
USENIX Association 18th USENIX Security Symposium 351

Effective and Efficient Malware Detection at the End Host

Clemens Kolbitsch∗, Paolo Milani Comparetti∗, Christopher Kruegel‡, Engin Kirda§,

Xiaoyong Zhou†, and XiaoFeng Wang†

∗Secure Systems Lab, TU Vienna

{ck,pmilani}@seclab.tuwien.ac.at

‡UC Santa Barbara

chris@cs.ucsb.edu

§ Institute Eurecom, Sophia Antipolis

kirda@eurecom.fr

† Indiana University at Bloomington

{zhou,xw7}@indiana.edu

Abstract

Malware is one of the most serious security threats on

the Internet today. In fact, most Internet problems such

as spam e-mails and denial of service attacks have mal-

ware as their underlying cause. That is, computers that

are compromised with malware are often networked to-

gether to form botnets, and many attacks are launched

using these malicious, attacker-controlled networks.

With the increasing significance of malware in Inter-

net attacks, much research has concentrated on develop-

ing techniques to collect, study, and mitigate malicious

code. Without doubt, it is important to collect and study

malware found on the Internet. However, it is even more

important to develop mitigation and detection techniques

based on the insights gained from the analysis work.

Unfortunately, current host-based detection approaches

(i.e., anti-virus software) suffer from ineffective detec-

tion models. These models concentrate on the features

of a specific malware instance, and are often easily evad-

able by obfuscation or polymorphism. Also, detectors

that check for the presence of a sequence of system calls

exhibited by a malware instance are often evadable by

system call reordering. In order to address the shortcom-

ings of ineffective models, several dynamic detection ap-

proaches have been proposed that aim to identify the be-

havior exhibited by a malware family. Although promis-

ing, these approaches are unfortunately too slow to be

used as real-time detectors on the end host, and they of-

ten require cumbersome virtual machine technology.

In this paper, we propose a novel malware detection

approach that is both effective and efficient, and thus, can

be used to replace or complement traditional anti-virus

software at the end host. Our approach first analyzes a

malware program in a controlled environment to build a

model that characterizes its behavior. Such models de-

scribe the information flows between the system calls es-

sential to the malware’s mission, and therefore, cannot

be easily evaded by simple obfuscation or polymorphic

techniques. Then, we extract the program slices respon-

sible for such information flows. For detection, we exe-

cute these slices to match our models against the runtime

behavior of an unknown program. Our experiments show

that our approach can effectively detect running mali-

cious code on an end user’s host with a small overhead.

1 Introduction

Malicious code, or malware, is one of the most press-

ing security problems on the Internet. Today, millions

of compromised web sites launch drive-by download ex-

ploits against vulnerable hosts [35]. As part of the ex-

ploit, the victim machine is typically used to download

and execute malware programs. These programs are of-

ten bots that join forces and turn into a botnet. Bot-

nets [14] are then used by miscreants to launch denial

of service attacks, send spam mails, or host scam pages.

Given the malware threat and its prevalence, it is not

surprising that a significant amount of previous research

has focused on developing techniques to collect, study,

and mitigate malicious code. For example, there have

been studies that measure the size of botnets [37], the

prevalence of malicious web sites [35], and the infes-

tation of executables with spyware [31]. Also, a num-

ber of server-side [4, 43] and client-side honeypots [51]

were introduced that allow analysts and researchers to

gather malware samples in the wild. In addition, there

exist tools that can execute unknown samples and mon-

itor their behavior [6, 28, 54, 55]. Some tools [6, 54]

provide reports that summarize the activities of unknown

programs at the level of Windows API or system calls.

Such reports can be evaluated to find clusters of samples

that behave similarly [5, 7] or to classify the type of ob-

served, malicious activity [39]. Other tools [55] incorpo-

rate data flow into the analysis, which results in a more

comprehensive view of a program’s activity in the form

of taint graphs.

