
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

T C L / T K : A S T R O N G B A S I S F O R
C O M P L E X L O A D T E S T I N G S Y S T E M S

Ahmet Can Keskin, Till Immanuel Patzschke,
and Ernst von Voigt

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Tcl/Tk: A Strong Basis
for Complex Load Testing Systems

Ahmet Can Keskin, Till Immanuel Patzschke, Ernst von Voigt

Patzschke + Rasp Software AG
pa-
to
its
as
d

ing
ior
y
e
-
d

.

it-
ad
m,

m
n
e,

ly
a-

d
n

i-
e
m
se
e

e
er-
Abstract
This paper describes a Tcl/Tk-based load testing envi-
ronment which was developed for Deutsche Telekom,
Europe’s largest telco carrier and online service pro-
vider. Deutsche Telekom uses the system to ensure a
high quality of service and availability.

The paper explains the complex requirements of load
testing and gives a detailed overview for the extensive
use of Tcl/Tk within the system.

1 Introduction
The Center for Internet and Data Network Platforms
(ZID), a division of Deutsche Telekom, provides the
network infrastructure over which the largest Online
Service in Germany, T-Online, is operated. Deutsche
Telekom is Europe’s largest and the world’s third largest
telecommunications carrier, and its online service has
more that 3.3 million customers - which grew at a rate of
42 per cent during the last fiscal year.

ZID is responsible for ensuring that all hardware and
software components of an access network function
coherently and can withstand the heavy demands of
hundreds of thousands of simultaneous users, both prior
to deployment and during operation. ZID must also be
able to deliver a guaranteed performance, bandwidth,
and availability.

ZID has used the load testing technology for many years
to ensure that the online services it provides maintain
the Quality of Service (QoS) level that Deutsche Tele-
kom’s customers have come to expect. The objectives
for those early test systems were functional testing,
throughput and general performance testing for a BTX-
based network. Recently, enhancements for the testing
of the latest internet technologies, such as ISDN or
ADSL, have been developed. Critical test factors were
defect removal before deployment, and a guaranteed
highly responsive system.

Since each new development stage has been accom
nied by load testing, Deutsche Telekom was able
meet these goals and deliver a top quality service to
customers. The load testing technology used h
evolved along with the network technology it is require
to test.

Load testing is the general term used to describe plac
a network infrastructure under stress to test its behav
in a production environment. We developed a full
scriptable load testing system based on Tcl/Tk. Th
basic principle in the design of this system is the Auto
matic User, abbreviated to AT - the short form is derive
from the German term “Automatischer Teilnehmer” [1]

An AT simulates the actions of a human user (e.g. h
ting web pages). Every AT can generate a certain lo
on the network, dependent on the connection (Mode
ISDN, ADSL). The load varies from 28.8 Kbit/s
(Modem) over 64 Kbit/s (ISDN) to 768 Kbit/s (ADSL).
The latest release of the AT system allows a maximu
of 225 ATs to be run simultaneously, which are the
managed and controlled with a graphical user interfac
providing a single point of control and monitoring. The
number of ATs used in a testing environment is virtual
unlimited and only depends on the hardware configur
tion.

Both the control interface and the AT are implemente
in Tcl/Tk. The scripting language Tcl proved to be a
ideal platform for implementing the AT, which freed us
from designing a new high level language for the spec
fication of test scenarios and implementing a runtim
environment to drive such scenarios. Tcl’s mechanis
of slave interpreters was sufficient to achieve the
goals. Tcl/Tk also supported rapid development of th
graphical control interface.

2 Background: Load Testing
To support its online services nationwide, Deutsch
Telekom operates more than 180 POPs all over G

sts
r
sts

u-

ct
a
g
le
t.
ite
led
tial

’s
is

es

r of
er-
s,

s

r

rs

t-

er

en
-
,
s
-
n-
nt
is
many. In each of the POPs, networks with specific hard-
ware and software systems have been installed, which
ensure the user’s access to the internet. The introduction
of new online services like ADSL requires the develop-
ment of a new infrastructure for the access network,
which has to be installed nationwide in all of the POPs.
The requirements for such an access network are:

• High bandwidth
• Low costs
• High reliability

Designing such a network can be a challenging task. For
providers of online services like Deutsche Telekom with
120 million internet connections per month, it is impor-
tant to detect and eliminate deficiencies and perfor-
mance bottlenecks before they deploy an access network
nationwide. This is especially important because addi-
tional improvements can be very expensive, since all the
POPs have to be upgraded and the users might not be
able to use the services.

