
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

R AP I D C O R B A S E R V E R D E V E L O P M E N T
I N T C L : A C A S E S T U D Y

Jason Brazile and Andrej Vckovski

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Rapid CORBA Server Development
in Tcl: A Case Study

JasonBrazileandAndrejVckovski
Netcetera AG�

jason.brazile,andrej.vckovski � @netcetera.ch

Abstract

A large Swissbank neededto collect, combine,pro-
cess,anddistribute financialmarket datafrom various
3rd partydatasourcesto a largenumberof internaland
external clients – the typical integration task at which
scripting languagesexcel. The bank usesan imple-
mentationof CORBA astheir standardenterprise-wide
middleware for distributed applications. We describe
how we designedandbuilt a Tcl/C++ transportframe-
work which allowed us to develop the “kernel” of this
server applicationentirely in Tcl, yet supportCORBA
as the primary interfaceto the server. We further de-
scribehow this framework allows a small development
teamto rapidlyimplementchangesandenhancementsto
theserverandits externalinterface,while automatically
generatingthe correspondingchangesthat are needed
for the CORBA interface. Additionally, we show how
we wereable to automaticallygeneratecodeto create
new tcl commandsthat make useof the same,gener-
ated,Tcl/C++ marshallingroutinesin orderto develop
a CORBA client in Tcl, which is usedto regressiontest
theserver, whenfull end-to-endtestingis needed.

1 Overview

In his keynote addressat the 1999 USENIX Techni-
cal Conference[1], JohnOusterhoutarguedthat typi-
cal programmingprojectsareshifting away from large
stand-aloneapplicationsand moving toward integra-
tion applications,(sometimesalsoreferredto asmega-
programming[2]). The importanceof theseapplica-
tions,heargued,lies not in providing fundamentalnew
featuresasmuchasin the ability to coordinateandex-
tendexisting applications– exactly the tasksat which
scriptinglanguagesexcel. He arguedthat many things
takenfor grantedtoday, suchasstrongtypingandinher-
itance,maynotmakesensein mostfutureapplications.

As we analyzedour customersrequirementsfor for
theirstrategicnew missioncritical serverapplication,we
foundourselvesin agreementwith thisbasicphilosophy.
It becameclearthatourcustomerneededto primarily in-
tegrateinformationcomingin from severalalreadyex-
isting applications– combining,merging, and format-
ting everything into a unified view. This resultwould
need to be exported through certain transportmech-
anisms– initially the most important being CORBA.
However, evenat theearlieststages,otheraccesschan-
nels(e.g.XML) wereplanned.

Upon notingCORBA asa requirement,many software
architectsmight automaticallydismissthe idea of de-
signing the core applicationfunctionality in a script-
ing languagesuchasTcl, even thoughit is not without
precedent[3], [4]. However, we were further encour-
agedto follow ourcore-as-scripting-languageideawhen
we realizedthat our applicationneededto be prepared
for thefollowing:

� Frequentchangesto the interfacesto externalap-
plications

� Rapidintegrationof new datasources(i.e.,new ap-
plications)

� Frequentchangesto the accessrequirementsre-
questedby clients(i.e., IDL changes)

� Rapidimplementationof new featuresrequestedby
marketinganalysts

� Possibleimplementationof different data access
channels(e.g. XML) assomemove out of favor,
andothersmovein

It is worthmentioningthatthisserverapplicationis mis-
sion critical in the sensethat someclient applications
plannedto presentthedataon theInternet(i.e., they are
highly visible) for taskssuchasfinancialplanning,on-
line banking,andasa financialnews source. An even

Local DataRT CacheStock Exchg

Data collection/normalization

XML ...

Tcl Integration "Kernel"

Components described in this paper

CORBA

DBs

QuickenIntranet App Test ClientWeb Quotes

Figure1: SimplifiedServerOverview

greatersenseof urgency wasplaceduponus whenwe
learnedthatsomeof theclientapplicationswereplanned
to goonlinewithin weeksof ourplannedinitial release–
many of theseapplicationswith budgets10 timeslarger
thanours.

