
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

C O L L A B W I S E T K :
A T O O L K I T F O R R E N D E R I N G S TA N D - A L O N E

AP P L I C AT I O N S C O L L A B O R AT I V E

Hemang Lavana and Franc Brglez

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

CollabWiseTk:

A Toolkit for Rendering Stand-alone Applications Collaborative

Hemang Lavana Franc Brglez
CBL (Collaborative Benchmarking Lab), Dept. of Computer Science, Box 8206

NC State University, Raleigh, NC 27695, USA
http://www.cbl.ncsu.edu/

Abstract

Traditionally, a stand-alone client application is ren-
dered collaborative for members of a team either by
sharing its view or by re-writing it as a collaborative
client. However, it may not be possible to anticipate
in advance all preferences for collaboration, hence
such a client may appear confusing to some of the
team members.

We propose a novel client/server architecture for tk-
based applications: rendering any stand-alone client
collaborative, without a code re-write. Participants
themselves are allowed to dynamically re-con�gure
the inter-client synchronization table to suit their
changing preferences and needs. The CollabWiseTk

toolkit, based on the proposed architecture, is an ex-
tension of the tk functionality to support collabora-
tion. It re-de�nes the existing tk commands such
that the entire tk widget set is rendered collaborative
for use with multiple users.

We demonstrate the capabilities of the CollabWiseTk
toolkit by readily rendering collaborative most of the
TkWidget Demonstrations, distributed with the core
Tcl/Tk. The toolkit is implemented in pure tcl and
it ports to all platforms.

Keywords: Internet, Collaboration, Groupware,
Tcl/Tk, GUI.

1 Introduction

This paper is one of the two companion papers [1]
that were initiated at the conclusion of the course
on Frontiers of Collaborative Computing on the In-
ternet (csc591-b, [2]).

A number of collaborative client/server architectures
have been proposed to date. Principally, they deal
with speci�c applications ranging from a shared cal-
endar (The Electric Secretary) [3] to a shared white-

This research was supported by contracts from the Semi-
conductor Research Corporation (94{DJ{553), SEMATECH
(94{DJ{800), and DARPA/ARO (P{3316{EL/DAAH04{94{
G{2080 and DAAG55{97{1{0345).

board [4]; from collaborative visualization for health
care [5] to collaborative editing of schematic dia-
grams [6]. An architecture that supports work
ows
of heterogeneous applications is described in [7, 8, 9].
Some architectures expect that the application has
been written for a team of users, e.g. the Group-
Kit architecture [4]. Alternatively, multi-casting can
render an application written for a single user col-
laborative, e.g. the REUBEN architecture [7, 8, 9].
There are disadvantages to both approaches: the
need to write an application for multiple users, and
the performance issues of multi-casting.

Most of the client applications today are as stand-
alone applications. The traditional approach is to
re-write it as a client for collaborative application.
This can be a formidable task, especially when all
possible preferences for modes of collaboration can-
not be anticipated in advance. Such a client may
turn out to be user-unfriendly or confusing for a par-
ticular team. Simple preferences, such as whether
and when should the scrollbars track for all partic-
ipating collaborators, or should separate scrollbars
be provided (and color-coded) for each participant,
are at the core of such issues [4, 10, 11].

In this paper, we propose a novel client/server ar-
chitecture for tk-based applications: rendering any
stand-alone client collaborative, without a code re-
write. Participants themselves are allowed to dy-
namically re-con�gure the inter-client synchroniza-
tion table to suit their changing preferences and
needs. The CollabWiseTk toolkit, based on the pro-
posed architecture, is an extension of the tk func-
tionality to support collaboration.

The paper is organized into following sections:
� Background and Motivation;
� CollabWiseTk Architecture;
� Inter-client Synchronization;
� CollabWiseTk Implementation;
� Testbed and Experiments;
� Software Evaluation;
� Software Availability and Status;
� Conclusions.