Deutsche Telekom has established two operation centers
in Darmstadt and Ulm in order to test and optimize the
entire system in a production-like environment prior to
deployment. These centers are fully equipped with web
servers, connection hardware, and all equipment for the
planned network installation in a regional node (POP).
Load testing is then performed using the AT on the com-
plete network. Network components, including soft-
ware, which allow access to the internet platform, are
tested for their load-bearing capacity and stability.

Test results are used to make decisions on how best to
optimize performance and deliver new functionality.
Decisions such as replacing a router with a larger one
are made. The test results are also used to verify whether
or not the vendors components meet up to their claimed
capabilities. The vendors providing equipment for the
network often use the results produced by the AT (in
conjunction with their own tools) to isolate defects, ver-
ify changes and fixes.

Once the developers at ZID are satisfied with the result-
ing network, it is deployed in more than 180 regional
nodes throughout Germany. In addition the AT is also
used in these locations to ensure their individual QoS
once operational on a specific hardware basis. ZID relies
heavily on the AT analysis tools to compare different
load scenarios at different times of day. One of the
major benefits of the AT is that all testing and analysis
work is concentrated in one location and controlled
from a single computer.

3 Design & Implementation

3.1 Requirements
In the past years, the ZID has been performing load te
with various tools for developing and optimizing thei
access networks. Experience has shown that load te
are most effective when the real conditions are sim
lated as closely as possible.

Let us consider a typical user, who wants to conne
from his/her PC to the internet: He or she might be
subscriber to an Internet Service Provider performin
transactions such as surfing the web, doing FTP fi
transfers, or sending e-mail via an SMTP clien
Another typical user might be using an e-commerce s
to make purchases or making queries to a web-enab
database application. Therefore, her or his essen
activities are:

• Establishing a connection: The user dials his ISP
telephone number, connects, and logs into h
account with a password.

• Doing online transactions.
• Closing the connection: The user logs off and clos

the connection to his ISP.

To test the capacity of an access network (e.g. numbe
concurrent users), the load testing system had to p
form realistic emulations for concurrent user activitie
like HTTP, FTP, etc. Further requirements included:

• Single point of control (GUI)
• Measurement of performance criteria such a

response time and throughput
• Flexible, yet easy-to-learn scripting language fo

defining test scenarios
• Scalability regarding the number of simulated use

(AT)
• Extensibility, e.g. easy integration of additional ne

work protocols (SNMP, RTSP, etc.)
• Online monitoring
• Distinct physical connection for each simulated us

using different protocols (e.g. PPPoE)

3.2 Design Decisions
To meet the above requirements, we opted for an op
platform providing support for almost all available hard
ware: Linux. In terms of a flexible scripting language
we looked at Perl, Python, and Tcl. Although Perl i
pretty popular in the “system administration commu
nity” it isn’t as easy-to-learn and handy as the other la
guages (especially for end-users.) A second importa
point was the GUI component - an area where Tcl/Tk

d
s a

s
a

.
-

ly
st-

-
s
a
io.

e-

be
ce-
e
to-
t-
ch
r-
e
te
not
to

10
spe-
ed
d.

her

er
ns
T
e-
e
ake
nt-
a natural choice, since both other languages lack native
(i.e. out-of-the-box) GUI support and use for example
Tk instead of a “native” solution.

Since the idea of the AT implies managing hundreds of
different processes - including inter-process communi-
cation between them - easy-to-use and powerful net-
work support was another important criterion. Last but
not least the “glue” argument was very important. Tcl is
the perfect tool for tieing different components together
without creating monstrous extension libraries.

The AT’s architecture is based on software agents that
simulate a human user and are controlled centrally over
a graphical user interface. (For details please refer to
section 3.3: Architecture and System Components.)

