Proceedings of the™JUSENIX Tcl/Tk Conference

Austin, Texas, USA, February 14-18, 2000

SCRIPTICS CONNECT

Eric Melski, Scott Stanton, and John Ousterhout

USE

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510; 528864910 548
5738; Email: office@usenix.org; WWWittp://www.usenix.orgRights to individual papers remain with the author or the author's employer. Permission is

granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must ba theludptbduced paper.
USENIX acknowledges all trademarks herein.

Scriptics Connect

Eric Melski
Scriptics Corporation
ericm@scriptics.com
Scott Stanton
Scriptics Corporation
stanton@scriptics.com
John Ousterhout
Scriptics Corporation
ouster@scriptics.com

Abstract

Scriptics Connect is a commercial product from
Scriptics Corporation that provides an XML-based
platform for business-to-business applications. It
takes advantage of XML as a standard mechanism
for formatting structured data, and uses standard
World Wide Web servers and Tcl to provide the in-
frastructure needed to support business-to-business
applications. In addition, it uses Tcl to greatly
simplify the task of writing XML-based business-
to-business applications.

1 Introduction

XML, the eXtensible Markup Language, has the
potential to revolutionize the way that businesses
communicate and do business with each other.
However, XML alone lacks the infrastructure needed
to make it successful. In addition, because of the
limitations of the tools available, it is difficult to
write XML-based busines-to-business applications.
Scriptics Connect was designed to address these is-
sues. Our primary goals when developing Scriptics
Connect were:

e Provide the missing infrastructure needed to
enable XML-based business-to-business appli-
cations. Specifically, provide a means of trans-
porting XML documents and a means of inte-
grating XML-based applications with existing
applications.

e Reduce the complexity and difficulty of cre-
ating XML-based business-to-business applica-
tions

In order to meet these goals, we made use of stan-
dard World Wide Web servers to provide a transport
mechanism, and we made use of Tcl to provide inte-
gration facilities and to simplify XML-based appli-
cation programming. We chose Tcl as the language
of implementation for several reasons. First, Tcl is
a natural fit to XML, because it has strong string
processing capabilities. Second, the wide variety of
extensions available for Tcl make it a good fit for
business-to-business applications, which all require
some level of integration with existing resources. Fi-
nally, Tcl enabled us to develop our application far
more rapidly than would have been possible with
many other languages.

In this paper, we will begin with a description
of XML and why it is interesting for business-to-
business applications. Then we will give an overview
of Scriptics Connect and the particular problems we
wanted to address with the system. We will de-
scribe in detail the programming abstractions that
we implemented to make XML programming and
resource integration easy. Finally, we will discuss
problems with our implementation, the lessons we
learned from implementing the system, and our fu-
ture plans for Scriptics Connect.

2 XML

XML, the eXtensible Markup Language, is simi-
lar to HTML, the HyperText Markup Language of
World Wide Web fame. Both are markup languages;
that is, they are used to mark sections of a document
with semantic and stylistic information, to allow the
document to be better rendered or understood by a
machine. HTML, however, is limited because it re-
stricts the types of markup that can be used. It

<HTML>
<BODY>
<P>
Ship to:

XYZ Corporation

2867 Coast Avenue

Mountain View, CA 94043

<TABLE>
<TR>
<TH>Artist</TH>
<TH>CD</TH>
</TR>
<TR>
<TD>Weezer</TD>
<TD>Pinkerton</TD>
</TR>
<TR>
<TD>The Wolfgang Press</TD>
<TD>Funky Little Demons</TD>
</TR>
</B0ODY>
</HTML>

Figure 1: HTML encoded CD purchase order

provides one primarily stylistic way of representing
your information. It is difficult to represent rela-
tionships between parts of your data, or to indicate
the meaning of different parts of your data.

By contrast, XML allows the developer to cre-
ate new markup symbols, called tags, to distinguish
sections of a document. This means that each de-
veloper can create a set of custom tags that map
directly to entities in the domain of their work, elim-
inating ambiguity in the document. This is one of
the benefits of XML: it is flexible.

