soclket optionssuchasaddresseuse.

servercontrol ?minidlethreads? ?maxidlethreads?

If calledwithout agumentsthe currentnumberof

availableandrunningthreadss returned.If called
with minidletheadsandmaxidletheads it ensures
thatthereareat leastminthreadsandat mostmaxi-

dlethreadsidle, i.e., non-servicingthreadsavail-

able.

waitforsignal ?sec? ?usec?

Waitsthegiventime (or forever)for ary signalto be
deliveredto this applicationandreturnsthe signal
number

Using this call, a typical codeexamplerunningin the
mainthreadmightlook like this:

#! /usr/ | ocal/bin/ncm

create a shared hash
shar edhash create foo

create a server socket
and 10 servicing threads
server 6000 10 {

shar edhash use foo

A

shar edhash forget foo
}

set termnate O
while {!$term nate} {

wait 2 sec for a signal
set s [waitforsignal 2]
if {$s==15} ({

set termnate 1
}

adapt nunber of idle threads

servercontrol 5 20

7 Tcl and multi-threading

Multi-threadingsupporthasbeenon the wish list of the
Tcl community for a long time. This was motivated
mainly by applicationareaswhere Tcl wasusedasan
embeddedscripting languagefor somelarge software
system,and where that software systemwas a multi-
threadedapplication. The problemwith Tcl wasnot so
muchthatit did not supportthreadingout thatthe Tcl li-
brarywasnotthread-safétself (i.e., usingnon-reentrant
functions, unsafesystemcalls etc.). Two extensions
have emepgedin thecommunityto addthread-safetand
eventuallyalsothreadsupportto Tcl. Steve Janlowski’'s
MTTecl [3] usedSolaristhreads.Anotherextensionwas
PtTclor Pthreads-Tcby RichardHipp andMike Cruse
usingPOSIXthreadq4]. Finally, thread-safetynadeits
wayintotheTcl corewith Tcl 8.1. Thisis insofarimpor-
tantasmostof thethreadingssuedoindeedaffectcore
component®f Tcl andthereforewith Tcl 8.1, patching
of theTcl coreisn’t necessararnymore.

Themulti-threadingelatedissuesn Tcl 8.1are:

e Tcl coreis threadsafe,i.e., the tcl library canbe
usedin multi-threadedapplications

e Someinternal datastructuresare storedasthread
specificdata This allows, for example, every
threadto haveits own eventqueue.

e Somenew API callswereintroducedo createmu-
texesandconditionvariables However, it seemsat
thetime of thiswriting thatthis API isn’t yetfinal.

The mostnotablemissingfeaturesareofficial API calls
for threadcreation,schedulingand cancellation. Even
thoughtherearethreadcreatiomabstractionge.g. to cre-
atea notifier thread) thereareno externallyusable(that
is, declaredn theexternalheadet cl . h) functionsfor

threadcreation cancellingandscheduling For thetime
being,thisis awisechoicebecausgroviding aplatform
independenabstractiorwould probablydisarmmary of

the neededeaturesof the platform-specificthreadim-

plementation For example,POSIXthreadsallow arich

set of attributesfor every threadthat are not directly
matchedoy Windows NT's differentthreadmodel. The
decisionto stick with a leastcommondenominatoris
notaproblemif thetherearewell-definednterfacesand
transparentlatastructureso theunderlyingOS specific
threadingsystem. For example,it was easyto provide
reader/writeflocks(basedn Sun’s SPLIT packagg5])

usingmutexesandconditionvariablesonceit wasclear
thattherestof Tcl did not usethreadcancellationary-

where.

Our experienceswith Tcl 8.1 and its multi-threading
supportshaved that it is a safechoiceto useTcl 8.1
in multi-threadedapplications. Even if noneof Tcl's
threadingAPI is used(i.e., not even mutexes or con-
dition variables) the thread-safetyand usageof thread
specificdatafor certaininternal datastructuress very
usefulif not mandatorywithin multi-threadedapplica-
tions. However, it will benecessarin thefutureto pro-
vide detailedand precisedocumentatiorof thosefea-
tures. Whenwriting multi-threadedapplications engi-
neersarevery muchinterestedn knowing relevant“side
effects” suchasthe creationof backgroundhreadsand
thelike. Delugging multi-threadedapplicationsis not
trivial andtherefore pneexpectspreciseinformationon
whatshould/willhapperin API calls.

8 Conclusion and future work

The work presentechere showns a successfukexample
of using Tcl's new multi-threadingfeaturesin a real-
world application. Moreover, it provesagainthata de-
sign approachusing a small, reliable kernelwritten in
a third-generatiorlanguageand deleggating most of the
overall applicationcompleity to a scripting language
is a promisingengineeringapproach. And, especially
when developing multi-threadedapplications,fighting
compleity is the main objective of a systemdesignin
orderto avoid deadlocks, raceconditionsandthe like.
The entirecachemanagelandsharedhashtableimple-
mentationasdescribedn hereis lessthan3000lines of

C code(notincludingthe Tcl library, of course).

The lightweight implementationis also a positive in-
fluenceon performance. On a Sun 270 MHz Ultra-
SFARC Il processqrup to 1000insertsper secondcan
be achievedwith simultaneousgjueries.The application
wentinto productionin late Summerl999in continuous
(7x24hour)operatiorandhasnotposedary majorprob-
lem since. The applicationhandlesnorethan million
updatesgper day with peakratesof severalhundredup-
dategpersecond.Thebuilt-in Tcl hashfunctionin Tcl's
hashtable implementatiorproved to be very effective,
maintaininga shortsearchdistanceandoverall balance
evenin tableswith morethan100,000entries.

Our future planswith the cachemanagerare to pro-

vide bettercheckpointingcurrently the hashtablesare

periodically written to disk by a specialclient process
thoughno consisteng is enforced)and more synchro-
nizedelementamongtheservicingthreadse.g.,named
messagegueuesEventually we planto releaseghecode
into the publicdomain.

9 References

1. Stevens,W. Richard. Unix NetworkProgramming
(Vol 1). PrenticeHall, 2nded.,1997.

2. Lewis, Bill, andBerg, Daniel J. ThreadsPrimer.
PrenticeHall, 1995.

3. MTtcl - Multi-threading for Tcl <http:
/1 www. act i vesw. cont peopl e/ st eve/
nttcl.htm >

4. AnIntroductionTo Pthreads-Tckht t p: / / vwwv.
hwaci . comf sw/ pttcl/pttcl.htm >

5. Solaris to POSIX Interface Layer for
Threads (thread.c, thread.h and synd.h)
<http://ww. sun. conl wor kshop/

t hr eads/ apps. ht m >