Due to the flexibility of the Tcl/Tk environment, most of
the entire system’s components have been implemented
using it:

• Rapid prototyping: When starting the development,
we were unable to predict future technological
advances and we did not know exactly which fea-
tures the simulated user should support. It was thus
important to have fully functional software agents
whose features and functionality could be improved
step by step.

• Description of scenarios: Tcl makes it easy to spe-
cify the activities of a test scenario because it is a
high-level language providing all necessary control
structures (if, while, etc.) to simulate every kind of
sequence of a user’s actions. This freed us from
designing another scripting language for test scena-
rios and implementing a runtime environment.

• Visual Control: The management of the simulated
user had to be possible from one central point with a
graphical user interface - an easy job for Tk.

• Protocol modules: The simulated user should per-
form transactions based on the FTP and HTTP pro-
tocols. We were able to use existing Tcl packages
that served as a basis to implement the desired func-
tionality. Furthermore, Tcl’s encapsulation of basic
system functionality (like TCP/IP sockets) facili-
tated and simplified protocol implementation.

• Automatic User (AT): The simulation of a human
user could be handled by a software agent which ran
on a session host with a physical connection to the
access network, and which was controllable from a
central point (control host). Tcl’s mechanisms for
inter-process communication via sockets makes it
easy to realize such distributed applications.

3.3 Architecture and System Components
Figure 1 shows an architectural overview of the loa
testing system. Each block in the diagram represent
logical software component.

A load scenariodescribes a complete set of transaction
carried out by a specific number of users connected in
particular way to a network over a given period of time
Load testing involves managing a potentially large num
ber of ATs executing load scenarios. It is especial
important to have a means to control all aspects of te
ing from a central location.

TheAT controller component allows the creation of an
interactive environment for defining, driving, and coor
dinating a load test scenario. The AT controller i
designed using a set of building blocks which allow
complete definition and management of a scenar
These blocks include:

• access to a repository of Session Scripts
• a means to define connections to the tested system
• configuration of the sessions
• session management during execution of the sc

nario

The script repository contains all the scripts that have
been defined by the test designer. A given script can
assigned to one or more automated users for a given s
nario. The AT provides example scripts which may b
extended and/or parameterized to create unique au
mated users. Also the AT provides libraries implemen
ing basic behavior patterns of real online users to rea
a higher level of abstraction. A high level of paramete
ization is possible by allowing the script, to reflect th
actual behavior of a typical user without having to crea
a new script even when the basic actions taken are
the same. For instance, a time-out can be specified
simulate a user cancelling a web page fetch after 5 or
seconds. Pauses (or sleeps) can also be defined. The
cific URLs fetched or the username/password requir
as input for certain operations can all be parameterize
The parameterization is done by the test designer eit
programmatically to the AT controller or via a GUI.

An automated user simulates a real user performing
typical operations. A typical user might be a subscrib
to an Internet Service Provider carrying out transactio
such as surfing the web, doing HTTP GET or POS
operations, downloading files using FTP, or sending
mail via an SMTP client. Another typical user might b
using an e-commerce site to make purchases or m
queries to a database application through a web fro

es-
. It
ted
ss

the
r

o

es-
on
ults
l-

ost
r

he
ge
tor
nly
ge
end. The AT creates a run-time environment in which a
session script is run performing a work session. The AT
builds the connection to the network, carries out the
operations specified in the session script and discon-
nects from the network at the end of the session. Since
the AT can be configured to connect via an analog or
ISDN modem, a LAN or WAN, amongst others, the
throughput measured is what a real user could expect to
see. The AT is also responsible for forwarding test
results to the message server and the log manager for
monitoring and analysis. It also provides status informa-
tion to the Session Control upon request, including such
things as whether a session is currently executing,
whether a script is loaded, etc.

The log manager receives messages from the various
ATs running on a session host [2]. It adds a time-stamp
to each entry and, depending on any filtering of mes-
sages that has been set, writes the message to the desig-
nated logging facility. Messages may be filtered based
on the message type. Current types of messages are:
trace, log, debug, performance, error.

Like the log manager, the message server receives m
sages from the various ATs running on a session host
filters test results and passes them to the connec
online monitors where the tester can review the progre
of the load scenario and take actions based on
results. Filtering is specified by the online monitors. Fo
instance, an online monitor may specify that it is only t
receive trace messages only.