As an example, a purchase order of compact discs
in HTML might look like the document in Figure 1.
To a human reading this document, the meaning
of each section of text is reasonably clear. But a
computer reading this document can do little more
than render the text according to a predefined set
of rules. The computer cannot, for example, easily
convert this textual representation into an online
database.

However, the same document in XML might look
like Figure 2. Now the document is easily readable
by a computer. As a side benefit, the document
is also easier for people to read. There is no longer
any ambiguity about what the document represents,
nor what each segment of text within the document
means. The relationship between the pieces of data
is perfectly clear. This is another important bene-
fit of XML: it provides a clear, easy-to-understand

<Purchase(Qrder>

<ShippingAddress>
<Name>XYZ Corporation</Name>
<Street>2867 Coast Avenue</Street>
<City>Mountain View</City>
<State>CA</State>
<ZIP>94043</ZIP>

</ShippingAddress>

<CD>
<Artist>Weezer</Artist>
<Title>Pinkerton</Title>

</CD>

<CD>
<Artist>The Wolfgang Press</Artist>
<Title>Funky Little Demons</Title>

</CD>

</Purchase Order>
Figure 2: XML encoded CD purchase order

format for data.

Because XML is an open specification, the soft-
ware required to read XML documents is readily
available from many sources. Several free packages
are available for reading the documents, such as
expat [4]. This means that developers now have
an easy way to share data between programs: send
it out as an XML document. Developers no longer
need complex binary encodings for their data, nor
are they dependent on proprietary data sharing sys-
tems. This is another benefit of XML: it is an open
standard.

Of course, the ability to share data requires that
developers agree on a particular set of tags to use
for their data. If every developer uses their own
set of tags, then the world will be little better off
than when HTML was the only practical markup
language. Fortunately, standardization efforts are
already well underway in many domains. Those
efforts will ensure that for many common applica-
tions, a set of XML tags already exists.

The primary advantages of XML, therefore, are
its flexibility, legibility and its openness. It provides
an easy to use and understand format for storing
and sharing data.

2.1 Business-to-business
with XML

applications

Over the next few years, one of XML’s uses will be
as a data representation for business-to-business ap-
plications. In such applications, servers in one com-
pany communicate directly with servers in another
company to automate business processes. For exam-

ple, the inventory management system of a company
might send an electronic purchase order to the sales
system of a supplier in order to replenish inventory
without any human intervention.

This is not a revolutionary idea; systems already
exist that allow the automation of many business
processes. However, these systems are based on
complex binary encodings of data, such as EDI. The
software to decode and process these encodings can
cost millions of dollars to deploy within a company.
And as with any binary data encoding, it is difficult
to extend or customize. XML and the Internet make
it easier and less expensive to implement business-
to-business applications. They make trading com-
munities possible, in which any company can eas-
ily and inexpensively communicate with any other
company in the community.

3 Scriptics Connect

For all the potential that XML has to impact
the business-to-business world and others, there are
some significant problems that must be addressed.
The worst of these problems is the sheer difficulty
of programming XML applications. Presently, most
software available for processing XML consists of
low-level XML parsers. Most of these parsers re-
quire the programmer to work in a systems pro-
gramming language like C or Java. As we will show
later, using these low-level parsers is hard at best.

A second problem is the lack of infrastructure for
XML applications. There is no standard mechanism
for transmitting XML documents between entities.
And there is no standard for integrating XML appli-
cations with other data sources, such as corporate
databases or legacy applications.

Because XML is only a data representation, it
has no ready solutions for these problems. With
Scriptics Connect, our goal is to provide the missing
infrastructure needed to make creating XML-based
applications simple. The infrastructure components
we provide include:

e transport: a means for communicating XML
documents over the Internet and within an en-
terprise

o integration: a means for moving data between
XML documents and other applications

Scriptics Connect combines Tcl and standard
Web servers like Apache and Microsoft Internet In-
formation Server with XML to provide this infras-
tructure. In addition, it provides two levels of pro-

gramming abstraction to make creating XML appli-
cations “falling-over easy.”