While it is important to collect and study malware,

this is only a means to an end. In fact, it is crucial that

352 18th USENIX Security Symposium USENIX Association

the insight obtained through malware analysis is trans-

lated into detection and mitigation capabilities that al-

low one to eliminate malicious code running on infected

machines. Considerable research effort was dedicated to

the extraction of network-based detection models. Such

models are often manually-crafted signatures loaded into

intrusion detection systems [33] or bot detectors [20].

Other models are generated automatically by finding

common tokens in network streams produced by mal-

ware programs (typically, worms) [32, 41]. Finally, mal-

ware activity can be detected by spotting anomalous traf-

fic. For example, several systems try to identify bots by

looking for similar connection patterns [19, 38]. While

network-based detectors are useful in practice, they suf-

fer from a number of limitations. First, a malware pro-

gram has many options to render network-based detec-

tion very difficult. The reason is that such detectors can-

not observe the activity of a malicious program directly

but have to rely on artifacts (the traffic) that this program

produces. For example, encryption can be used to thwart

content-based techniques, and blending attacks [17] can

change the properties of network traffic to make it ap-

pear legitimate. Second, network-based detectors cannot

identify malicious code that does not send or receive any

traffic.

Host-based malware detectors have the advantage that

they can observe the complete set of actions that a mal-

ware program performs. It is even possible to identify

malicious code before it is executed at all. Unfortunately,

current host-based detection approaches have significant

shortcomings. An important problem is that many tech-

niques rely on ineffective models. Ineffective models are

models that do not capture intrinsic properties of a mali-

cious program and its actions but merely pick up artifacts

of a specific malware instance. As a result, they can be

easily evaded. For example, traditional anti-virus (AV)

programs mostly rely on file hashes and byte (or instruc-

tion) signatures [46]. Unfortunately, obfuscation tech-

niques and code polymorphism make it straightforward

to modify these features without changing the actual se-

mantics (the behavior) of the program [10]. Another ex-

ample are models that capture the sequence of system

calls that a specific malware program executes. When

these system calls are independent, it is easy to change

their order or add irrelevant calls, thus invalidating the

captured sequence.

In an effort to overcome the limitations of ineffective

models, researchers have sought ways to capture the ma-

licious activity that is characteristic of a malware pro-

gram (or a family). On one hand, this has led to de-

tectors [9, 12, 25] that use sophisticated static analysis

to identify code that is semantically equivalent to a mal-

ware template. Since these techniques focus on the actual

semantics of a program, it is not enough for a malware

sample to use obfuscation and polymorphic techniques to

alter its appearance. The problem with static techniques

is that static binary analysis is difficult [30]. This diffi-

culty is further exacerbated by runtime packing and self-

modifying code. Moreover, the analysis is costly, and

thus, not suitable for replacing AV scanners that need to

quickly scan large numbers of files. Dynamic analysis

is an alternative approach to model malware behavior. In

particular, several systems [22, 55] rely on the tracking of

dynamic data flows (tainting) to characterize malicious

activity in a generic fashion. While detection results are

promising, these systems incur a significant performance

overhead. Also, a special infrastructure (virtual machine

with shadow memory) is required to keep track of the

taint information. As a result, static and dynamic anal-

ysis approaches are often employed in automated mal-

ware analysis environments (for example, at anti-virus

companies or by security researchers), but they are too

inefficient to be deployed as detectors on end hosts.

In this paper, we propose a malware detection ap-

proach that is both effective and efficient, and thus, can

be used to replace or complement traditional AV soft-

ware at the end host. For this, we first generate effective

models that cannot be easily evaded by simple obfusca-

tion or polymorphic techniques. More precisely, we exe-

cute a malware program in a controlled environment and

observe its interactions with the operating system. Based

on these observations, we generate fine-grained models

that capture the characteristic, malicious behavior of this

program. This analysis can be expensive, as it needs to be

run only once for a group of similar (or related) malware

executables. The key of the proposed approach is that

our models can be efficiently matched against the run-

time behavior of an unknown program. This allows us

to detect malicious code that exhibits behavior that has

been previously associated with the activity of a certain

malware strain.