Theonline monitor makes it possible to take action on
tests as they take place. For instance, it may be nec
sary to create additional load over a specific connecti
to stress the system in a new way based on the res
being produced by the currently running sessions. Mu
tiple online monitors may be connected to a session h
which allow customized viewing of results. The numbe
of monitors and the purpose of each is specified by t
test designer. The monitors connect to the messa
server running on the session host. Each online moni
can filter the different types of messages processing o
those of interest to it. A monitor specifies to the messa
server what types of messages it wishes to receive.

Figure 1: Architecture of the Automatic User

ng
.
n
-

ni-
to

em
utes
r

-
me
c-
-
log
i-

n
cl
ic

t-
m-
the
Several online monitors can be created, each tailored to
the specific needs of a test installation. One example is a
specialized online monitor listening to trace messages
only, sending an e-mail and/or SMS message when a
URL specified is not reachable.

Another likely configuration would use an online moni-
tor that views only debug messages which need to be
handled by the creator of the load scenario and another
online monitor that views only performance messages
used by the network architect to identify bottlenecks and
refine the network configuration.

All online monitors can be connected to a graphic inter-
face providing dynamic graphic views on result data.
The entire dynamic interface is built using the Tcl/Tk
based product GIPSY [4], allowing easy customizability
and creation of dynamic data visualization.

3.4 Distributed Components and
Communication
Since Tcl has easy-to-use communication commands,
building a distributed client/server system is simple. On
top of standard Tcl we implemented a communications
layer as basis for RPC and simple data streaming (for
fast transmission of status data.) Additionally an “Appli-
cation Name Server” (ANS) provides host/port lookup
services.

Tcl-DP [3] appeared too “heavy-weight” for the above
purpose, so we decided to use “vanilla” Tcl to realize
the entire communication layer.

Needless to say that all components of the AT use the
communications layer, allowing easy expansion and dis-
tribution of functionality. System Configuration

3.5 System Configuration
A typical installation of the load testing system consists
of one control host and a number of session hosts. The
control and session hosts are connected through an eth-
ernet LAN, which we call AT backbone. Several ATs
run on each session host. The number of ATs per host
depends on the connection to the ISP or the Internet-
work (ISDN, Ethernet, ADSL, Modem etc.).

The current configuration at ZID uses 4 4-port ethernet
network adapters per PC emulating ADSL lines to an
Access Concentrator (AC), providing 15 session and
one backbone port. The backbone connects 15 PC run-
ning ATs to one AT controller, acting as single -point-
of-control for the entire system.

4 Automatic User
As stated above, the AT simulates a real user performi
online actions like HTTP get or FTP file transfers
Implemented as a software agent, the AT is built upo
four major modules: communication, connection, log
ging and script engine.

The communication module encapsulates all commu
cation aspects like a RPC server socket, connecting
the controller or the message server and sending th
status and log messages. The AT receives and exec
commands from the AT control via the RPC serve
socket.

The connection module provides all functions to con
nect to a network and authenticates a user with his na
and password. The logging module implements fun
tions to log all actions of an AT to a plain file, a data
base, send log messages to syslog daemon or the
server. Finally the script engine provides a runtime env
ronment to drive session scripts.

4.1 Session Script
In order to simplify the development of the sessio
scripts and to reach a higher level of abstraction, T
libraries are provided. They already implement a bas
behavior. This is illustrated in the example below. Lis
ing 1 shows a sample session script. It is a simple exa
ple simulating a user who establishes a connection to
ISP via PPPoE, gets some URLs and disconnects.

Sample Session Script
#
set ::url1 "http://192.9.220.240/test/600k.gif"
set ::url2 "ftp://193.156.56.10/2400k"

set basic connection parameters
access::config -trymax 3 -trydelay 300

define bandwidth paramters, i.e. if
bandwidth<30 and times>=4 ...
access::perf::config -threslow 30 -maxnumlow 4

session main
proc run {} {

connect using PPPoE
access::connect -p pppoe -user joe \
-passwd pizza
get 600k.gif via HTTP
access::perf::get $::url1
get 2400k via FTP
access::perf::get $::url2
end session - disconnect
access::disconnect

}

Listing 1: A sample session script

ta

s-
ce
s
itor

ts
a-

pt
ipt
ted
ol-

s

:
g
-

the
i-

ry
us
y

.