As shown in Figure 3, a Scriptics Connect instal-
lation consists of a World Wide Web server coupled
with an XML parsing engine and one or more docu-
ment handlers. A document handler is a Tcl script
that describes how to process a particular type of
XML document. Document handlers utilize a num-
ber of connection points to interface with various
external applications. The XML parser and connec-
tion points are implemented as extensions to Tcl, so
Scriptics Connect is essentially the combination of
a Web server with an XML-enabled Tcl interpreter.

Scriptics Connect also includes the GUI applica-
tions Scriptics Connect Author, which allows the
user to easily create document handlers, and Scrip-
tics Connect Debugger, which allows users to debug
document handlers installed on their server.

3.1 Scriptics Connect Server

The Scriptics Connect server consists of a Web
server coupled with a Tcl interpreter. We chose to
support several different popular Web servers in or-
der to make it easier for Scriptics Connect to inte-
grate into a company’s existing Web infrastructure.

Building Scriptics Connect on top of a Web server
gave us a good answer to one of the infrastructure
problems we wanted to address: transport. Using a
Web server made it easy to use HT'TP as a transport
protocol for XML. HTTP is a natural choice for this
task for several reasons. First, it is an existing open
standard. Second, most corporate firewalls are al-
ready configured to pass HTTP requests. One of the
biggest problems with existing business-to-business
solutions is the use of proprietary transports that re-
quire complicated and expensive integration efforts.

The Tcl interpreter in the Scriptics Connect
server has been augmented with several extensions.
First, it includes extensions for processing and gen-
erating XML documents:

e tclExpat: a fast, non-validating XML parser
based on expat [3, 4]

e tclDomPro: an XML Document Object Model
interface built on top of tclExpat

e xmlact: an API for binding Tcl scripts to parts
of an XML document

an API for generating XML docu-

e xmlgen:
ments

Second, it includes several connection points for
interfacing with various data sources:

Development
Tools

w Firewall

XML
Document <g==Internet URLs

Figure 3: Components in the Scriptics Connect architecture

e tclCom: allows COM objects to be created and
invoked from Tcl; developed at Scriptics but
influenced by the open source tCom extension
by Chin Huang [5]

e TclBlend: provides access to Java classes, ob-
jects, Enterprise JavaBeans and databases, via
JDBC [9]

e OraTcl: provides access to Oracle databases [8]

e Expect: allows Tcl scripts to communicate
with and automate applications that normally
expect to be interacting with a user typing at
a terminal [6]

Tecl is a natural choice for implementing XML ap-
plications. Because XML is a text-based format,
it is important to have powerful and easy-to-use
string and regular expression operations. Tcl’s “ev-
erything is a string” model is a good fit for manipu-
lating XML data. Additionally, XML is represented
using the Unicode character set. As of version 8.1,
Tecl uses Unicode as its native character set, which
makes manipulating XML data simple. Finally, Tcl
has an extensive collection of extensions freely avail-
able on the Internet. Many of the connection points
in Scriptics Connect come from open source exten-
sions. This allowed us to provide substantially more
functionality in our first release than would have
been possible if we had implemented everything our-
selves.

3.2 XML Document Processing

The combination of a Web server plus the Tcl
platform addresses many of the transport and in-
tegration issues surrounding XML. However one of
the remaining issues we had to deal with was the
difficulty of processing XML documents. One of
our goals for Scriptics Connect was to raise the
level of programming, both to reduce the amount
of code that must be written and to reduce the pro-
gramming skills required to develop business appli-
cations.

Most tools for processing XML documents today
consist of low-level XML parsers. To use these tools,
a programmer must write code in a system pro-
gramming language like C or Java. These parsers
fall into one of two groups: event-based and tree-
based. Event-based parsers treat XML documents
as streams of data and generate events for each
opening and closing tag in the document. Event-
based parsers require the user to manage state be-
tween callbacks in order to gather data for process-
ing. On the other hand, tree-based parsers treat

XML documents as data structures and build in
memory a tree representation of an XML document.
Using a tree-based parser typically involves writing
code that uses Document Object Model (DOM) [1]
interfaces to traverse the nodes in the resulting tree
to find relevant data. Both models are cumbersome
and involve a lot of programming to perform even
simple tasks.