The main contributions of this paper are as follows:

• We automatically generate fine-grained (effective)

models that capture detailed information about the

behavior exhibited by instances of a malware fam-

ily. These models are built by observing a malware

sample in a controlled environment.

• We have developed a scanner that can efficiently

match the activity of an unknown program against

our behavior models. To achieve this, we track de-

pendencies between system calls without requiring

expensive taint analysis or special support at the end

host.

• We present experimental evidence that demon-

strates that our approach is feasible and usable in

practice.

USENIX Association 18th USENIX Security Symposium 353

2 System Overview

The goal of our system is to effectively and efficiently de-

tect malicious code at the end host. Moreover, the system

should be general and not incorporate a priori knowl-

edge about a particular malware class. Given the free-

dom that malware authors have when crafting malicious

code, this is a challenging problem. To attack this prob-

lem, our system operates by generating detection mod-

els based on the observation of the execution of malware

programs. That is, the system executes and monitors a

malware program in a controlled analysis environment.

Based on this observation, it extracts the behavior that

characterizes the execution of this program. The behav-

ior is then automatically translated into detection models

that operate at the host level.

Our approach allows the system to quickly detect and

eliminate novel malware variants. However, it is reactive

in the sense that it must observe a certain, malicious be-

havior before it can properly respond. This introduces a

small delay between the appearance of a new malware

family and the availability of appropriate detection mod-

els. We believe that this is a trade-off that is necessary

for a general system that aims to detect and mitigate ma-

licious code with a priori unknown behavior. In some

sense, the system can be compared to the human im-

mune system, which also reacts to threats by first detect-

ing intruders and then building appropriate antibodies.

Also, it is important to recognize that it is not required

to observe every malware instance before it can be de-

tected. Instead, the proposed system abstracts (to some

extent) program behavior from a single, observed exe-

cution trace. This allows the detection of all malware

instances that implement similar functionality.

Modeling program behavior. To model the behavior

of a program and its security-relevant activity, we rely

on system calls. Since system calls capture the interac-

tions of a program with its environment, we assume that

any relevant security violation is visible as one or more

unintended interactions.

Of course, a significant amount of research has fo-

cused on modeling legitimate program behavior by spec-

ifying permissible sequences of system calls [18, 48].

Unfortunately, these techniques cannot be directly ap-

plied to our problem. The reason is that malware au-

thors have a large degree of freedom in rearranging the

code to achieve their goals. For example, it is very easy

to reorder independent system calls or to add irrelevant

calls. Thus, we cannot represent suspicious activity as

system call sequences that we have observed. Instead, a

more flexible representation is needed. This representa-

tion must capture true relationships between system calls

but allow independent calls to appear in any order. For

this, we represent program behavior as a behavior graph

where nodes are (interesting) system calls. An edge is

introduced from a node x to node y when the system

call associated with y uses as argument some output that

is produced by system call x. That is, an edge repre-

sents a data dependency between system calls x and y.

Moreover, we only focus on a subset of interesting sys-

tem calls that can be used to carry out malicious activity.

At a conceptual level, the idea of monitoring a piece of

malware and extracting a model for it bears some resem-

blance to previous signature generation systems [32, 41].

In both cases, malicious activity is recorded, and this ac-

tivity is then used to generate detection models. In the

case of signature generation systems, network packets

sent by worms are compared to traffic from benign ap-

plications. The goal is to extract tokens that are unique

to worm flows and, thus, can be used for network-based

detection. At a closer look, however, the differences

between previous work and our approach are signifi-

cant. While signature generation systems extract spe-

cific, byte-level descriptions of malicious traffic (similar

to virus scanners), the proposed approach targets the se-

mantics of program executions. This requires different

means to observe and model program behavior. More-

over, our techniques to identify malicious activity and

then perform detection differ as well.

