
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

T K G E C K O :  A F R I L L - N E C K E D  L I Z A R D 

Steve Ball

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.



TkGecko: A Frill-Necked Lizard

Steve Ball
Zveno Pty Ltd

Eolas Technologies, Inc
Steve.Ball@zveno.com

Abstract

The Mozilla Open Source project has made a full-
featured, fast Web browser, Netscape's Navigator,
available in source form to the Internet community.
A major component of the project, and an early re-
leased package, is the NewLayout (a.k.a. Gecko)
HTML/XML rendering engine. One feature of this
module is that it is designed to be embeddable in any
application. This characteristic is quite compatible
with Tcl/Tk.
TkGecko is a project to create a Tk extension that
allows the NewLayout rendering engine to be embed-
ded in a Tk application as a Tk widget. Ideally, this
new widget will be as completely configurable as all
other Tk widgets, with all configuration options able
to be queried and changed at run-time. The widget
features methods and configuration options that allow
the functions of the NewLayout rendering engine to
be accessed and changed from a Tcl script.
Currently the TkGecko project is still in its infancy.
This paper aims to define the goals of the project and
expected milestones.

Keywords

Netscape Navigator, Mozilla, NewLayout, NGLay-
out, Gecko, Tcl, Tk, TEA.

1. Introduction

In 1997 Netscape Communications Corporation   [1]  
released the source code for their Netscape Navigator
Web browser to the Internet community, under the
Netscape/Mozilla Public License (NPL or MPL)   [2]  ,
a license that allows free use of the source, redistribu-
tion and modification. Netscape has setup an inde-
pendent organisation to develop the next release of
Netscape Navigator under the Open Source banner
called Mozilla.org   [3]  . Currently, the majority of
developers working on Mozilla are employed by Net-
scape (approximately 120 engineers), but there are
some employed by the other organisations (about 25
engineers).

The first major "product" release from Mozilla.org is
Gecko, the core HTML/XML page rendering engine
for the browser. Gecko is known more formerly as
the NewLayout module. This module is written in
C++ (in fact, all of Mozilla is written in C++, but
there does exist a separate project to reimplement
Mozilla in Java), and is designed to be embeddable
inside other applications, for example as a HTML-
based help viewing system. There are a few examples
of Gecko being embedded in applications, such as an
ActiveX component   [4]   (which entirely replaces the
Internet Explorer control!) and the DocZilla viewer
[5]  .
Eolas Technologies, Inc.   [6]   are sponsoring work to
create a Tk extension which embeds Gecko as a Tk
widget. The working title for this project is
"TkGecko". The extension defines a new Tk widget
class called "newlayout". The availability of this ex-
tension will provide a high-quality viewer of HTML
and XML documents to be used by Tk applications,
with full support for all of the current Web standards,
such as CSS, JavaScript, DOM and XSL. While
most of the major Web standards will be supported, it
is not clear at this stage whether the extension will be
able to handle Java applets or browser plugins. The
former will require a Java Runtime Engine (JRE) to
be included in the extension.
Although TkGecko will allow the creation of a gen-
eral-purpose Web browser, that is not the primary
motivation for this project since at least two general-
purpose Web browsers already exist. Instead, the aim
is to support application developers wishing to incor-
porate a HTML/XML viewer into their products, of-
ten for the purpose of displaying help documents. It
is certainly now the case that Web browsers are now
so ubiquitous that an application developer can as-
sume their availability and simply launch a browser
to display a document. However, many developers
wish to have a tighter integration of the display of
help documents, particularly for context-sensitive
help, with their application. An embedded viewer is
necessary to satisfy this requirement.
This approach to displaying documents has been al-
ready been anticipated by Microsoft, who have made
their Internet Explorer browser available not just as a



stand-alone browser but also as an ActiveX control
[13]  . Hence applications running on a Microsoft
Windows platform can easily embed the Internet Ex-
plorer ActiveX control to realise an embedded
HTML/XML document viewer. Alternatively, there is
an equivalent ActiveX control for Mozilla   [4]  . How-
ever, this is not a cross-platform solution and there-
fore the need to have an easy method of embedding
the Gecko rendering engine.