As an example, consider the sample XML en-
coded CD purchase order shown in Figure 2. Sup-
pose a developer wants to import the informa-
tion in that XML document into a local relational
database. Using just the event-based XML parser
expat, a programmer would have to write C code
similar to that in Figure 4. The complexity of ex-
tracting the data overwhelms the original program-
ming task of inserting the data into the database.
Real XML documents are even more complex than
our sample purchase order. This makes XML pro-
gramming a prime candidate for an abstraction
layer.

3.3 The Post-it@ Model

Instead of using a strictly tree or event based
model, we chose to combine them into a hybrid ap-
proach. The metaphor we used to simplify XML
programming is that of attaching Post-it®) notes to
a paper document. Imagine that instead of an XML
document, you have a physical copy of the type of
document you need to process. If one person were
to describe to another person how to process a pa-
per form, they might do it by taking a copy of the
form and placing Post-its® on the form, as shown
in Figure 5. Each Post-it® would have instruc-
tions for processing a particular part of the form,
and it might indicate fields from the form that are
needed to carry out the instructions. Once a form
has been thusly annotated, it could be given to a
person who could then carry out the instructions
on similar forms as they arrive.

With this abstraction, we can effectively reduce
the task of parsing XML to the task of placing Post-
it® notes on a document. Pseudo code exploiting
this abstraction might look like this:

at the CD element call
addToDatabase with Artist, Title

The developer doesn’t worry about the technical
details of parsing the XML data or finding a position
within the document tree. Instead they can focus on
the problem they are trying to solve. An important
side benefit of our Post-it®) abstraction is that it is
readily understandable even by non-engineers.

XYZ Corporation Purchase Order

2867 Coast Ave.
Moutain View, CA 94043 DATE PO #

8/11/99 74312

Verify
customer
name

VENDOR:

XYZ Corporation
2867 Coast Avenue
Mountain View, CA 94043

MegaMusic Inc.
284 Westland Drive
Wildar Heights, IL 51622

TERMS | EXPECTED }SHIPVIA FOB

(17em) pescripTion (QTY)

indatobase ¥

AN U

Figure 5: The Post-it® metaphor

char currentArtist[128];

char currentTitle[128];

int inArtist, inTitle;

void startElement(void #*userData,
const char *name,
const char **atts)

{
inArtist =
(strcmp(name, "Artist") == 0) 7 1 : 0;
inTitle =
(strcmp (name, "Title") == 0) 7?7 1 : 0;
}

void endElement(void *userData,
const char *name)

{
if (strcmp(name, "CD") == 0) {
addToDatabase (currentArtist,
currentTitle);
return;
} else if (strcmp(name, "Artist") == 0) {
inArtist = 0;
} else if (strcmp(name, "Title") == 0) {
inTitle = 0;
}
return;
}

void cdataHandler(void #*userData,
const char *s,
int len)

if (inArtist) {
strncpy (currentArtist, s, len);
currentArtist[len] = °\0’;

} else if (inTitle) {
strncpy(currentTitle, s, len);
currentTitle[len] = °\0’;

}

}

void main() {

XML_SetElementHandler (parser,
startElement, endElement);
XML_SetCharacterDataHandler(parser,

cdataHandler) ;

Figure 4: C code for processing an XML encoded
CD database

3.4 xmlact: the XML Action API

Our implementation of the Post-it® abstrac-
tion took the form of a new API called xmlact.
The xmlact API consists of a few commands,
parserCreate, parse, and parserDelete for cre-
ating, using, and deleting an XML parser. In addi-
tion, it has one command, action, which is used to
associate a Tcl script with a location in an XML
document. Locations in an XML document are
specified using a path syntax where nested tags
are separated by slashes, much like a file name:
PurchaseOrder/CD/Artist. This is similar to, but
simpler and less complete than, the syntax used by
XPath [2], a W3C Recommendation for addressing
parts of an XML document. These paths are really
patterns that are compared with each location in a
document to find a match. The parser walks the
XML document looking for locations that match a
pattern. When a match is found, the corresponding
Tecl script is invoked.