2 Background and Motivation

Let us consider a very simple application which con-
sists of a text widget with a vertical scrollbar. Such
an application allows the user to type in text and the
vertical scrollbar allows the user to browse the text
information, when the size of the text widget is not
large enough to display the entire text at the same
time. This application can be very easily built using
four lines of tcl code, as shown in Figure 1(a), and is
a basic widget used by many complex applications
that need functionalities such as syntax highlighted
message display, text editing, and html display, to
name a few.

Several possibilities exist even for a simple text wid-
get that is rendered collaborative. Figures 1(b) - (e)
shows various possible collaborative con�gurations
of a text widget for two users Alice and Bob.

Figure 1(b) shows Alice and Bob sharing the
same view of the text widget as well as the scroll-
bar. A centralized server ensures that both the
views are synchronized at all the times. Possi-
bilities of con
ict arise when Alice and Bob both
try to interact with the text widget at the same
time. Such con
icts are typically resolved by some
form of locking mechanisms, such as round-robin,
�rst-come-�rst-serve, user-controlled token pass-
ing, etc, so that only one person can interact
with the application at a time while the others
are forced to watch.

Figure 1(c) shows a distributed implementation
of a collaborative text widget that allows Alice
and Bob to interact with their individual text wid-
gets, while an event synchronizer dispatches these
interactions to the other users. This mechanism
also allows participating users to have di�erent
views of the same widget and occasionally `glance'
at the other widgets.

Figure 1(d) shows a con�guration where both
Alice and Bob get the same view of the text wid-
get, but each has a personal edit cursor so that
both can type in simultaneously without a�ecting
the other. In the example shown, Bob has an edit
cursor at the top, while Alice has an edit cursor
at the bottom and hence both can work on dif-
ferent sections of the same text �le. However, the
associated scrollbar needs to be con�gured such
that when Bob changes the scroll-view, Alice may
not want to follow Bob's scrolled movement when
she's editing, but may want to do so when merely
watching Bob's interactions.

Figure 1(e) shows yet another con�guration

where the text widget is replicated once for ev-
ery participating user. Therefore, Alice and Bob
both have two text widgets - one where each can
type in text and another where each can observe
what the other is typing. Here again, Bob may
prefer the scrollbars to be synchronized with Al-
ice, while Alice may want to scroll independently
Bob's text widget. This is equivalent to widely
available chat tools or the Unix `talk' utility.

All of the above examples can be easily implemented
in tcl by re-writing the four lines of stand-alone tcl
code. However, when this text widget is part of a
more complex application containing several other
widgets, each of which can themselves have their own
numerous con�guration possibilities, it becomes very
di�cult to anticipate in advance a suitable con�gu-
ration preference. Such a collaborative application
might turn out to be user-unfriendly or confusing for
a particular team.

3 CollabWiseTk Architecture

The CollabWiseTk toolkit consists of two parts:
A synchronizing group server (SGS) that pro-

vides mechanisms for communication and syn-
chronization among multiple-user client applica-
tions; and

A distributed collaboration client that provides
mechanisms for inter-client synchronization among
multiple-user client applications for e�ective col-
laboration.

The general architecture of the toolkit is shown in
Figure 2. This architecture extends and comple-
ments the Asynchronous Group Server Architecture
(AGS) in [1].

SGS is a tcl server that accepts socket connections
from various collaboration clients. It has three types
of repositories:

Tcl scripts and packages: various stand-alone tcl
applications are deposited here and are available
to users for collaboration;

Inter-client synchronization tables: di�erent con-
�guration preferences for a tcl application are
stored in this tables; and

Registered users and access permissions: for se-
curity reasons, the latter maintains a list of reg-
istered users and their corresponding access priv-
ileges.

The collaboration client is installed on each user's
machine and provides an interface to the user for
collaborating with other users. Upon invocation, the
collaboration client establishes a socket connection

(a) Simple text widget with a vertical scrollbar and its tcl code.

AA
AA
AA
AA
AA
AA

sc
ro

llb
ar

 (
.s

v)

AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA

Text Widget
(.txt)

text .txt -yscrollcommand ".sv set" \

-height 15 -width 50

scrollbar $scrv -command ".txt yview" \

-orient vertical

pack .txt -fill both -side left -expand 1

pack .sv -fill y -side left

(b) Synchronized collaborative view using centralized server.

AA
AA
AA
AA
AA
AA
AA

AAAAAA
AAAAAA
AAAAAA
AAAAAA

 Central
Server

sc
ro

llb
ar

 (
.s

v)

AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA

Text Widget
(.txt)

AA
AA
AA
AA
AA
AA
AA

sc
ro

llb
ar

 (
.s

v)

AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA

Text Widget
(.txt)

Alice s screen Bob s screen

(c) Collaborative view using distributed architecture.

AA
AA
AA
AA
AA
AA
AA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

 Event
Synchronizer

sc
ro

llb
ar

 (
.s

v)

AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA

Text Widget
(.txt)

AA
AA
AA
AA
AA
AA
AA

sc
ro

llb
ar

 (
.s

v)

AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA

Text Widget
(.txt)

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

 Event
Synchronizer

Alice s screen Bob s screen

(d) Collaborative shared editor (for source code).

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

sc
ro

llb
ar

 (
.s

v)

AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA

Text Widget
(.txt)

Bob s edit
cursor

Alice s edit
cursor

(e) Collaborative chat box (like talk window).

AA
AA
AA
AA
AA
AA
AA

sc
ro

llb
ar

(.

bo
bs

v)

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

Text Widget
(.bobtxt)

AA
AA
AA
AA
AA
AA

sc
ro

llb
ar

(.

al
ic

es
v)

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAAText Widget

(.alicetxt)

Alice s chat window

Bob s chat window

Fig. 1. Desirable collaborative con�gurations for a text widget with a scrollbar.

AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

Tcl Scripts
and Packages

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

CollabWiseTk:
Synchronous
Group Server

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

AA

A
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

CollabWiseTk
Client 1

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

CollabWiseTk
Client 2

AAAAAAA
AAAAAAA
AAAAAAACollabWiseTk

Client n

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

Registered Users &
Access Permissions

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

Inter-Client
Synchronization

Tables

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

Tcl Scripts
and Packages

local
cache

User 1

User 2

User n

AAAAAAAAAAAA AA

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AA

AA

Fig. 2. A high level view of client/server architecture for collaboration.

with SGS and prompts the user to identify herself.
Once the login process is completed, the user can ac-
cess several di�erent tcl applications, based on her
access privileges, by invoking an appropriate con-
�guration �le from the inter-client synchronization
table. Collaboration clients also maintain a local
cache of the tcl applications for faster access.

The collaboration client also provides mechanisms
to install new tcl scripts and packages in the group
server repository. Privileged users can install such
scripts and easily create con�guration �les on the
server for others to access.

When two or more clients access the same con�gura-
tion �le of a tcl package, they are immediately set-up
for collaboration. User-interactions with the tcl ap-
plication are then sent to the group server, which
in turn relays this information to all participating
users.

4 Inter-Client Synchronization

Inter-client synchronizer allows the user to dynam-
ically re-con�gure the di�erent modes of collabora-
tion for every primitive object contained within the
tcl application GUI. A primitive object is an ele-
ment of GUI with which a user can either interact

or observe: (1) all tk widgets, such as button, label,
entry, etc, are primitive objects; and (2) in addition,
tagged items of a canvas and text are also considered
as primitive objects.

Primitive objects can be con�gured into either one of
the two states - interact or observe. When a primary
object is con�gured to be in observe state, a user is
prevented from interacting with it. For example, a
user can be prevented from interacting with a text
widget by removing all of its binding tags, as follows:

bindtags .txt {""}

The same text widget can be brought back to an
interact state merely by restoring its binding tags.
A good introduction to bindtags can be found in [3].

When several users work collaboratively, each user
invokes the tcl application locally. Therefore, all
primitive objects of an application are replicated on
each user machine. In addition, a user can now con-
�gure her primitive object to be in one of the two
states, interact and observe, and link it to any of
the participating users. This means that when there
are two users, say Alice and Bob, each can con�gure
their text widget to be in one of the four states:

� Interact/Alice,
� Observe/Alice,
� Interact/Bob, and
� Observe/Bob.

(a) Simple text widget with a vertical scrollbar. (b) Widget tree structure

Widget tree

|_ .

|_ .f

| |_ .f.txt

| |_ .f.sv

|_ .info

|_ .info.user

|_ .info.time

(c) Collaborative shared editor (for source code). (d) Collaborative chat box (like talk window).

(e) Inter-client synchronization table

Fig. 3. Inter-client synchronization table used to con�gure a text widget into various collaborative modes.

We next explain the meaning of each of this state
for Alice:

Interact/Alice: Alice is con�gured to interact
with her own text widget. At the same time, Bob
can observe her interactions, if he has con�gured
his text widget to be in Observe/Alice state.

Observe/Alice: Alice is con�gured to observe
her own text widget. This would result in activi-
ties on the text widget, unless Bob has con�gured
himself to be in Interact/Alice state.

Interact/Bob: Alice is con�gured to interact
with Bob's text widget. However, if Bob is also
con�gured to be Interact/Bob state, then this
could lead to potential con
icts.

Observe/Bob: Alice is con�gured to observe
Bob's text widget.

The simple text widget example with a vertical
scrollbar, shown in Figure 1(a), can be easily con-
�gured into various states by de�ning appropriate
object state for the two widgets. Figure 3(a) shows
a snapshot of a text widget GUI and Figure 3(b)
shows its corresponding widget tree. This appli-
cation is readily transformed, without any re-write,
into: (1) collaborative shared editor for source codes
(Figure 3c), and (2) a chat box window (Figure 3d),
by providing an appropriate con�guration �le.

Figure 3(e) shows a snapshot of the inter-client syn-
chronization table. It lists all the con�guration �les
for the text widget in the left column, with their
respective widget trees. Collaborative participants,
if any, are listed in the adjacent columns. Thus,
there are two participants for `Shared Editor' and
`Chat Box', and only one participant for `Scrol-
lable Text Box'. The entries listed below each user
corresponds to the current state of the respective
widget. For example, the text widget `.txt' un-
der `Shared Editor' is listed as Interact/Alice for
both the users, `alice@host.domain.com' as well as
`bob@host.domain.com'. This implies that while Al-
ice is interacting with her text widget, Bob also has
the permission to simultaneously interact with Al-
ice's text widget. The text widget is therefore shared
among the two users thereby providing a means of
real-time collaboration. Each such entry can be
changed to a di�erent state merely by clicking on
the dropdown menus and selecting the desired state.
We have used BWidget toolkit [12] to implement the
GUI shown in Figure 3(e).

The examples shown above describe how each widget
can be con�gured to suit one's requirements. How-

ever, as the size of the application grows, it can be-
come very tedious for a user to con�gure each of
this widget individually. Therefore we also provide
a mechanism whereby if a user con�gures one widget
to a speci�c state, then all of its subsequent children
widgets also assume the same state. This becomes
very useful when the user wants to start or stop in-
teracting with the entire toplevel window and can be
achieved by merely changing the toplevel window to
the appropriate state.

5 CollabWiseTk Implementation

The client-server architecture of the CollabWiseTk

toolkit is implemented using socket programming.
Typically several clients may be connected to SGS
at any time. In addition, clients may invoke several
tcl applications and each tcl application may have
several di�erent collaborative participants. Figure 4
depicts one such scenario, where user1 on client1 has
invoked TkAppln1, TkAppln3 and TkAppln4, user2
on client2 has invoked TkAppln2 and TkAppln4 and
user3 on client3 has invoked TkAppln1 and TkAp-
pln2. An application that is common among users
imply that those users are its collaborative partici-
pants. For example, TkAppln1 is rendered collabo-
rative among user1 and user3. This is also shown as
a dashed line linking TkAppln1 to client1 and client3
on the server side.

The following table provides such a relationship for
the example shown in Figure 4:

Application/Username User1 User2 User3
TkAppln1 * *
TkAppln2 * *
TkAppln3 *
TkAppln4 * *

As the number of participants and the number of
applications increase, this could lead to very com-
plicated relationships. Also, it is important that the
server as well as the client maintain this information
in a clean fashion without mixing up any information
with one another. We, therefore, invoke a new inter-
preter for each client that connects to the server. In
addition, a new interpreter is also created for every
application that is invoked by all the clients. Sim-
ilarly, the client also invokes a new interpretor for
every application that the user invokes. These in-
terpreters are invoked using the command interp

create -safe { we make use of safe interpreters to
provide adequate security among the client/server

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

CollabWiseTk:
Synchronous
Group Server

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AA
AA

AA
AA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

CollabWiseTk
Client 1

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

CollabWiseTk
Client 2

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAACollabWiseTk

Client 3

AAAAAA
AAAAAA
AAAAAATkAppln 1 User 1

User 2

User 3

AAAAAA
AAAAAA
AA
AA

AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA

AA
AA

AAAAAA
AAAAAA
AAAAAA

TkAppln 3

AAAAAA
AAAAAA
AAAAAATkAppln 1

AAAAAA
AAAAAA
AAAAAA

TkAppln 4

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

TkAppln 2

AAAAAAA
AAAAAAA
AAAAAAATkAppln 2

AAAAAAA
AAAAAAA
AAAAAAA

TkAppln 4

AAAAAA
AAAAAA
AAAAAA

Client 1

AAAAA
AAAAA
AAAAA
AAAAA

Client 2

AAAAA
AAAAA
AAAAA
AAAAA

Client 3

AAAAAAA
AAAAAAA
AAAAAAATkAppln 2

AAAAAA
AAAAAA
AAAAAA

TkAppln 3

AAAAAA
AAAAAA
AAAAAA

TkAppln 1

AAAAAA
AAAAAA
AAAAAA

TkAppln 2

AAAAAA
AAAAAA
AAAAAA

TkAppln 4

Fig. 4. Dependency relationships for a three-participant collaborative session in progress.

communication.

We next describe the mechanism used to capture
events corresponding to user interactions and how
these events are broadcast to its collaborative par-
ticipants.

Interpreters on SGC are con�gured to provide a set
of Tk commands such that in addition to being able
to create, con�gure and delete generic widgets, these
also include functionality to trap all the user inter-
actions with the widget. Once the user interactions
are trapped by the interpreter, it is upto sole discre-
tion of the application-speci�c interpreter on how to
process this information and it depends on the state
of the inter-client synchronization table. For exam-
ple, once the double-click on a button of TkAppln
1 by User 1 is captured, the interpreter does the
following:

1. Check the current state of the button in inter-
client synchronization table;

2. If the current state of the button happens to
be in observe mode, then it immediately stops

processing the event any further;

3. If the current state of the button happens to
be in interact mode, then it processes the corre-
sponding event;

4. If any of the collaborative participants are
setup in observe mode for this button, then the
interpreter transmits the event to the SGS server
for further processing.

SGC interpreters also perform the functionality to
receive and process events that are transmitted by
collaborative participants.

Client-speci�c interpreters on SGS are con�gured to:

1. receive events from their respective clients
and forward it to the application-speci�c inter-
preter for broadcasting it to other relevant clients,
and

2. relay or send the processed event from
application-speci�c interpreters to their respec-
tive clients.

On the other hand, application-speci�c interpreters
on SGS actually perform a inter-client synchroniza-

tion table lookup to process an event and send it to
all the clients that are in observe state.

Since users are allowed to choose to choose and con-
�gure the state of a widget in an application, it is
very easy for widgets to fall out of synchronization
with corresponding widgets of collaborating partici-
pants. For example, this occurs when Alice changes
the state of her text widget from Interact/Alice to
Observe/Bob. Before Alice can start observing the
Bob's interactions with his text widget, Alice has to
�rst synchronize her text widget with that of Bob.

The client interpreter of Alice sends a request to SGS
to retrieve information necessary for her text widget
to synchronize with that of Bob. The SGS server in
turn transmits the request to Bob's client interpreter
and waits for an answer. The Bob's client interpreter
processes this request and responds accordingly by
providing all the appropriate information about the
current state of its text widget. Once, the two text
widgets are synchronized, Alice goes into observe
mode and starts following Bob's interactions.

SGS and the collaborative client communicate with
one another using a well-de�ned set of APIs. There
are basically two types of API commands:

� synchronous API commands, which block the
sequence of execution by waiting for the results;
and

� asynchronous API commands, which do not
block and wait for the results of the execution.

When client1 sends a user interaction to a collabo-
rative participant client2, it is not necessary for the
client1 to verify whether client2 has managed to re-
ceive this information or not. Hence, this falls into
asynchronous type of command.

On the other hand, when client1 requests speci�c
information about client2, such as the status of its
scrollbar, then it is necessary to issue a synchronous
command. However, this implies that synchronous
commands will block the socket channel between
the client-server and prevent communication of other
commands. Therefore, we always send asynchronous
commands over the socket channel, and make use of
the `vwait' command to implement the synchronous
command.

Accordingly, we have developed two simple proce-
dures to handle these two types of commands, as
shown below:
##

1. Asynchronous transmission

sid = socket id

proc sendNforget {sid cmd} {

transmitSocket $sid {} $cmd

};# End of proc sendNforget

##

2. Synchronous transmission

proc sendNreceive {sid cmd} {

set returnId [clock clicks]

transmitSocket $sid $returnId $cmd

vwait $::returnId

};# End of proc sendNreceive

The procedure sendNforget, as the name suggests,
sends the command across the socket channel and
returns immediately. On the other hand, the pro-
cedure sendNreceive transmits a unique variable
name, generated using the clock command and waits
for this variable to be set using the vwait command.
When this data is received on the other side, the
presence of a variable name implies that a result is
expected and therefore it transmits back the results
such that this unique variable name is set to contain
the results.

The noti�cation of user interactions with a widget is
achieved by analyzing the entire set of commands in
tk widgets and re-de�ning these commands appro-
priately. Speci�cally, the original text widget is re-
named and a new procedure is created by the same
name. This new procedure performs actions that are
necessary to:

� inform the group server, whenever a new text
widget is created and if some other client is ob-
serving this text widget;

� create a new procedure for the text widget
pathname that selectively sends similar informa-
tion to group server.

The following tcl code snippet shows a simpli�ed
example of how a text widget can be made collabo-
rative.

Rename text widget

#

rename text text-Org

proc text {pathname args} {

sendNforget $::sid "text $pathname $args"

set ret [uplevel 1 text-Org $pathname $args]

#rename $pathname cmd which just got created

rename $pathname $pathname-Org

proc $pathname {args} {

process $args

switch -- $opt {

cget {

send nothing to remote server, OR

use "sendNreceive $pathname cget"

Fig. 5. Startup window of a CollabWiseTk client.

cmd to get option value from rmt

user, when configured for

interaction with rmt user.

}

insert {

sendNforget $::sid \

"$pathname insert char"

}

};# End of switch stmt

....

};# End of proc $pathname

return $ret

};# End of proc text

Whenever the application invokes a text widget,
the above procedure is called. It �rst informs SGS
about the creation of the text widget using the non-
blocking command sendNforget. It then proceeds
with the creation of the actual text widget. Since
creation of a text also creates a new command by its
widget name called pathname, it re-de�nes pathname
to pathname-org and creates a wrapper script for it.
Other Tk widgets are implemented similarly.

6 Testbed and Experiments

We decided to use the Tk widget demonstrations,
distributed with the core Tcl/Tk, as a test-bed for
testing the CollabWiseTk toolkit. We have chosen
these demos because they not only cover most of
the commands in the tk widget set, but also demon-

strate usefulness of the toolkit in rendering these
applications collaborative. The experiments need to
be conducted in two phases:

� manually invoke all the demos and verify their
operation in several di�erent con�guration modes;
and

� setup a testbed and conduct a series of experi-
ments to evaluate the performance and scalability
of this architecture.

Our current implementation of the toolkit allows us
to collaborate many of the listed demos. However,
we have not yet implemented: (1) one major tk wid-
get, namely the canvas widget; and (2) the tagged
items on the text/canvas widget in our collaboration
toolkit. Figure 5 shows the initial startup window
of a collaborative client, which allows the user to
connect and login to the synchronous group server.
Figure 6 shows the main window of the tk wid-
get demonstrations invoked in collaborative mode.
Speci�cally, it shows a 15-puzzle game which has
been made collaborative for two players as described
next. First player can only click on the odd buttons
whereas the second player can only click on the even
buttons. Two kinds of games can be played with
such a con�guration: (1) players assists one another
in completing the game at the earliest; or (2) one
player tries to prevent the other player from com-
pleting the game.

Fig. 6. Collaborative Tk widget demos.

7 Software Evaluation

We evaluate the CollabWiseTk toolkit in the context
of several factors below.

User con�gurability. We provide the
exibility to
save the mode of collaboration for a speci�c applica-
tion in a static �le. A programmer can thus antici-
pate a variety of useful collaboration modes and save
it in separate con�guration �les. Users can then in-
voke the application with appropriate con�guration
�le during collaborative sessions. However, users are
not limited to using the collaborative mode de�ned
in these �les, but have the
exibility to also change
the mode of collaboration, during run-time, to suit
their speci�c needs.

System architecture. We have chosen a hybrid ar-
chitecture to implement CollabWiseTk. A replica of
the single-user application executes on every user's
machine thereby providing good response times for
local interactions. On the other hand, a central-
ized server is used for synchronization and maintain-

ing consistent state information. This may result in
performance bottlenecks where high interactivity is
needed for increased number of participants.

Group awareness. Inter-client synchronization ta-
ble maintains a list of active sessions corresponding
to each application being shared. Additionally, ev-
ery session not only lists the number of users actively
collaborating on an application, but also displays the
type of user activity such as interact or observe for
a speci�c widget. This enables other users to de-
termine the status of a particular user in respect to
a speci�c widget and aids in increasing the group
awareness signi�cantly.

Floor control. The toolkit provides a very �ne
granularity over
oor-control and allows the users to
con�gure the interaction mode down to the widget
element, instead of merely allowing control of the en-
tire application. Additionally, users also have the ca-
pability to dynamically change and allow other users
to interact with a speci�c widget of choice whenever
the need arises. This provides better
exibility in
letting users drive the mode of collaboration to suit
their needs, rather than a programmer trying to an-
ticipate all the collaborative needs for design speci�c
collaborative-aware application.

Scalability. The scalability of the toolkit depends
on the users and how they decide to share a speci�c
session during runtime. If users want to be aware
of all the activities of the other users, then there
will naturally be a performance hit when the num-
ber of users increase. However, it is expected that
most users will not work in such fully shared mode
and would prefer sharing only part of the widgets
from the entire application. This would minimize
the communication overhead and hence this toolkit
would o�er good scalability even when the number
of users increase.

Limitations. The architecture relies on a single
centralized server to share the information for col-
laboration. This can result in disruption of collabo-
ration services if the server fails for any reason.

8 Software Availability and Status

The CollabWiseTk toolkit has been currently imple-
mented for most of the tk widgets, except canvas.
We also plan to make the toolkit available on the
Web, once the canvas widget is fully implemented
and we go through in-house testing phase.

Further details about the current status of these
packages will be made available under:

http://www.cbl.ncsu.edu/software

9 Conclusions

We have demonstrated the capabilities of the
CollabWiseTk toolkit by readily transforming most
of the existing Tk Widget Demos into collabora-
tive applications. Furthermore, the versatility of the
toolkit is realized by the
exibility that it provides
in rendering a stand-alone application into a variety
of collaborative modes with little amount of work.
Additionally, the functionality of these collaborative
clients can be dynamically re-con�gured by the par-
ticipants - thereby making it a very useful toolkit.

The re-con�gurability of the low-level primitives can
be combined with one another to form several useful
mega-widgets that better re
ect users's models of
work. This is illustrated with the help of a text
widget and a vertical scrollbar, which is rendered
collaborative as

� a shared editor,

� a chat box window, or

� a local text box supporting remote edits.

Similarly, other primitive widgets can be combined
to create numerous useful applications.

References

[1] F. Brglez, H. Lavana, Z. Fu, D. Ghosh, L. I. Mo�tt,
S. Nelson, J. M. Smith, and J. Zhou. Collaborative
Client-Server Architectures in Tcl/Tk: A Class Project
Experiment and Experience, February 2000. Seventh
Annual Tcl/Tk Conference, Feb 14-18, 2000, Austin,
Texas.

[2] F. Brglez. Frontiers of Collaborative Computing on the
Internet, A Graduate Course Experiment, January 1999.
Two project reports, published after the completion of
the course, are also available from the course home page
under http://www.cbl.ncsu.edu/~brglez/csc591b/.

[3] M. Harrison and M. McLennan. E�ective Tcl/Tk Pro-
gramming. Addison-Wesley, 1998.

[4] GroupKit Version 5.1. Published under URL
http://www.cpsc.ucalgary.ca/grouplab/groupkit,
1998.

[5] TANGO: Collaboratory for the Web. Published under
URL http://trurl.npac.syr.edu/tango, 1998.

[6] G. Konduri and A. Chandrakasan. A Framework for
Collaborative and Distributed Web-Based Design. In
Proceedings of the 36th Design Automation Conference,
June 1999.

[7] H. Lavana, A. Khetawat, F. Brglez, and K. Kozminski.
Executable Work
ows: A Paradigm for Collaborative
Design on the Internet. In Proceedings of the 34th Design
Automation Conference, pages 553{558, June 1997. Also
available at http://www.cbl.ncsu.edu/publications/-
#1997-DAC-Lavana.

[8] H. Lavana, A. Khetawat, and F. Brglez. Internet-based
Work
ows: A Paradigm for Dynamically Recon�gurable
Desktop Environments. In ACM Proceedings of the
International Conference on Supporting Group Work,
Nov 1997. Also available at http://www.cbl.ncsu.edu/-
publications/#1997-GROUP-Lavana.

[9] A. Khetawat, H. Lavana, and F. Brglez. Internet-based
Desktops in Tcl/Tk: Collaborative and Recordable. In
Sixth Annual Tcl/Tk Conference. USENIX, September

1998. Also available at http://www.cbl.ncsu.edu/-
publications/#1998-TclTk-Khetawat.

[10] S. Greenberg and M. Roseman. Groupware Toolkits for
Synchronous Work. In M. Beaoudouin-Lafon, editor,
Computer-Supported Cooperative Work, Trends in
Software Series. John Wiley & Sons Ltd., 1998. Also
available as a Research Report 96/589/09, Dept. of Com-
puter Science, University of Calgary, Calgary, Canada,
under http://www.cpsc.ucalgary.ca/projects/grouplab-
/papers/1998/98-GroupwareToolkits.Wiley/Report96-
589-09/report96-589-09.pdf.

[11] S. Greenberg. Real Time Distributed Collaboration. In
P. Dasgupta and J. E. Urban, editor, Encyclopedia of
Distributed Computing. Kluwer Academic Publishers,
1999. Also available as a Research Report 96/589/09,
Dept. of Computer Science, University of Calgary,
Calgary, Canada, under http://www.cpsc.ucalgary.ca/-
projects/grouplab/papers/1998/98-Encyclopedia-
Distrib/encyclopedia-realtime-collaboration.pdf.

[12] BWidget Toolkit. Published under URL
http://www.unifix-online.com/BWidget, 1999.