If an action (e.g. access::connect) fails, it is
repeated several times (::try(max) .) If it still fails,
an alert is sent to the online monitors and the log man-
ager. Then the action is repeated after a defined number
of seconds (here::try(delay)) seconds) until it is
successful.

Additionally, a threshold value for the data transfer rate
can be defined (::thres(perf) .) If the transfer rate
drops below the threshold value more often then a
defined limit (::thres(num)), an alert is raised.

4.2 Script Engine
The script engine is a Tcl module providing a runtime
environment for session scripts. To drive a session script
the script engine first reads the Tcl source of the session
script from the script repository. Then a slave interpreter
is created and initialized. In the initialization phase local
variables are declared in the slave interpreter, aliases to
commands of the master interpreter are created, protocol
extensions loaded. Finally the session script is evaluated
within the slave interpreter.

To start a session, the script engine invokes therun pro-
cedure of the session script. Stopping a session means
deleting the slave interpreter ignoring the resulting error
messages.

Session scripts are written in Tcl using behaviour librar-
ies. Each script has arun procedure. Therun proce-
dure may be executed multiple times to simulate
multiple consecutive sessions. All statements outside of
the run procedure are executed once per session.

The script writer may define trace messages that will be
sent to the message server and log server. Within the
script any combination of transactions using the sup-
ported protocols can be performed as well as all stan-
dard Tcl operations.

It is also possible to set variables in the script prior to
running it. This allows customization of a single script
logic for different users who perform the same opera-
tions but on different targets including: number of run
repetitions, transaction time-out intervals, and level of
tracing.

For FTP and HTTP we use extension implemented in
Tcl. The http extension is built on top of the standard
HTTP package coming with Tcl. Ftp is built on the FTP
package of Steffan Traeger [2]. The FTP and HTTP
packages had to be modified in order to measure the
response time and throughput and to provide distinct

time-out mechanisms for the connect and for the da
transfer phase.

5 AT Controller
The management and control of both the ATs and se
sions are accomplished via a graphical user interfa
(figure 2) which gives the user an overview over the AT
states. The user may start any test scenario and mon
the load tests and their results.

The controller consists of an LED area that represen
the ATs, a command input field, a history list, and a st
tus window.

The LED area displays three states for every AT: scri
status, connect state and a “runs left” counter. The scr
LED denotes whether a script has been loaded, star
or stopped. The connect state indicates one of the f
lowing: if the AT is connecting to a network, if it is
already connected, if it is about to disconnect or if it i
already disconnected.

Controlling the AT means choosing from two options
Direct input using the command input field or selectin
the ATs with the mouse cursor and clicking the com
mand button.

The LED area is sensitive and the user may choose
AT to which a command is sent using the mouse. Add
tionally, he may re-activate commands from the histo
list. The execution of a command is shown in the stat
window. The controller is connected to the ATs and ma
send any command to them via RPC.

Figure 2: AT’s user interface. For description, please see text above

to
d-
-

at
E
.

e

ed
ol
n-

’s

e
et
a
cl
at
g
i-
h-
ng

a
to
f

l

6 Experiences with Tcl/Tk
This paper described a fully scriptable load testing
application for networks. All crucial components are
implemented with Tcl/Tk. The use of Tcl/Tk allowed a
development process that is best characterized with
“development by prototyping”, and thus enabled us to
present a working version to the customer very early in
the project. As the project progressed, we could build
fully working prototypes and test them under “real
world conditions”. This helped us to better understand
the requirements and - even more important - to find and
eliminate errors in the design very early. Last, but not
least, we could implement changes which our customer
requested after the design phase with an effort bearable
for both sides.

Another important aspect of the “development by proto-
typing” was that the testing engineers were able to
improve the design of the access network based on the
test results of prototypes, even in an early development
phase. A good example is the ADSL modem-access
implementation history. Any access method involving
substantial user configuration of their modem or per-
sonal computer can hinder rapid, widespread consumer
adoption of high-speed services such as ADSL. The first
approach, which was provided by a well-known vendor
of network components, was a combination of a DHCP
client and a HTTP-Browser. The user was required to
configure DHCP on his Windows client and open a URL
with his Browser to get a login page. After typing user
name and password the connection to the internet was
established.