Although this basic pattern matching mechanism
is a very easy interface that greatly simplifies the
task of invoking a Tecl script at a particular place in
the document, it doesn’t make the task of collecting
related pieces of data all that much easier. In order
to extract data from the document, the developer
would still need to use a mechanism similar to that
employed in the earlier C example in Figure 4 to
pass data from one action to the next. To simplify
the data collection task, we added the ability to refer
to data that is contained within the current tag.

Using the xmlact action command, the sample C
code in Figure 4 can be replaced with the following
simple Tcl code:

xmlact::action parser CD addToDatabase \
-text Artist -text Title

When the XML encoded CD database in Figure 2
is processed, the following sequence of procedure
calls will result:

addToDatabase Weezer Pinkerton
addToDatabase {The Wolfgang Press} \
{Funky Little Demons}

A specifier like —text Artist indicates that the
second word of the Tcl command should consist of
the text in the Artist subelement of the CD element.
Several types of specifiers exist, for extracting dif-
ferent parts of the XML document:

e -text tagpath: retrieve the contents of the
specified subelement as text with no embedded
tags

e -value tagpath attribute: retrieve the value
of the given XML attribute for the specified
subelement

e —attributes tagpath: retrieve a Tcl list of
XML attributes and values for the specified
subelement

e -tag: Retrieve the name of the triggering ele-
ment

e -path: Retrieve the complete path of the trig-
gering element

e -literal string: Pass the literal string through
as an argument to the command

These specifiers allow the developer to easily ac-
cess most pieces of data in an XML document. We
deliberately placed a few restrictions on the data
available in order to improve performance and re-
duce the amount of memory required during pars-
ing of large documents. In particular, an action can
only refer to data contained within the element it is
attached to. Also, we ignore some of the more eso-
teric XML features like processing instructions. We
expect that most business to business applications
will not use these features, so we decided to target
the “sweet-spot” in order to reduce the complexity
of the interface.

3.5 xmlgen: The XML Generation API

There are at least two situations that require some
sort of outgoing XML. First, it may be necessary to
return data as the result of an incoming request.
XML is a natural choice for formatting that re-
sponse. Second, users of Scriptics Connect may wish
to initiate requests as well as respond to them. In
order to address these needs, we created the xmlgen
APIT, a means for creating XML on-the-fly.

The xmlgen API has two distinct interfaces for
creating XML. To illustrate the difference between
the two, consider the following sample XML:

<response>
<header>
Some text
</header>
<body>
Some more text
</body>
</response>

The first interface is similar to that used in Don
Libes cgi.tcl [7], in which the document is con-
structed by a series of nested function calls. The

following code uses this interface to create the sam-
ple XML shown:

xmlgen: :element mydoc response {
xmlgen: :element mydoc header {
xmlgen: :text mydoc "Some text"

}
xmlgen: :element mydoc body {
xmlgen: :text mydoc "Some more text"

}

In this style, each call to xmlgen: :element pro-
duces an opening and closing tag with the specified
name. The API will execute whatever code is in the
body of the call between writing out the opening
and closing tags. This style of XML document cre-
ation has a couple of benefits: it is easy to see the
mapping between the code producing the document
and the resulting output, and it works well when
the entire document can be produced at once.

However, in some cases, this model does not work
well. For example, if you need to incrementally
produce the document as you process something, it
would be easier to use a more streaming model. In
this case, the second interface is useful. This inter-
face uses two commands, xmlgen: :startElement
and xmlgen::endElement to create opening and
closing tags for elements in the document. The fol-
lowing code uses the streaming interface to create
the same sample XML:

xmlgen:
xmlgen:
xmlgen:
xmlgen:
xmlgen:
xmlgen:
xmlgen:
xmlgen:

:startElement mydoc response
:startElement mydoc header
:text mydoc "Some text"
:endElement mydoc
:startElement mydoc body
:text mydoc "Some more text"
:endElement mydoc
:endElement mydoc

One disadvantage of this interface is that it is
harder to see the mapping between the code and
the resulting document. In addition, the program-
mer is responsible for maintaining balanced tags,
unlike the first interface. However, in some cases,
the streaming output model is simply easier to work
with.

3.6 Scriptics Connect Author

Although the xmlact interface makes parsing
tasks much easier than if users had to write directly
to low-level parsing APIs, there is still a lot of coding
involved in performing the various integration tasks
facing an XML application developer. For example,

it is still troublesome to write the code needed to
access a database. To address this issue, we devel-
oped Scriptics Connect Author, a GUI tool to assist
in creating document handlers.

Author provides two primary benefits. First, it
provides a simple graphical interface that helps vi-
sualize the task of attaching actions to parts of
an XML document. Author displays a schematic
view of an XML document; the user selects a
particular XML element and associates an action
with it. This task effectively generates a call to
xmlact: :action, and is really just a “glossy cover”
for the xmlact: :action function. Figure 6 shows a
screenshot of this interface.

Second, through the use of various wizards, Au-
thor provides easy access to the connection points in
Scriptics Connect. Having associated an action with
an XML element, the user must define what behav-
ior that action should have. One way to do this is to
write a segment of Tcl code. This provides a great
deal of flexibility, because the developer can write
arbitrary Tcl code. However, we realized that in
most cases, the developer does not need that degree
of flexibility, and would be better served by an inter-
face customized to a particular type of action. Thus
we created a set of action wizards, each of which is
optimized for a different type of action, and provides
a graphical interface that makes that kind of action
easy to implement. For example, we have created a
wizard for inserting data into a database; Figure 7
shows a screenshot of this wizard.

We have created several different wizards for Au-
thor, including;:

e Database wizards for inserting, deleting, updat-
ing, and querying

e A condtional wizard for controlling the execu-
tion of actions at runtime based on the data in
an XML document

e A Tcl variable wizard for extracting data values
into Tcl variables for later use

e A TclScript wizard, which allows the developer
to supply arbitrary Tcl code, in case our pre-
made wizards are inadequate for their needs

In addition, the Author Wizard API is open, so
that users can create new wizards that are tailored
to their particular needs.

4 An End-to-End Example

An end-to-end example of how XML can help to
automate business-to-business applications begins

with two companies, NewCo and OfficeStuff, that
do business with each other. NewCo, being a new
and rapidly growing company, finds that it often
needs to purchase office supplies from OfficeStuff.
Initially, the supply chain proceeds as follows:

1. Employees at NewCo fill out an internal form
requesting supplies and send it to the VP of
Buying.

2. NewCo’s VP of Buying calls her secretary and
asks him to order some office supplies.

3. The secretary writes up a purchase order and
faxes it to OfficeStuff headquarters.

4. Sales Agent Sal at OfficeStuff receives the pur-
chase order, verifies that NewCo is a real cus-
tomer and has enough money for the order,
then calls the shipping department.

5. An inventory manager at OfficeStuff gathers
the items needed to fill the order, updates the
inventory database, and arranges for the items
to be shipped to NewCo.

6. Sal sends a bill to NewCo.

This system is perfectly functional, but it is time
consuming, costly and inefficient. Several people
are involved in the chain, each of which increases
the cost and chance for error. But the companies
could overhaul their supply chain with XML and
set up an automatic supply chain, eliminating the
need for the extra “middle-men,” reducing costs and
increasing efficiency and accuracy.

In a partially XML-enabled scenario, NewCo and
OfficeStuff, recognizing the inefficiency of their sys-
tem, get together and agree on the format for the
XML documents they will use to automate the sup-
ply chain. In this case, there are two: a purchase
order and a bill. Now, NewCo can set up an internal
purchasing system whereby employees can request
office supplies; the orders are collected and format-
ted as a single XML request, which is then sent via
email to Sales Agent Sal at OfficeStuff. Sal, upon re-
ceiving the XML document, prints it and processes
it much as before. At this stage, half of the sup-
ply chain is automated. This is good for NewCo,
but OfficeStuff has made no benefit yet. Thus the
partially XML-enabled supply chain proceeds as fol-
lows:

1. Employees at NewCo log in to the purchase sys-
tem and request supplies.

2. The purchase system collects requests and
sends a purchase order to OfficeStuff.

EEE

cs Connect Autho

Hle Edit Tools Help
DEW ¢R@ o~ @7 v D
Document Structure: _IJ Document Elements:
Element Name |Content Specification =
Header (From , To , Sender)
Identity ANY
Inclesx { SupplietlD+ , Comments? , Se| |
Indexltem { IndexltemaAdd+ | IndexltemDel
Indextemadd |(ltemID , temDetail , Indexitem!
IndextemDelete (ItemiD)
IndextemDetail ({ LeadTime , ExpirationDate? ,
Inde: gm0 __Punchouthiatai
|
-+ Ny
IndexdtemPunchaout = :
E Action Ty'pe_sj e
) ® Condition
= ® EMail
- ® OracleCustom Create & Edit |
Location 41| Mame ® OracleDelete
Index/indexltemiindexltemDelete DeleteC e Oraclelnsert
| ® OracleUpdate Cancel |
e OracleUpdateinsert
& Serverlog
® TclScript
e TclVariable
N Actions fLogging [Build an Oracle SQL INSERT command.
1

[| Modified | 03:11 PM
1l Il

Figure 6: Screenshot of the Author interface

[| Scriptics Connect Author - [cxmi-catalog.apj] - Action [InsertCatalogltem]

Hle Edit Tools Oracle Help
EIET -

Document Structure: 4 Tahle:l CATALOG j
Indexltemadd Columns:

[temID
& SupplierPartiD { Column Hame [Type |Len | nput Source it Input |
? SupplierPantausiliary D |io MUMBER 22 ItemlD/SupplierPartiD et

[temDetail UKITPRICE FLOAT 22 ItemDetail/UnitPrice tewt
i UnitPrice DESCRIPTION W&RCHARZ 80 ItemDetail/Description tewt
i Description kAAMNF WARCHARZ G0 ItemDetail/hanufacturertame text
@ UnitCfteasure hABMFID |MUMBER |22 [itemDetailtanufacturerPartiD [text

? ManufacturerPariD
? Manufacturerhame =

? URL Inputs:
@l Exirinsic - -
Eg IndexitemDetai Variable]| Location [Type <o

Oraclelnsert 1.2

Figure 7: Screenshot of a database insert wizard. The user selects a database table, then drags XML
elements and attributes from the tree on the left into the “Columns” listbox on the right to specify which
parts of the document to use to fill the database. In addition, the user can drag things to the “Inputs”
listbox, to allow simple manipulation of the data before inserting it into the database.

3. Sales Agent Sal at OfficeStuff receives the pur-
chase order, verifies that NewCo is a real cus-
tomer and has enough money for the order,
then calls the shipping department.

4. An inventory manager at OfficeStuff gathers
the items needed to fill the order, updates the
inventory database, and arranges for the items
to be shipped to NewCo.

5. Sal sends a bill to NewCo.

With a system like Scriptics Connect, OfficeS-
tuff can automate their half of the supply chain as
well. They can create a document handler to pro-
cess the XML-based purchase orders from NewCo.
This document handler might connect to the Of-
ficeStuff customer database to verify the validity of
the customer and the depth of the customer’s pock-
etbook. It could connect to the inventory database,
verify that sufficient inventory was available, update
the inventory, and issue an order to the inventory
manager to load the furniture on the delivery truck.
It could even issue an appropriate bill to NewCo for
the purchase.

After creating the document handler, OfficeStuff
can publish it to their Scriptics Connect server and
notify NewCo of the URL to use when sending pur-
chase orders. After NewCo has adjusted their inter-
nal purchase system to use HTTP instead of email
for delivering the purchase order, the supply chain
will be as automated as it can be, unless some sort
of machine is used to load the delivery truck. The
system now proceeds as follows:

1. Employees at NewCo log in to the purchase sys-
tem and request supplies.

2. The purchase system collects requests and
sends a purchase order to OfficeStuff.

3. OfficeStuff’s Scriptics Connect server verifies
the validity of the customer, checks the cus-
tomer’s credit line, checks and updates the in-
ventory database, sends a shipping request to
the shipping department and bills NewCo.

4. An inventory manager at OfficeStuff gathers
the items needed to fill the order and arranges
for the items to be shipped to NewCo.