1.1. Distribution

In the first phase of the project, the basic embedding
of the NewLayout widget as a Tk widget will be
achieved. This phase includes writing all of the neces-
sary configuration files to link the numerous required
libraries into a dynamically loadable shared library,
for the Linux (i386) and Microsoft Windows
95/98/NT/2000 platforms. The new Tk widget class
is called newlayout.
Subsequent phases of the project will implement con-
figuration options and methods for the newlayout
widget, as detailed in the section "Future Directions".
It is also an aim of the project to extend the package
to the MacOS and LinuxPPC platforms and architec-
tures.
Packaging TkGecko for distribution to interested par-
ties presents some problems. The source code alone
for Mozilla is approximately 19MB, but to actually
build the browser requires almost 1GB of disk space.
However, these requirements may be reduced by cus-
tomising the build process to compile only what is
needed for the Gecko engine. Customising the
Mozilla build process has not yet been attempted.
Alternatively, the binaries of the Gecko engine are
only approximately 1.4MB in size so binary distribu-
tions for the platforms specified above are the cur-
rently favoured form for making the extension avail-
able.

1.2 Terminology

There are numerous names and terms surrounding the
Mozilla project and its components. The Gecko
HTML/XML rendering engine is more correctly
known as the NewLayout or NGLayout module. Net-
scape Communications Corp. marketing droids origi-
nally dubbed it "Gecko", but the developers them-
selves don't particularly use that term.

2. Mozilla Architecture

In order to design and implement a Tk extension to
embed Mozilla, it is vitally important to understand

the architecture of the Mozilla browser. While each of
the technologies required to construct a Web browser
are relatively simple, combining them together into a
sophisticated Web browser makes Mozilla a complex
piece of software engineering.
Of particular interest in the Mozilla architecture is the
NGLayout module. The overall goal of the module is
to provide high-quality rendering of HTML and XML
documents, while at the same time achieving high-
performance in page display. Documents themselves
have a complex structure, especially when HTML
frames (subdocuments) and tables are taken into ac-
count. This module has been designed to allow for the
complexities of page display, as well as supporting
the JavaScript page scripting language and dynami-
cally loaded content viewers, for rendering different
content types such as image formats. It is beyond the
scope of this paper to undertake a detailed study of the
module, nor to explain how high performance is
achieved.
Following is a brief overview of the modules which
are of the most importantance to the NewLayout ex-
tension. Figure 1 shows their relationship.

Figure 1: Mozilla Architecture

Underpinning the entire Mozilla architecture is the
XPCOM (Cross-Platform Component Object Mod-
ule) module. XPCOM is the same in concept to Mi-
crosoft's COM, but is much simplified and imple-
mented across all operating system platforms. In fact,
XPCOM aims to be binary-compatible with COM.
One feature of XPCOM is that because it binds com-
ponent interfaces together at runtime it allows parts
of Mozilla to be used separately and to replace an
implementation of a component with another seam-
lessly. This characteristic is very useful for building
and shipping the TkGecko extension.



Another module of interest is XPConnect, which
provides a bridge between XPCOM and JavaScript.
This module allows JavaScript scripts to access and
manipulate XPCOM objects, as well as allowing a
JavaScript program to provide the implementation for
a XPCOM object.
In order to be able to write portable User Interface
code, the Mozilla project is developing the XPToolkit
(Cross-Platform Toolkit) module. This module uses
XUL, the XML User Interface Language, to describe
user interfaces. As the name suggests, a XUL docu-
ment provides the description of the desired widgets
and their layouts as a XML document. XPToolkit
parses the XML document and then assembles and
displays the appropriate native widgets for the inter-
face. The implication of this approach is that building
a user interface becomes the simple task of writing a
document.
At the lower level of windowing and drawing primi-
tives, the Cross-Platform Front-End (XPFE) module
provides a portable interface to the underlying win-
dowing system of the machine platform. On Win-
dows and Macintosh this is obviously the operating
system's native windowing facilities, but on Unix/X
Window the situation is more complicated due to the
plethora of available toolkits. A number of toolkits
are supported, but the primary toolkit used by the
Mozilla browser is GTk+. However, the embedding
interface also supports the direct use of Xlib. An ini-
tial approach to embedding the NewLayout in Tk used
the GTk+ embedding interface, but since Tk also uses
Xlib directly, the TkGecko extension now instructs
Mozilla to use the Xlib toolkit. This is discussed in
more detail below. It was recently announced that the
WebShell interface is to be redesigned, and that the
alternative toolkits may be dropped in favour of con-
centrating on the GTk+ toolkit. USENET newsgroup
discussion of the new design also supports retaining
the Xlib interface. As a result the TkGecko project
will need to reassess its approach to embedding the
NewLayout module once the module redesign is un-
derway.
Networking functions and protocol support are pro-
vided by the netlib module. There is also a new pro-
ject to improve netlib called "Necko". These modules
handle the transfer of document data, and use threads
to deal with latencies. As of Milestone 9 Necko is
now used with Mozilla. Integrating the netlib/Necko
event model with the Tcl Notifier may be an issue for
the TkGecko project, but at this early stage has
proven to be simple and straight-forward.

2.1 NewLayout Module

On top of all of these modules (and some others not
mentioned for the sake of brevity) is the NewLayout
module, the subject of the TkGecko project. The aim
of this module is to provide a small, fast rendering
engine for Web documents.
The most important layer of the NewLayout module
is the WebShell interface. This module also provides
the embedding function of the NewLayout module. A
WebShell is used to display each subdocument
(frame) in a document. WebShells may be nested, and
the initial WebShell is known as the root WebShell.
Since WebShells may contain other WebShells, the
nsIWebShell class is subclassed from the nsIWeb-
ShellContainer class. The nsIWebShellContainer
class provides additional methods that provide notifi-
cation of events in the contained WebShell(s), such as
the start of loading documents, the end of a document
load, and so on.
At times the NewLayout module may need to query
the parent window of the root WebShell for a docu-
ment. This is done using the nsIBrowserWindow
interface. For example, NewLayout may wish to set
the title of the window, or update a progress bar. To
support these functions, TkGecko will also need to
implement an interface to the nsIBrowserWindow
class. This is not yet currently done.
The WebShell interface provides a number of methods
for manipulating the (sub-)document. A few of these
methods include:

LoadURL

Load a document, given a URL

Stop

Terminate loading the document

Back

Load the previous document on the history list

Forward

Load the next document on the history list

GetChildCount

Return the number of WebShells which are
children of the current WebShell

GetParent

Return the parent WebShell of the current
WebShell



AddChild

Add a new WebShell

3. newlayout Tk Widget

The newlayout Tk widget is the main feature of the
TkGecko extension. Using this widget, a Tk applica-
tion developer is able to easily embed a Mozilla
WebShell widget in a Tk user interface.

3.1 TEA Compliance

A major objective of the TkGecko extension is to
make embedding the Mozilla NewLayout module as
easy as possible for Tk application developers. The
first step to achieving this goal is to make the pack-
age TEA (Tcl Extension Architecture) compliant   [7]  .
TEA compliant packages are able to be dynamically
loaded into any version of a Tcl interpreter in a for-
ward-compatible fashion without re-linking. Given
that compiling Mozilla is a non-trivial undertaking
this feature is very useful.
TEA compliance proved to be very easy to do. Modi-
fying the autoconf and automake configuration scripts
from the TEA sample extension provided by Scriptics
was straight-forward. Mozilla also makes heavy use
of autoconf and GNU Make, but in a fashion not en-
tirely compatible with the manner in which TEA
does. For example, Mozilla uses Makefiles in a hier-
archical configuration, whereas TEA uses automake.
Integrating the automated Mozilla configuration and
build system with TEA's proved to be a difficult
problem, which has not yet been completed to a satis-
factory conclusion.

3.2 newlayout Widget Architecture

TkGecko has two modules, the main module, written
in C, is newlayout.c which provides the interface
with the Tcl interpreter and Tk. Since Mozilla is writ-
ten in C++ it is necessary for the TkGecko extension
to include another module to provide the C++ inter-
face. This is the tkmozilla.cpp module. The
TkGecko extension architecture is shown in figure 2.

Figure 2: TkGecko Module Structure

The newlayout.c module takes care of all of the
Tcl/Tk housekeeping. This includes package and stub
initialisation, widget class creation command, widget
command, widget method implementations, configu-
ration option processing, Tk event handlers and so
on. When interaction with the Mozilla NewLayout
module is required, a wrapper function in the
tkmozilla.cpp module is called. The module also
includes a number of "call-in" procedures which the
tkmozilla.cpp may invoke in response to certain
events occurring. These procedures check whether a
callback has been defined for the event and evaluate
the callback if present, otherwise the procedure takes
no action.
The tkmozilla.cpp module provides an interface to
the Mozilla NewLayout module. Each procedure in
this module provides an interface that is callable from
C code, ie. the newlayout.c module. This approach
is used to expose the functionality of the Mozilla
NewLayout module to the Tcl/Tk interpreter. In addi-
tion, this module will "register" procedures to be
called to handle certain events. In some cases these are
registered explicitly as callbacks and in other cases
they become associated with events by subclassing
certain NewLayout classes. In either case the events
are handled by explicitly invoking a call-in procedure
in the newlayout.c module.

3.3 Embedding The WebShell

Embedding a WebShell requires only a few steps to
be taken   [12]  :

1. Register the NGLayout libraries
2. Create an event queue
3. Initialize the network library
4. Create a WebShell

The first three functions are performed by the new-
layout.c module upon loading of the package by



calling tk_mozilla_init, a procedure provided by
the tkmozilla.cpp module. On Unix Necko func-
tions using a select style interface. The file descrip-
tior used by Necko is retrieved and added to the Tcl
Notifier as an event source, with a callback to the
newlayout.c module.
The actual creation of a WebShell widget is performed
each time a newlayout widget is instantiated. Tk wid-
gets may have several instantiations, so the TkGecko
extension must support the creation of multiple
WebShell widgets. The WebShell creation interface
requires the Xlib window identifier, so the actual crea-
tion of the WebShell widget must be delayed until the
newlayout Tk widget is first mapped to the screen.
This has the unfortunate effect of causing a time lag
between the appearance of the widget on screen and in
the initialisation of the WebShell widget. This effect
seems to be further complicated by the threading in-
volved.

4. Using TkGecko

Using TkGecko in a Tk application is now just as
simple as any other Tk widget. Consider the follow-
ing script examples.
package require newlayout

newlayout .mozilla
grid .mozilla

.mozilla configure -url
file:///home/steve/samples/test0.html

Figure 3 shows the user interface generated by this
script. Note carefully the plain scrollbar present on
the right-hand side. This scrollbar is added by the
NewLayout module and currently TkGecko is not able
to disable it or control the scrolling.

Figure 3: Display Of newlayout Widget
package require newlayout

newlayout .mozilla
grid .mozilla

.mozilla configure -url
file:///home/steve/samples/test2.html

Figure 4 shows the user interface generated by this
script. Due to a malfunction in the NewLayout timer
library the animated GIF images do not function cor-
rectly (anyone who has seen the bloodshot eyes in
action would consider this to be an improvement).

Figure 4: Display Of newlayout Widget

4.1 Current Status

At this early stage of the project, loading the exten-
sion and displaying a document is the only feature of
the TkGecko extension that works. Loading new
URLs also works.
The Tk and Mozilla event systems have not been
hooked up to the stage where events can flow freely,
thus hyperlinks do not work, nor does widget redraw
or resize. Instantiating multiple newlayout widgets
crashes the application. These bugs and missing fea-
tures are the highest priority for the project, in order
to achieve basic functionality of the widget.

5. Development Plan

Further work is scheduled for TkGecko, with the aim
of making the extension generally usable and stable
by the end of 1999. The development schedule in-
cludes the following milestones:

· Fix crashing bugs and malfunctioning timer
libraries.

· Add event processing.
· Fix configuration options.



· Add callbacks for WebShell widget events:
BeginLoadURL, EndLoadURL, Progress,
and so on.

· Add methods to query and manipulate docu-
ment content and structure.

· Add an event binding mechanism for docu-
ment content similar to tags in Tk Canvas
and Text widgets.

6. Future Directions

Beyond and apart from the planned development of
this project, there are some further areas of research to
investigate. Some of these are detailed below. The
project will also track developments in Mozilla itself.
As mentioned above, the WebShell interface is to be
redesigned and this should lead to more functionality
of the widget being exposed through external inter-
faces. It should be the case that every aspect of the
widget's function can be monitored and overridden by
the hosting application. In the case of the TkGecko
extension, all of these functions would be controlled
by Tcl scripts via callbacks.
Firstly, as mentioned above, another interesting pro-
ject will be to implement a Tcl version of the
XPConnect module. The goal of this work would be
to allow Tcl to be used within Mozilla in an equiva-
lent way to JavaScript.
Secondly, XUL may have some significant ramifica-
tions for Tk. It should be possible to implement
XUL tools as Tk applications, such as an interface
designer. Another possibly useful tools would be to
dump a Tk interface as a XUL document, and be able
to recreate the interface from the document in Tk.
This would have the advantage to the designer of be-
ing able to interactively prototype the interface using
Tk first.

6. Related Work

Gecko supports the display of XML documents as
well as HTML documents, and so has a number of
parsers and modules to support this function. These
include James Clark's expat XML parser, a Tcl inter-
face to which has already been created   [8]  .
Scripting XML documents within the browser is
achieved using the DOM   [9]  , and Mozilla has an im-
plementation of the DOM in C++ for use by
JavaScript. A possible future project may be to create
a separate Tcl extension to provide an interface to this
DOM implementation. The extension would imple-
ment the TclDOM API   [10]  , and so maintain com-
patibility with existing TclDOM scripts. This would
be an alternative to tDOM   [11]  . The content of a
WebShell widget is itself a DOM object, so such an

interface may be used to manipulate the content of a
widget using a Tcl script.

7. Conclusion

Netscape Communications Corporation have provided
an opportunity to create a new Tk widget by releasing
the source code of Netscape Navigator under an Open
Source license. This Open Source project is com-
monly known as Mozilla.
The TkGecko project has created a Tk extension
which creates a new Tk widget, newlayout, to embed
the core rendering engine of the Mozilla browser,
NGLayout, in a Tk window.
The newlayout widget has minimal functionality at
present, but will eventually expose all of the inter-
faces of the Mozilla NewLayout module to Tk appli-
cation scripts. Further, the project may also make
Mozilla itself scriptable using Tcl/Tk in addition to
JavaScript.

8. References

[1] Netscape Communications Corporation.
http://www.netscape.com/

[2] Netscape Public License, Mozilla Public
License.
http://www.mozilla.org/NPL/

[3] Mozilla.org.
http://www.mozilla.org/

[4] Mozilla ActiveX Component. Adam
Lock.
http://www.iol.ie/~locka/mozilla/mozilla.
htm

[5] DocZilla Viewer. CiTEC.
http://www.doczilla.com/

[6] Eolas Technologies, Inc.
http://www.eolas.com/

[7] Tcl Extension Architecture.
http://www.scriptics.com/products/tcltk/te
a/

[8] XML Support For Tcl. S. Ball.
Proceedings of the Sixth Annual Tcl/Tk
Conference. September 14-18 1998, San
Diego CA USA.
http://www.zveno.com/zm.cgi/in-tclxml/



[9] Document Object Model. L. Wood, et
al.
World Wide Web Consortium
Recommendation.
http://www.w3.org/DOM/

[10] TclDOM. S. Ball.
http://www.zveno.com/zm.cgi/in-
tclxml/in-tcldom/

[11] tDOM - a XML/DOM/XPath
implementation for Tcl. J. Loewer.
http://sdf.lonestar.org/~loewerj/tdom.cg
i

[12] Extending Mozilla Or How To Do The
Impossible. J. Stenback, H. Toivonen.
http://www.doczilla.com/development/e
xtmoz.html

[13] WebBrowser Control. Microsoft Corp.
http://msdn.microsoft.com/workshop/br
owser/webbrowser/wbentry.asp