However, theserobustnessandflexibility requirements
merely further increasedour resolve to attemptto de-
velop asmuchaspossiblein a scripting languageand
aslittle aspossiblein traditionalCORBA server imple-
mentationlanguages.

Ourgoalthenbecameto designandimplementaflexible
platformthatperformedtheseintegrationtasks– provid-
ing datain acanonicalform andotherwiseactingasme-
diator to a largeandgrowing setof heterogeneousdata
sourceswith differentmannersof accessto thesamein-
terfaces.

2 Architecture

The overall featurethat we weretargettingwasa one-
to-one mappingbetweenthe methodsdefinedby the
CORBA IDL (InterfaceDefinitionLanguage)specifica-
tion andtheTcl proceduresthatwould implementthese
specifications.To illustratethis with an example,con-
sider the following IDL definition for a methodcalled
foo::square() :

interface foo {
int square (

in int a,
out int b
);

}

We would like to definea Tcl procedureto implement
thismethodthatlookslike this:

proc foo::square {a vb} {
upvar $vb b
set b [expr $a * $a]

}

Thegeneralideawould bethata CORBA requestcom-
ing in to theserverwouldgettranslatedto acorrespond-
ing Tcl command.Thena Tcl interpreterwould be in-
voked that first “sourced” the Tcl implementationsof
thesecommands,and then “eval’d” the Tcl command
that wascomposed.It would thentranslatethe Tcl re-
sultsof thatevaluationbackinto CORBA objectswhich
arereturnedto theclient.

With this design,the framework would thenconsistof
a CORBA server with anembeddedTcl interpreterthat
wouldsourcethe“real methods”implementedasproce-
duresin a Tcl script“kernel”.

However, in addition,we wantedto extenda Tcl shell
thatwould serve asa CORBA client which would con-

C++ generated by Tcl scripts based on IDL definition (~10,600 lines of code)
Tcl written "by hand" (~11,800 lines of code)

C++ generated by CORBA IDL compiler (~11,200 lines of code)

New Tclsh
Commands

Test Scripts
in Tcl

CORBA
Client Stub

C++ to Tcl
Conversion

Conversion
Tcl to C++Our Test Client

CORBA
Server Skeleton

CORBA
Server Methods

C++ to Tcl
Conversion

"Real" Server
Methods in Tcl

Tcl to C++
Conversion

Server

Figure2: DataFlow (CORBA Case)

tain Tcl commandsthatalsohada one-to-onemapping
to themethodsdefinedin the IDL. The functionsigna-
turesof thesenew commandswouldlook identicalto the
functionsignaturesin theproceduresin theTcl “kernel”.
This would allow for naturallooking Tcl codeasin the
following example:

% foo::square 4 result
% set result
16

Oneof thebestcharacteristicsof thisarchitectureis that
testscriptscouldbewritten in Tcl thatcouldberun ei-
ther on the CORBA Tcl client or in a “shortcut” path
which completelybypassesany middlewareinfrastruc-
tureby makingdirectaccessto theTcl “kernel” proce-
dures.This featureallowedmuchof theserver function-
ality to beableto bedevelopedon a stand-aloneUNIX
laptopwhichdid nothavea CORBA developmentenvi-
ronment.

To summarize,this designapproachwould give us the
following benefits:

� Theability to begin developmentof thecoremeth-
odsin Tcl completelyindependentof, andin paral-
lel to, thedevelopmentof CORBA support.

� Theability to write testscriptsin Tcl

� The ability to develop all the core programming
logic in a rapid turnaroundscripting language,
ratherthana lower level, strictly typed,compiled
language.

� If differenttransportpathsarerequired,only a new
transportlayer would needto be written and the
same“kernel”couldbeusedto give identicalfunc-
tionality with maximalcodereuse.

After implementinga small prototypeto test the fea-
sibility of this approach,it becameclear that a large
amountof theCORBA transportlayercodewasregular
enoughthat it couldbeautomaticallygenerated– again
by scriptswritten in Tcl.

Thefull datapathandamountof automaticcodegener-
ationweendedupwith is shown in Figure1.

At the endof the designphase,we concludedthat the
key aspectsof this architecturerequiredthe following
componentsto bewritten:

� CORBA Languagemappingsfor Tcl

� Methods/Operationsimplementedin Tcl

� Automatic generationof the marshalling code
basedon IDL definitions

� Automaticgenerationof client sidetcl commands
basedon IDL definitions

3 Language mappings

One of the key issuesto resolve was how to map
CORBA objectsto typelessTcl strings. In the worst
case,this couldbedoneby definingevery C++ valueto

bea Tcl list containingtwo elements– thevalueandits
type. Then,a lookuptablecouldbeconstructedto store
thetypesandwhateverneededsemanticsmightbeasso-
ciatedwith it in orderto manipulateor accessobjectsof
thattype.

Fortunately, however, a muchsimplerstrategy waspos-
sible in this case.We endedup usinga mappingsimi-
lar to that usedby Pilhofer in Tclmico [3]. We started
by looking at all of thepossibleCORBA typesthatare
madeavailable– thebasicdatatypeslike boolean,inte-
ger, andfloats,aswell asthecompounddatatypessuch
as structures,arrays,unions,and sequences.We also
wantedto beableto mapTcl exceptionsto CORBA ex-
ceptions.

It is fairly straightforward to map the commontypes
suchasa structure.For example,anobjectof typeRe-
questContext whichcanbedefinedlike this:

typedef sequence <string> Profile;
struct rc {

int sessionId,
string application,
string lang,
Profile profile,
string user,

};
typedef rc RequestContext;

could becomea Tcl list with the following representa-
tion:

set my_rc {-1 web-quotes ENGLISH \
{SWISS_REALTIME US_DELAYED} guest}

Going from this Tcl list representationbackto its cor-
respondingC++ object representationrequiresthat we
know theCORBA typesof eachcomponent.However,
this is positionallyimplicit basedon the context of the
procedurecallsthatusevariablesof thesetypesandthe
definitionsof the proceduresthemselves as definedin
theIDL. In otherwords,whenwe know thatsomething
is thefirst argumentto methodgetMarketData and
accordingto our codificationof the IDL, the first ar-
gumentto methodgetMarketData is of type Re-
questContext , thenwe justpassthis list to a routine
that convertsa list (which in this case,itself containsa
list) to a C++ objectof typeRequestContext . This
canbedonestatically, becausewealwaysknow atcom-
pile time which proceduresare being called and what
typestheirargumentsarebecauseof theirposition.That

is, exceptin thecaseof translating“exceptions”,which
is describedbelow.

To takeaquickglanceatsomeof theothertypes,avari-
ablewhosetype is a union canbe mappedto a two-
elementlist wherethe first elementis the discrimina-
tor andthesecondis thecorrespondingvalue.These-
quence andenum typesaresimplymappedto a list.

Perhapsthe trickiest mappingto comeup with was a
mappingfor exceptions. A Tcl exception(as thrown
by theerror command)allows only onestring/list as
anargument.However, for our purposes,we neededto
know both what exceptionoccurred(i.e., an exception
type) andan additionalexception-specificobject. The
problemof courseis that this secondobject’s “shape”
canbedifferentdependingon whattypeof exceptionis
to bethrown.

Oneinterestingpoint to bemadeis thatby having agen-
eralmappingmechanismfor Tcl exceptions,our appli-
cationcancatchnotonly applicationspecificexceptions
thatwethrow ourselves,but alsothestandardTcl excep-
tionsthatmayoccurdueto attemptedundefinedvariable
access,for example.

We imposeda conventionuponour own codewhereby
our applicationspecificexceptionobjectswould have a
certainwell-definedstructure,sothatwecouldthendif-
ferentiatethemfrom Tcl exceptionswhich get mapped
to an “Internal Error” exceptionwith a Tcl backtrace,
ratherthanmerelycrashingtheapplication.

This turnedout to be theonecasewherewe neededto
determinetype informationdynamicallyin orderto be
ableto do theCORBA languagemappings.Thecodeis
structuredasfollows:

if (Tcl_EvalObj() == TCL_ERROR) {
if (/* has special shape */) {

type = Tcl_GetStringFromObj();
ex_type = type_to_enum(type);
switch (ex_type) {
case exceptionA:

// now we know the type
Convert::from_tcl(...);
THROW(exceptionA, ...);

case exceptionB:
// now we know the type
Convert::from_tcl(...);
THROW(exceptionB, ...);

}
} else {

// Tcl Exception
THROW(internal, ...);

One-to-One mapping

to Tcl procedures
from IDL definitions

exceptionA,
exceptionB

);

out TypeZ z;
) raises (

inout TypeY y;

interface FOO {

IDL Definition

// Similar to code above...

// Convert with Tcl_NewListObj() etc.

}

Tcl <-> C++ data structure conversion/marshalling routines

Convert::from_tcl(...,TypeX, Tcl_Obj) {
// Convert with Tcl_ListObjGetElements(...);

}
Convert::to_tcl(...,Tcl_Obj, TypeX){...};

}
Convert::exception_from/to_tcl(...) {

void getFoo (
in TypeX x;

proc FOO::getFoo {x vy vz} {
upvar $vy y
upvar $vz z

Tcl Implementation of Methods

#
the ‘real’ code, written in Tcl...
#

gen
era

ted

generated

generated

/*
 * 1. Convert from Tcl to C++ objects

 * 3. Convert results to Tcl objects

 */

Client (New Tclsh Commands)

Tcl_CreateObjCommand (...,"getFoo",getFooCommand,...);
int getFooCommand (...) {

 * 2. Invoke CORBA method with C++ objects

}

 Tcl_EvalObj("the ‘real’ methods implemented in Tcl");

// 1. Convert C++ to Tcl objects
// 2. Create Tcl command string using above Tcl Objects
// 3. Tcl_EvalObj("the tcl command string");

Server (CORBA Server Methods)

FOO::getFoo (...) {

}

if (first_call) {
 Tcl_Create_Interp(...);

// 4. Convert results to C++ objects to return to client
}

if {"need to raise exception B"} {
error [list exceptionB ...]

}
}

if {"need to raise exception A"} {
error [list exceptionA ...]

}

 * 4. return using Tcl_SetObjVar2() etc.

Figure3: AutomaticGenerationof CORBA “Transport”Routines

}
}

Raisinganexceptionfromwithin ourTcl codelookslike
this:

if {$some_exceptional_condition} {
error {badParam \

{431 "FOO parameter expected"}}
}

4 Code Generation

Oneof themostimportantfeaturesof theframework is
thata largeportionof the low-level (e.g. non-Tcl)code
canbeautomaticallygenerated,(Figure2). This is good
not only for quick responseto changesin requirements,
but alsoin our level of confidencein theserver’s robust-
ness.Oncewe developeda logical, regular patternfor
use in codegeneration,and we measureand test that
codefor relativecorrectnessandmemoryleaksetc.,then

we have a high degreeof trust in codethat is generated
from thesamepatternsin futureenhancements.And as
a practicalmatter, we feel confidentthat if the gener-
atedcodechecksreturnvaluesandcorrectlyhandleser-
ror conditionsin onecase,it will alsocorrectlyhandle
themin all similarcases.

To recap,ourdesignrevealedthatthefollowing compo-
nentscouldbegeneratedautomatically:

� Marshallingcodefrom/toTcl

� Implementationof new Tcl commandsfor aTcl in-
terpreterusedasaCORBA client

� CORBA serverskeletonswhich translatea method
to a Tcl command,“eval” the Tcl “kernel”, and
translatetheresultback.

We usedour hand-writtenprototypeimplementationas
a modelfor the generatedC/C++ code. Thereis noth-
ing particularlynoteworthy abouttheTcl scriptswhich
generatedthe C/C++ code. It was mostly a matterof
templatetextualsubstitution.

It shouldbepointedout thatthecodegenerationscripts
arenotnecessarilygeneralpurpose.Codewasonly writ-
ten to generatethetypesandcasesthatappearedin our
server IDL definition. As new methodsanddatatypes
were addedto the IDL definition, additional lines of
code generationcode occasionallyhad to be written.
On the otherhand,noneof theseadditionsso far have
causedany fundamentalchangein thegeneralcodegen-
erationtechniquethatis used.

It shouldfurtherbepointedout thatthecodeis notgen-
erateddirectly from the IDL definition files, but rather
from a “pre-parsed”intermediaterepresentationof the
information that is representedin the IDL definition
files.

TheIONA Orbix CORBA productprovidesa codegen-
erationtoolkit [5] which exposesa pre-parsedrepresen-
tationof IDL files throughTcl datastructuresandacces-
sorproceduresby way of a built-in Tcl interpreter. This
wouldbeanefficaciousapproachfor ourapplication,but
at thetimeof implementation,wewerelimited to a pro-
prietaryCORBA environmentwhich thereforerequired
ourown adhocsolution.

Our simplistic intermediatefile representationwas de-
signedso that it canbe usedin a Tcl codegeneration
script by merely“eval’ing” it. We wantedto defer the
difficult problemof parsingthe IDL files themselvesin
the hopesthat an automaticsolution,suchas that pro-
videdby Orbix, would eventuallybecomeavailable. In
themeantime,makingthesechangesto our intermediate
file “by hand”,whenever the IDL file haschanged,has
not requireda significanteffort.

4.1 Marshalling

Themarshallingcodewasbuilt aroundtheideaof hav-
ing two essentialpolymorphic conversion methods–
Convert::from tcl() whichwould take a Tcl ob-
ject representinga list structureasinput andproducea
CORBA object (which may be composedof CORBA
sub-objects)as output – and Convert::to tcl()
which would go the oppositedirection. The typesof
theargumentsto theseroutineswould determinewhich
instanceof theconversionroutinewouldbecalled.

It was also decidedthat theseroutineswould recur-
sively call themselves to processeachsubcomponent
that might needto be converted,thuseliminatingcode
duplication.

A representativepairof automaticallygeneratedconver-
sionmethodsis shown for our RequestContext ob-
ject in Figure3. Notice that the fourth memberof the
structureis a non-primitive objectwhich leadsto a re-
cursivecall to Convert::from tcl .

4.2 Server

On the server side, the IDL compilergeneratesserver
skeletons(i.e. procedurestubs)for the methodsthat
are definedin the IDL. However, our Tcl script sub-
sumesthis behavior by generatingits own completed
serverskeletonswhichmerelyrely on therebeingacor-
respondinglynamedTcl procedurein the Tcl “kernel”
thatit can“eval”.

An exampleof generatedserver codeis shown in Fig-
ure4.

It might be worth mentioningthat the Tcl “kernel” is
packagedasa monolithicstaticstringin a sharedobject
so that it appearsasa standardlooking sharedlibrary.
This is advantageousnot only for simpler codedistri-
bution, but hasa highermanagementacceptancefactor
thanscriptsastext files.

4.3 Client

Ontheclientside,muchof thecodeis analogousto what
is requiredfor theserver. Theargumentsneedto becon-
verted,the relevant methodin the new implementation
languageneedsto be called, then the output from the
resultneedsto betranslatedback.

An exampleof generatedclient codeis shown in Fig-
ure5.

5 Testing

By far, thegreatestadvantagein testingwastheability
to write testsin Tcl andto merelysourceour “kernel”
implementationsof the methodsbeingtested.A quick
changecouldbemadeandthemethodin questioncould
bere-“sourced”with rapidturnaround.

Also, with this method, the important code could be
writtenwithout theneedfor a CORBA developmentin-

int Convert::to_tcl(Tcl_Interp *interp,
 Tcl_Obj **tcl_obj,
 RequestContext *requestContext)

 Convert::to_tcl(interp, &tcl_profile, &(requestContext->profile));

}

{
 *tcl_obj = Tcl_NewListObj(0, NULL);
 Tcl_ListObjAppendElement(Tcl_NewLongObj(requestContext->sessionId,...));
 Tcl_ListObjAppendElement(Tcl_NewStringObj(requestContext->application,...));

int Convert::from_tcl(Tcl_Interp *interp,
 RequestContext *&requestContext,
 Tcl_Obj *tcl_obj)

 requestContext->lang = Tcl_GetStringFromObj(..., obj[2], ...);
 Convert::from_tcl(interp, &(requestContext->profile), obj[3]);
 requestContext->user = Tcl_GetStringFromObj(..., obj[4],...);
}

{
 Tcl_ListObjGetElements(interp, tcl_obj, &obj);
 /* verify that there are 5 arguments */
 Tcl_GetLongFromObj(..., obj[0], &(requestContext->sessionId));
 requestContext->application = Tcl_GetStringFromObj(..., obj[1], ...);

 Tcl_ListObjAppendElement(Tcl_NewStringObj(requestContext->lang,...));

 Tcl_ListObjAppendElement(Tcl_NewStringObj(requestContext->user,...));

Figure4: SimplifiedDataMarshallingcode(CORBA Case)

void MDS::getMarketData (
 /* in */ const RequestContext &requestContext,
 /* in */ const DataSelector &dataSelector,

 /* out */ const MarketData &results,
)
{
 interp = Tcl_CreateInterp();

 /* in */ const ReturnFields &returnFields,

 Tcl_EvalObj(/* the "kernel" */);
 Convert::to_tcl(interp, &tcl_request_context_obj, &requestContext);
 Convert::to_tcl(interp, &tcl_data_selector_obj, &dataSelector);
 Convert::to_tcl(interp, &tcl_return_fields_obj, &returnFields);

 tcl_market_data_results_obj =
 TclObjGetVar2(interp, /* "results" */, ...);
 Convert::from_tcl(interp, &results, &tcl_marketdata_results);
}

 tcl_command_obj = Tcl_NewListObj(0, NULL);

 Tcl_EvalObj(interp, tcl_command_obj);

 Tcl_ListObjAppendElement(interp, tcl_command_obj, tcl_request_context_obj);

 Tcl_ListObjAppendElement(interp, tcl_command_obj, tcl_return_fields_obj);
 Tcl_ListObjAppendElement(interp, tcl_command_obj, tcl_data_selector_obj);

 Tcl_ListObjAppendElement(interp, tcl_command_obj, /* "getMarketData" */);

Figure5: SimplifiedGeneratedServercode(CORBA Case)

void getMarketDataObjCmd(Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[])
{
 orb_init(&corba_obj);
 Convert::from_tcl(interp, &objv[0], &requestContext);
 Convert::from_tcl(interp, &objv[1], &dataSelector);
 Convert::from_tcl(interp, &objv[2], &returnFields);
 TRY (
 corba_obj->getMarketData(requestContext, dataSelector,
 returnFields, marketDataResults);
)
 CATCH (InternalError) { /* Handle Exception */ }
 CATCH (badRequestContext) {/* Handle Exception */ }
 Convert::to_tcl(interp, &tcl_marketdata_results, MarketdataResults);
 Tcl_ObjSetVar2(interp, /* "marketDataResults" */, tcl_marketdata_results);
}

Figure6: SimplifiedGeneratedClientcode(CORBA Case)

frastructureor eventheneedto runseparateserver/client
processes.

OncewehadaCORBA Tcl client,wewereableto reuse
thesametestingscriptswewroteduringdevelopmentto
do end-to-endtestingacrosstheCORBA channel.This
evenallowedotherdevelopmentgroupswho werewrit-
ing CORBA-basedclient applicationsto our server, to
useour CORBA Tcl client in orderto do quick explo-
rationandcross-checkingof theinterfacewheneverthey
raninto difficulties.

An exampletestscriptlookslike this:

% set requestContext {$sessionID \
$applicationID ENGLISH \
{DELAYED} $userId}

% set dataSelector {BYCONSTRAINTS\
{{} {"US Dollars"} \
{"Swiss Exchange"}}}

% set returnFields {BYFIELDNAME \
{ID CURRENT_PRICEHIGH_PRICE}}

% getMarketData $requestContext \
$dataSelector $returnFields \
results

% puts $results
{ID 324598234 CURRENT_PRICE45.5
HI_PRICE 48.25} {ID 43098234 ...}

6 Conclusion

In summary, with our CORBA-as-transportdesign,we
wereableto achieve:

� Rapiddevelopment

� Robustness

� Easeof testing

� Rapidimplementationof interfacechanges

� Developmentoutsideof hugesupportenvironment

� Reuseof useful tools in the OSF arenato inte-
grateotherapplicationsandleverageall of thiseven
within a rigidly specifiedmiddlewareframework.

At leastup to a certainpoint, performancewasnever a
high-priority requirement.However, it turnedout not to
bea problemeither. Whenperformanceproblemswere
encountered,the largestgainswereachievedby adding
cachingat theTcl “kernel” level to compensatefor slow
dataaccessesto externalapplications.

Themostunexpectedbenefitwastheeasein providing
anXML accessmethodto ourTcl “kernel”whichobvi-
ouslygivesidenticalsemantics,results,andperformance
characteristics.We wereableto usemany of the same
codegenerationtechniquesto write automaticXML to
Tcl marshalling/unmarshallingcode,whichreliesonex-
actly thesamepre-parsedintermediaterepresentationof
theIDL thattheCORBA transportlayersuses.

Wemustadmitthattherewasinitial skepticismin theap-
proachwetook,especiallyatthebeginningof theproject
whensomucheffort seemedto beneededin just build-
ing framework andcodegenerationtools which didn’t
leaddirectly to our tightly scheduledgoal.

However, in the end we not only achieved our goal
but wereeasilyable to adaptto even morechangere-

queststhan anticipated,given the high level of flexi-
bility our systemafforded. The IDL specificationhas
gonethrough12revisionssincetheapplicationwasfirst
launchedin December1998.

7 References

1. Ousterhout,John, Integration Applications: The
Next Frontier in Programming, KeynoteAddress,
1999 USENIX TechnicalConference,Monterey,
California,1999.

2. Wiederhold,Gio, PeterWegner, andStefanoCeri,
Towards Megaprogramming, Communicationsof
theACM, Vol.,35No.11,November1992.

3. Miller, MichaelandKareti,Srikumar, UsingTcl to
ScriptCORBAInteractionsin aDistributedSystem,
The Sixth Annual Tcl/Tk Conference,SanDiego,
California,1998.

4. Pilhofer, Frank, Tclmico – A Tcl interface
to the Mico ORB <http://www.vsb.
informatik.uni- frankfurt.de/
˜mico>

5. Orbix Code Generation Toolkit Programmer’s
Guide, IONA TechnologiesPLC, Dublin, Ireland,
February1999.