Instead of the several people involved in the orig-
inal purchase, only the bare minimum people re-
quired are involved. The savings to both companies
in this case is probably not tremendous, but it prob-
ably is noticeable. And OfficeStuff can now turn to
its other customers and ask them to use XML as

well, further reducing their operating costs. Simi-
larly, NewCo can ask its other suppliers to use XML-
based systems. As more and more entities become
XML-enabled, those companies that are automated
will enjoy further reduced costs.

5 Problems with Scriptics Connect

Although we feel we have been successful in
achieving our initial goals, we recognize that there
are some problems and shortcomings with our im-
plementation.

One obvious shortcoming is in the area of gen-
erating XML. Our system works very well for re-
ceiving XML, but it is difficult to generate XML for
transmission. The xmlgen API is completely func-
tional, but it is not very user-friendly. We would like
to provide graphical facilities for describing how to
generate XML. Ideally, such a GUI would provide
the same simplicity that Author provides for han-
dling incoming documents.

Another area that needs improvement is data col-
lection. Our current facilities for gathering data
from an XML document are complete, but they
are difficult to apply to some situations. For ex-
ample, retrieving the data from all of the instances
of a repeated element in an XML document is not
straightforward. The user must create a TclScript
action and append values to a list. Complex data
structures are another example. Presently, the user
can extract the data, but must do so one field at a
time, which can be tedious. In both cases, we be-
lieve that we can create new mechanisms to address
the problem.

A third area is code and action reuse. It is cur-
rently not possible to share actions between docu-
ment handlers. It is easy to imagine scenarios that
would call for the sharing of actions, making this a
potentially large inconvenience for our users.

6 Future Work

We have an aggressive development schedule set
for Scriptics Connect. In version 2.0, we plan to add
several features:

e Built-in integration with online trading com-
munities like AribaNet and CommerceOne.

e Additional transport mechanisms for receiving
and sending XML, such as FTP and SMTP

e Better monitoring tools

In version 3.0, we plan to further enhance the
GUI, perhaps integrating Author into an IDE for
working with Scriptics Connect.

7 Conclusions

XML has the potential to greatly reduce oper-
ating costs and increase efficiency and accuracy in
many business-to-business applications. However,
the lack of infrastructure and the difficulty of cre-
ating XML applications are two significant barriers
to the spread of XML. We had two goals in mind
when creating Scriptics Connect:

e Provide the missing infrastructure needed to
enable XML-based business-to-business appli-
cations

e Simplify the process of creating XML-based
business-to-business applications

We achieved the first goal through the use of
standard World Wide Web servers, to provide a
transport mechanism, and Tcl, to provide an in-
tegration mechanism. We achieved the second goal
with the xmlact API and the Scriptics Connect Au-
thor. Tcl proved to be an ideal choice for XML-
based business-to-business applications, because of
its ability to handle XML well, and because of its
ability to connect to many external applications.

8 Acknowledgements

We would like to thank the employees of Scriptics
Corporation, without whom Scriptics Connect could
not have been created. In addition, we would like
to thank the authors of the open-source software
packages that we made use of in Scriptics Connect.

Post-it®) is a registered trademark of 3M.

References
[1] Document Object Model:
http:/ /www.w3c.org/DOM. World Wide

Web Consortium.

[2] XPath: http://www.w3c.org/TR/xpath.html.
World Wide Web Consortium.

[3] Steve Ball. XML Support for Tcl. In Proceedings
of the 6th Annual Tcl/Tk Workshop, page 109.
USENIX, September 1998.

[4] James Clark. Expat Home Page:
http://www.jclark.com/xml/expat.html.
[5] Chin Huang. tCOM:

http://www.vex.net/~ cthuang/tcom/.

[6] Don Libes. Exploring Ezpect. O’Reilly & Asso-
ciates, Inc., 1994.

[7] Don Libes. Writing CGI Scriptics in Tcl. In
Proceedings of the 4th Annual Tcl/Tk Workshop
'96, pages 189-201. USENIX, July 1996.

[8] Tom Poindexter. OraTecl:
http://www.nyx.net/“tpoindex/tcl.html.

[9] Scott Stanton. TclBlend: Blending Tcl and
Java. Dr. Dobb’s Journal, February 1998.