As the test engineers began load tests, they detected
instabilities of the access network components. The
implementation was neither stable nor would it allow
more than 28 concurrent logons. These results were
reproducible so ZID could reject this approach and force
its network solution provider to develop an alternative
solution.

The next and up to now final solution for client access
method was point to point over ethernet (PPPoE).
Because PPPoE had been a rather new protocol there
were not clients available at that time, especially not for
the Linux operating system. So, we had to implement a
client on our own and integrate it into the load testing
system. This kind of change was only possible due to
Tcl’s excellent “gluing” capabilities (and the flexible
architecture, of course), allowing ourselves to keep most
of the existing system without any changes for the new
protocol.

During later prototyping phases the system was able
detect problems concerning the stability and the ban
width of the whole access network solution. ZID’s hard
ware vendor and solution provider had to admit th
neither the ATM switching component nor the PPPo
server performed within specification (50Mbit/s vs
150Mbit/s, 56 vs. 90 sessions.)

Another important aspect for our customer was that w
did not modify the Tcl kernel. All of the requirements
have been solved with standard Tcl/Tk. C was only us
in performance critical areas like the PPPoE protoc
handling (i.e. handling Ethernet packets.) Using sta
dards - like Tcl/Tk - without modifications proved to be
an important issue, especially regarding the system
acceptance.

It proved that Tcl/Tk was and is the ideal solution for th
implementation of the AT, since we were able to me
the customer’s requirements effectively and react in
timely manner to design changes during the project. T
offered an easy-to-learn and flexible language th
allowed us to provide a full featured language gainin
more and more enthusiasm at ZID (all of the test eng
neers are non-programmers.) All that was possible wit
out developing a language ourselves by simply usi
what was already there.

Tcl/Tk helped us to develop a commercial product in
short time and - even more important - to release it
our customer right in time. From our customer’s point o
view, Tcl/Tk helps in achieving his mission critica
goals with minimal effort.

References
[1] AT and sm@rtTest

The Automatic User described in this paper is marketed
by interNetwork AG.

More information may be obtained from their web site
underhttp://www.internetwork-ag.de

[2] FTP Library Package

The FTP Library Package ftp_lib provides the client
side of the File Transfer Protocol (FTP). The package
extends Tcl/Tk with commands to support the file trans-
fer protocol like OPEN, CLOSE, LIST, PUT, GET,
REGET etc. It’s used either to add FTP ability to exist-
ing Tcl/Tk applications or to create small FTP scripts
that perform tasks without user interaction. It allows
automatic up/download processes even up to the mirror-
ing of complete FTP sites.

Information on the web:
http://home.t-online.de/home/Steffen.Traeger/tin-
dexe.htm

[3] Tcl-DP

Mike Perham, Brian C. Smith, Tibor Jánosi. “Redesign-
ing Tcl-TP” in Proceedings of the fifth Tcl/Tk Work-
shop. July 1997.

[4] GIPSY

GIPSY is a Tcl/tk-based platform-independent visual-
ization software which is also provided from PRS.

Information on the web:
http://www.prs.de/int/products/gipsy

Address of the Authors:
Patzschke + Rasp Software AG
Bierstadter Straße 7
D-65189 Wiesbaden

Germany

www.prs.de - info@prs.de

http://www.internetwork-ag.de
http://www.prs.de/int/products/gipsy/
http://home.t-online.de/home/Steffen.Traeger/tindexe.htm
http://home.t-online.de/home/Steffen.Traeger/tindexe.htm
http://www.prs.de
mailto:info@prs.de

	Abstract
	1 Introduction
	2 Background: Load Testing
	3 Design & Implementation
	3.1 Requirements
	3.2 Design Decisions
	3.3 Architecture and System Components
	3.4 Distributed Components and Communication
	3.5 System Configuration

	4 Automatic User
	4.1 Session Script
	4.2 Script Engine

	5 AT Controller
	6 Experiences with Tcl/Tk
	References
	Address of the Authors:

