
A. Haeberlen 

Differential Privacy Under Fire 

1 
USENIX Security (August 12, 2011) 

Andreas Haeberlen    Benjamin C. Pierce     Arjun Narayan 

University of Pennsylvania 



A. Haeberlen 

Motivation: Protecting privacy 

  Lots of potentially useful data exists 
  But: Releasing it can violate privacy! 

  We can try to anonymize/scrub it… 
  … but this can go horribly wrong (see Netflix, AOL, …) 

2 
USENIX Security (August 12, 2011) 

Alice    (Star Wars, 5)  (Alien, 4)     
Bob  (Godfather, 1)  (Porn, 5)   
Cindy  (Die Hard, 4)  (Toy Story, 2) 
Dave  (Avatar, 5)  (Gandhi, 4)   
Eva  (Amélie, 4)  (Rocky, 1) 
... 

Better recom- 
mendations? 

Does Bob 
watch porn? 

Data 

#1 
#2 
#3 
#4 
#5 

I know Bob 
hates 'Godfather' 



A. Haeberlen 

Promising approach: Differential privacy 

  Idea: Use differential privacy [Dwork et al.] 
  Only allow queries 
  [lots of mathematical details omitted] 
  Result: Strong, provable privacy guarantees 
  Implemented, e.g., by PINQ [McSherry] and Airavat [Roy et al.] 

3 
USENIX Security (August 12, 2011) 

Alice    (Star Wars, 5)  (Alien, 4)    
Bob  (Godfather, 1)  (Porn, 5) 
Cindy  (Die Hard, 4)  (Toy Story, 2) 
Dave  (Avatar, 5)  (Gandhi, 4) 
Eva  (Amélie, 4)  (Rocky, 1) 
... 

Private data 

N(Star Wars>3, Alien>3)? 

826,392 ±100 

N("Bob", Porn>3)? 
18 ±700 

Noise 

; add a certain amount of noise to results 

?!? 



A. Haeberlen 

Differential Privacy under Fire 

  What if the adversary uses a covert channel? 
  Devastating effect on privacy guarantees 
  Usual defenses are not strong enough (can't leak even one bit!) 

  We show: 
  Working attacks 
  An effective (domain-specific) defense 

4 
USENIX Security (August 12, 2011) 

Alice    (Star Wars, 5)  (Alien, 4)    
Bob  (Godfather, 1)  (Porn, 5) 
Cindy  (Die Hard, 4)  (Toy Story, 2) 
Dave  (Avatar, 5)  (Gandhi, 4) 
Eva  (Amélie, 4)  (Rocky, 1) 
... 

Private data 

(special query) 

(noised response) 

YES 

Does Bob 
watch porn? 



A. Haeberlen 

Outline 

  Motivation 
  Differential Privacy primer 
  Attacks on PINQ and Airavat 
  Our defense 
  The Fuzz system 
  Evaluation 

5 
USENIX Security (August 12, 2011) 

NEXT 



A. Haeberlen 

? 

Background: Queries 

  Queries are programs 
  PINQ is based on C#, Airavat on MapReduce 

  These programs have a specific structure 
  Some overall program logic, e.g., aggregation 
  Some computation on each database row (microquery) 

6 
USENIX Security (August 12, 2011) 

noisy sum, foreach r in db, of { 

} 

Data 

  if (r.score("Godfather")>4) 
    then return 1 
    else return 0 

Microquery 



A. Haeberlen 

Background: Sensitivity 

  How much noise should we add to results? 
  Depends on how much the output can change if we add or 

remove a single row (the sensitivity of the query) 

7 
USENIX Security (August 12, 2011) 

noisy sum, ∀r in db, of { 
  if (r.score("Godfather")>4) 
    then return 1200 
    else return 200 
} 

noisy sum, ∀r in db, of { 
  if (r.score("Godfather")>4) 
    then return 1 
    else return 0 
} 

Sensitivity 1 Sensitivity 1,000 



A. Haeberlen 

Background: Privacy budget 

  How many queries should we answer? 
  Set up a privacy 'budget' for answering queries 
  Deduct a 'cost' for each query, depending on 'how private' it is 

8 
USENIX Security (August 12, 2011) 

Data 

Privacy 
budget 

noisy sum, ∀r in db, of { 
  if (r.score("Godfather")>4) 
    then return 1 
    else return 0 
} 

Query 

Answer 



A. Haeberlen 

Covert-channel attacks 

  The above query... 
  ... is differentially private (sensitivity zero) 
  ... takes 1 second longer if the database contains Bob's data 
  Result: Adversary can learn private information with certainty! 

  Other channels we have exploited: 
  Privacy budget 
  Global state 

9 
USENIX Security (August 12, 2011) 

noisy sum, foreach r in db, of { 
  if (r.name=="Bob" && r.hasRating("Porn")) 
    then {  
      loop(1 second); 
    }; 
  return 0 
} 

expensive_subquery(); b=1;                  

b 



A. Haeberlen 

Our attacks work in practice 

  Both PINQ and Airavat are vulnerable 

  What went wrong? 
  The authors were aware of this attack vector 
  Both papers discuss some ideas for possible defenses 
  But: Neither system has a defense that is fully effective 

10 
USENIX Security (August 12, 2011) 



A. Haeberlen 

Threat model 

  Too many channels!! Is it hopeless? 
  Reasonable assumption: Querier is remote 
  This leaves just three channels: 

  The actual answer to the query 
  The time until the answer arrives 
  The decision whether the remaining budget is sufficient 

11 
USENIX Security (August 12, 2011) 

Memory 
consumption 

Electromagnetic 
radiation 

Power 

Cache 
usage 

Sound 

Light 

Query completion 
time 

Privacy 
budget 

Answer 
Query 

Short-range channels 



A. Haeberlen 

Our approach 

  We can close the remaining channels completely 
through a combination of systems and PL techniques 

  Language design rules out state attacks etc. 
  Example: Simply don't allow global variables! 

  Program analysis closes the budget channel 
  Idea: Statically determine the 'cost' of a query before running it 
  Uses a novel type system [Reed and Pierce] 

  Special runtime to close the timing channel 

12 
USENIX Security (August 12, 2011) 

Details 
in the 
paper 

NEXT 



A. Haeberlen 

Plugging the timing channel 

  How to avoid leaking information via query 
completion time? 
  Could treat time as an additional output 
  But: Unclear how to determine sensitivity 

  Our approach: Make timing predictable 
  If time does not depend on the contents of the database,  

it cannot leak information 

13 
USENIX Security (August 12, 2011) 



A. Haeberlen 

Timeouts and default values 

  Querier specifies for each microquery: 
  a timeout T, and 
  a default value d 

  Each time the microquery processes a row: 
  If completed in less than T, wait 
  If not yet complete at T, abort and proceed to next row 

14 
USENIX Security (August 12, 2011) 



A. Haeberlen 

Example: Timeouts and default values 

15 
USENIX Security (August 12, 2011) 

noisy sum, ∀r∈db, of { 
  if r.name=="Bob" 
    then loop(1 sec); 
  return 0 
} 

Alice    (Star Wars, 5)  (Alien, 4)     
Bob  (Godfather, 1)  (Porn, 5)   
Cindy  (Die Hard, 4)  (Toy Story, 2) 
Dave  (Avatar, 5)  (Gandhi, 4)   
Eva  (Amélie, 4)  (Rocky, 1) 

0
Time 0 

, T=20µs, d=1 

0 0 0
Bob not in db: 

Bob in db: 

Rob 

0 0 0 0

Observable 

0

Time 

Bob not in db: 

Bob in db: 0 0 0 0

0 0 0 0 0

sum=0 

sum=0 

sum=0 

sum=1 1 

20µs 



A. Haeberlen 

Default values do not violate privacy 

  Don't default values change the query's answer? 
  Yes, but that's okay: 

  Remember that the answer is still noised before it is returned 
  Noise depends on the sensitivity, which is now 1 
  It's just as if we had written "If r.name=='Bob', return 1" 

  Impact on non-adversarial queriers? 
  Default value is never included if timeout is sufficiently high 

16 
USENIX Security (August 12, 2011) 

noisy sum, ∀r∈db, of { 
  if r.name=="Bob" 
    then loop(1 sec); 
  return 0 
} , T=20µs, d=1 

Bob not in db: 

Bob in db: 0 0 0 0

0 0 0 0 0

1 



A. Haeberlen 

Outline 

  Motivation 
  Differential Privacy primer 
  Attacks on PINQ and Airavat 
  Our defense 
  The Fuzz system 
  Evaluation 

17 
USENIX Security (August 12, 2011) 

NEXT 



A. Haeberlen 

The Fuzz system 

  Fuzz: A programming language for writing 
differentially private queries 
  Designed from scratch → Easier to secure 
  Functionality roughly comparable to PINQ/Airavat 
  Novel type system for statically checking sensitivity 

  Runtime supports timeouts + default values 
  Turns out to be highly nontrivial 
  Problem: How to make a potentially adversarial computation 

take exactly a given amount of time? 
  Uses a new primitive called predictable transactions 

18 
USENIX Security (August 12, 2011) 



A. Haeberlen 

Predictable transactions 

  Isolation: Microquery must not interfere with 
the rest of the computation in any way 
  Examples: Trigger garbage collector, change runtime state, ... 

  Preemptability: Must be able to abort 
microqueries at any time 
  Even in the middle of memory allocation, ... 

  Bounded deallocation: Must be able to free any 
allocated resources within bounded time 
  Example: Microquery allocates lots of memory, acquires locks... 

  Details are in the paper 

19 
USENIX Security (August 12, 2011) 



A. Haeberlen 

Outline 

  Motivation 
  Differential Privacy primer 
  Attacks on Differential Privacy 
  Defenses 
  The Fuzz system 
  Evaluation 

  Is Fuzz expressive enough to handle realistic queries? 
  Is Fuzz fast enough to be practical? 
  Does Fuzz effectively prevent side-channel attacks? 
  More experiments are described in the paper 

20 
USENIX Security (August 12, 2011) 

NEXT 



A. Haeberlen 

Experimental setup 

  Implemented three queries from prior work: 
  K-means clustering (inspired by Blum et al., PODS'05) 
  Census query (inspired by Chawla et al., TCC'05) 
  Web server log analysis (inspired by Dwork et al., TCC'06) 
  Fuzz is expressive enough to run all three queries 

  Also crafted several adversarial queries 
  Using different variants of our attacks  

  Evaluated on a commodity system 
  3GHz Core 2 Duo running Linux 2.6.38 
  Synthetic database with 10,000 rows 

21 
USENIX Security (August 12, 2011) 



A. Haeberlen 

Performance: Non-adversarial queries 

  Query completion time increased by 2.5x-6.8x 
  But: Most expensive query took 'only' 12.7s 

  Most of the increase was due to time padding 
  Timeouts were set conservatively 
  More detailed results are in the paper 

22 
USENIX Security (August 12, 2011) 

Original runtime 

Fuzz (no padding) 

Fuzz 

Q
ue

ry
 c

om
pl

et
io

n 
tim

e 
(s

) 

kmeans census weblog 

14 

12 

10 

8 

6 

4 

2 

0 

6.8x 

3.4x 
2.5x 

Due to 
padding 



A. Haeberlen 

# Attack type 
 Protection disabled 
    Hit      Miss      Δ	



         Protected 
    Hit      Miss       Δ 

1 Memory allocation 

2 Garbage collection 

3 Artificial delay 

4 Early termination 

5 Artificial delay 

Performance: Adversarial queries 

  Evaluated five adversarial queries 
  Unprotected runtime: Attacks cause large timing variation 
  Protected runtime: Completion times are extremely stable 

  Timing channel now too narrow to be useful! 
  Remember: State and budget channels closed by design 

23 
USENIX Security (August 12, 2011) 

0.32s 

0.32s 

0.32s 

26.38s 

0.90s 

1.96s 

1.57s 

1.62s 

26.37s 

2.17s 

1.6s 

1.2s 

1.3s 

6ms 

1.3s 

1.10s 

1.10s 

1.10s 

1.10s 

2.40s 

1.10s 

1.10s 

1.10s 

1.10s 

2.40s 

<1µs 

<1µs 

<1µs 

<1µs 

<1µs 



A. Haeberlen 

Summary 

  Differentially private query processors must 
be protected against covert-channel attacks 
  Leaking even a single bit can destroy the privacy guarantees 

  Vulnerabilities exist in PINQ and Airavat 

  Proposed defense: Fuzz 
  Uses static analysis and predictable transactions 
  Specific to differential privacy, but very strong: Closes all 

remotely measurable channels completely 

24 
USENIX Security (August 12, 2011) 

More information at: http://privacy.cis.upenn.edu/ 