Making detection efficient. In principle, we can di-

rectly use the behavior graph to detect malicious activity

at the end host. For this, we monitor the system calls

that an unknown program issues and match these calls

with nodes in the graph. When enough of the graph

has been matched, we conclude that the running program

exhibits behavior that is similar to previously-observed,

malicious activity. At this point, the running process can

be terminated and its previous, persistent modifications

to the system can be undone.

Unfortunately, there is a problem with the previously

sketched approach. The reason is that, for matching sys-

tem calls with nodes in the behavior graph, we need to

have information about data dependencies between the

arguments and return values of these systems calls. Re-

call that an edge from node x to y indicates that there is

a data flow from system call x to y. As a result, when

observing x and y, it is not possible to declare a match

with the behavior graph x → y. Instead, we need to

know whether y uses values that x has produced. Oth-

erwise, independent system calls might trigger matches

in the behavior graph, leading to an unacceptable high

number of false positives.

Previous systems have proposed dynamic data flow

tracking (tainting) to determine dependencies between

system calls. However, tainting incurs a significant

performance overhead and requires a special environ-

354 18th USENIX Security Symposium USENIX Association

ment (typically, a virtual machine with shadowmemory).

Hence, taint-based systems are usually only deployed in

analysis environments but not at end hosts. In this pa-

per, we propose an approach that allows us to detect

previously-seen data dependencies by monitoring only

system calls and their arguments. This allows efficient

identification of data flows without requiring expensive

tainting and special environments (virtual machines).

Our key idea to determine whether there is a data flow

between a pair of system calls x and y that is similar

to a previously-observed data flow is as follows: Using

the observed data flow, we extract those parts of the pro-

gram (the instructions) that are responsible for reading

the input and transforming it into the corresponding out-

put (a kind of program slice [53]). Based on this pro-

gram slice, we derive a symbolic expression that repre-

sents the semantics of the slice. In other words, we ex-

tract an expression that can essentially pre-compute the

expected output, based on some input. In the simplest

case, when the input is copied to the output, the sym-

bolic expression captures the fact that the input value is

identical to the output value. Of course, more compli-

cated expressions are possible. In cases where it is not

possible to determine a closed symbolic expression, we

can use the program slice itself (i.e., the sequence of pro-

gram instructions that transforms an input value into its

corresponding output, according to the functionality of

the program).

Given a program slice or the corresponding sym-

bolic expression, an unknownprogram can bemonitored.

Whenever this program invokes a system call x, we ex-

tract the relevant arguments and return value. This value

is then used as input to the slice or symbolic expression,

computing the expected output. Later, whenever a sys-

tem call y is invoked, we check its arguments. When

the value of the system call argument is equal to the

previously-computed, expected output, then the system

has detected the data flow.

Using data flow information that is computed in the

previously described fashion, we can increase the pre-

cision of matching observed system calls against the be-

havior graph. That is, we can make sure that a graph with

a relationship x → y is matched only when we observe x

and y, and there is a data flow between x and y that cor-

responds to the semantics of the malware program that is

captured by this graph. As a result, we can performmore

accurate detection and reduce the false positive rate.

3 System Details

In this section, we provide more details on the compo-

nents of our system. In particular, we first discuss how

we characterize program activity via behavior graphs.

Then, we introduce our techniques to automatically ex-

tract such graphs from observing binaries. Finally, we

present our approach to match the actions of an unknown

binary to previously-generated behavior graphs.

3.1 Behavior Graphs: Specifying Program

Activity

As a first step, we require a mechanism to describe the

activity of programs. According to previous work [11],

such a specification language for malicious behaviors has

to satisfy three requirements: First, a specification must

not constrain independent operations. The second re-

quirement is that a specification must relate dependent

operations. Third, the specification must only contain

security-relevant operations.

The authors in [11] propose malspecs as a means to

capture program behavior. A malicious specification

(malspec) is a directed acyclic graph (DAG) with nodes

labeled using system calls from an alphabet Σ and edges

labeled using logic formulas in a logic Ldep . Clearly,

malspecs satisfy the first two requirements. That is, in-

dependent nodes (system calls) are not connected, while

related operations are connected via a series of edges.

The paper also mentions a function IsTrivialComponent

that can identify and remove parts of the graph that are

not security-relevant (to meet the third requirement).

For this work, we use a formalism called behavior

graphs. Behavior graphs share similarities with mal-

specs. In particular, we also express program behavior

as directed acyclic graphs where nodes represent system

calls. However, we do not have unconstrained system

call arguments, and the semantics of edges is somewhat

different.

We define a system call s ∈ Σ as a function that maps

a set of input arguments a1, . . . , an into a set of output

values o1, . . . , ok For each input argument of a system

call ai, the behavior graph captures where the value of

this argument is derived from. For this, we use a function

fai
∈ F . Before we discuss the nature of the functions

in F in more detail, we first describe where a value for

a system call can be derived from. A system call value

can come from three possible sources (or a mix thereof):

First, it can be derived from the output argument(s) of

previous system calls. Second, it can be read from the

process address space (typically, the initialized data sec-

tion – the bss segment). Third, it can be produced by

the immediate argument of a machine instruction.

As mentioned previously, a function is used to cap-

ture the input to a system call argument ai. More pre-

cisely, the function fai
for an argument ai is defined as

fai
: x1, x2, . . . , xn → y, where each xi represents the

output oj of a previous system call. The values that are

read from memory are part of the function body, rep-

resented by l(addr). When the function is evaluated,

USENIX Association 18th USENIX Security Symposium 355

l(addr) returns the value at memory location addr. This

technique is needed to ensure that values that are loaded

from memory (for example, keys) are not constant in

the specification, but read from the process under anal-

ysis. Of course, our approach implies that the memory

addresses of key data structures do not change between

(polymorphic) variants of a certain malware family. In

fact, this premise is confirmed by a recent observation

that data structures are stable between different samples

that belong to the same malware class [13]. Finally,

constant values produced by instructions (through im-

mediate operands) are implicitly encoded in the function

body. Consider the case in which a system call argument

ai is the constant value 0, for example, produced by a

push $0 instruction. Here, the corresponding function

is a constant function with no arguments fai
:→ 0. Note

that a function f ∈ F can be expressed in two differ-

ent forms: As a (symbolic) formula or as an algorithm

(more precisely, as a sequence of machine instructions

– this representation is used in case the relation is too

complex for a mathematical expression).

Whenever an input argument ai for system call y de-

pends on the some output oj produced by system call x,

we introduce an edge from the node that corresponds to

x, to the node that corresponds to y. Thus, edges en-

code dependencies (i.e., temporal relationships) between

system calls.

Given the previous discussion, we can define behavior

graphs G more formally as: G = (V, E, F, δ), where:

• V is the set of vertices, each representing a system

call s ∈ Σ

• E is the set of edges, E ⊆ V × V

• F is the set of functions
�

f : x1, x2, . . . , xn → y,

where each xi is an output arguments oj of system

call s ∈ Σ

• δ, which assigns a function fi to each system call

argument ai

Intuitively, a behavior graph encodes relationships be-

tween system calls. That is, the functions fi for the ar-

guments ai of a system call s determine how these argu-

ments depend on the outputs of previous calls, as well as

program constants and memory values. Note that these

functions allow one to pre-compute the expected argu-

ments of a system call. Consider a behavior graph G

where an input argument a of a system call st depends

on the outputs of two previous calls sp and sq . Thus,

there is a function fa associated with a that has two in-

puts. Once we observe sp and sq , we can use the out-

puts op and oq of these system calls and plug them into

fa. At this point, we know the expected value of a, as-

suming that the program execution follows the seman-

tics encoded in the behavior graph. Thus, when we ob-

serve at a later point the invocation of st, we can check

whether its actual argument value for a matches our pre-

computed value fa(op, oq). If this is the case, we have

high confidence that the program executes a system call

whose input is related (depends on) the outputs of previ-

ous calls. This is the key idea of our proposed approach:

We can identify relationships between system calls with-

out tracking any information at the instruction-level dur-

ing runtime. Instead, we rely solely on the analysis of

system call arguments and the functions in the behavior

graph that capture the semantics of the program.

3.2 Extracting Behavior Graphs

As mentioned in the previous section, we express pro-

gram activity as behavior graphs. In this section, we de-

scribe how these behavior graphs can be automatically

constructed by observing the execution of a program in a

controlled environment.

Initial Behavior Graph

As a first step, an unknownmalware program is executed

in an extended version of Anubis [6, 7], our dynamic

malware analysis environment. Anubis records all the

disassembled instructions (and the system calls) that the

binary under analysis executes. We call this sequence of

instructions an instruction log. In addition, Anubis also

extracts data dependencies using taint analysis. That is,

the system taints (marks) each byte that is returned by a

system call with a unique label. Then, we keep track of

each labeled byte as the program execution progresses.

This allows us to detect that the output (result) of one

system call is used as an input argument for another, later

system call.

While the instruction log and the taint labels provide

rich information about the execution of the malware pro-

gram, this information is not sufficient. Consider the case

in which an instruction performs an indirect memory ac-

cess. That is, the instruction reads a memory value from

a location L whose address is given in a register or an-

other memory location. In our later analysis, we need to

know which instruction was the last one to write to this

location L. Unfortunately, looking at the disassembled

instruction alone, this is not possible. Thus, to make the

analysis easier in subsequent steps, we also maintain a

memory log. This log stores, for each instruction that ac-

cesses memory, the locations that this instruction reads

from and writes to.

Another problem is that the previously-sketched taint

tracking approach only captures data dependencies. For

356 18th USENIX Security Symposium USENIX Association

example, when data is written to a file that is previously

read as part of a copy operation, our system would de-

tect such a dependency. However, it does not consider

control dependencies. To see why this might be rele-

vant, consider that the amount of data written as part of

the copy operation is determined by the result of a sys-

tem call that returns the size of the file that is read. The

file size returned by the system call might be used in a

loop that controls how often a new block of data needs

to be copied. While this file size has an indirect influ-

ence on the (number of) write operation, there is no data

dependency. To capture indirect dependencies, our sys-

tem needs to identify the scope of code blocks that are

controlled by tainted data. The start of such code blocks

is identified by checking for branch operations that use

tainted data as arguments. To identify the end of the

scope, we leverage a technique proposed by Zhang et

al. [56]. More precisely, we employ their no preprocess-

ing without caching algorithm to find convergence points

in the instruction log that indicate that the different paths

of a conditional statement or a loop have met, indicating

the end of the (dynamic) scope. Within a tainted scope,

the results of all instructions are marked with the label(s)

used in the branch operation, similar to the approach pre-

sented in [22].

At this point, our analysis has gathered the complete

log of all executed instructions. Moreover, operands of

all instructions are marked with taint labels that indicate

whether these operands have data or control dependen-

cies on the output of previous system calls. Based on this

information, we can construct an initial behavior graph.

To this end, every system call is mapped into a node

in the graph, labeled with the name of this system call.

Then, an edge is introduced from node x to y when the

output of call x produces a taint label that is used in any

input argument for call y.

Figure 1 depicts a part of the behavior graph of the

Netsky worm. In this graph, one can see the system calls

that are invoked and the dependencies between them

when Netsky creates a copy of itself. The worm first

obtains the name of its executable by invoking the Get-

ModuleFileNameA function. Then, it opens the file of its

executable by using the NtCreateFile call. At the same

time, it creates a new file in the Windows system direc-

tory (i.e., in C:\Windows) that it calls AVProtect9x.exe.

Obviously, the aim is to fool the user into believing that

this file is benign and to improve the chances of survival

of the worm. Hence, if the file is discovered by chance,

a typical user will probably think that it belongs to some

anti-virus software. In the last step, the worm uses the

NtCreateSection system call to create a virtual memory

block with a handle to itself and starts reading its own

code and making a copy of it into the AVProtect9x.exe

file.

In this example, the behavior graph that we generate

specifically contains the string AVProtect9x.exe. How-

ever, obviously, a virus writer might choose to use ran-

dom names when creating a new file. In this case, our

behavior graph would contain the system calls that are

used to create this random name. Hence, the random-

ization routines that are used (e.g., checking the current

time and appending a constant string to it) would be a

part of the behavior specification.

Figure 2 shows an excerpt of the trace that we recorded

for Netsky. This is part of the input that the behavior

graph is built from. On Line 1, one can see that the worm

obtains the name of executable of the current process

(i.e., the name of its own file). Using this name, it opens

the file on Line 3 and obtains a handle to it. On Line 5,

a new file called AVProtect9x.exe is created, where the

virus will copy its code to. On Lines 8 to 10, the worm

reads its own program code, copying itself into the newly

created file.






























Figure 1: Partial behavior graph for Netsky.

Computing Argument Functions

In the next step, we have to compute the functions f ∈ F

that are associated with the arguments of system call

nodes. That is, for each system call argument, we first

have to identify the sources that can influence the value

of this argument. Also, we need to determine how the

values from the sources are manipulated to derive the ar-

gument value. For this, we make use of binary program

slicing. Finally, we need to translate the sequence of in-

structions that compute the value of an argument (based

on the values of the sources) into a function.

USENIX Association 18th USENIX Security Symposium 357

1 GetModuleFileNameA([out] lpFilename -> "C:\

netsky.exe")

2 ...

3 NtCreateFile(Attr->ObjectName:"C:\netsky.exe",

mode: open, [out] FileHandle -> A)

4 ...

5 NtCreateFile(Attr->ObjectName:"C:\WINDOWS\

AVprotect9x.exe", mode: create, [out]

FileHandle -> B)

6 ...

7 NtCreateSection(FileHandle: A, [out]

SectionHandle -> C)

8 NtMapViewOfSection(SectionHandle: C,

BaseAddress: 0x3b0000)

9 ...

10 NtWriteFile(FileHandle: B, Buffer: "MZ\90\00...

", Length: 16896)

11 ...

Figure 2: Excerpt of the observed trace for Netsky.

Program slicing. The goal of the program slicing pro-

cess is to find all sources that directly or indirectly influ-

ence the value of an argument a of system call s, which

is also called a sink. To this end, we first use the func-

tion signature for s to determine the type and the size of

argument a. This allows us to determine the bytes that

correspond to the sink a. Starting from these bytes, we

use a standard dynamic slicing approach [2] to go back-

wards, looking for instructions that define one of these

bytes. For each instruction found in this manner, we

look at its operands and determine which values the in-

struction uses. For each value that is used, we locate the

instruction that defines this value. This process is con-

tinued recursively. As mentioned previously, it is some-

times not sufficient to look at the instruction log alone

to determine the instruction that has defined the value in

a certain memory location. To handle these cases, we

make use of the memory log, which helps us to find the

previous write to a certain memory location.

Following def-use chains would only include instruc-

tions that are related to the sink via data dependencies.

However, we also wish to include control flow depen-

dencies into a slice. Recall from the previous subsection

that our analysis computes tainted scopes (code the has

a control flow dependency on a certain tainted value).

Thus, when instructions are included into a slice that are

within a tainted scope, the instructions that create this

scope are also included, as well as the code that those

instructions depend upon.

The recursive analysis chains increasingly add instruc-

tions to a slice. A chain terminates at one of two possible

endpoints. One endpoint is the system call that produces

a (tainted) value as output. For example, consider that

we trace back the bytes that are written to a file (the ar-

gument that represents the write buffer). The analysis

might determine that these bytes originate from a system

call that reads the data from the network. That is, the val-

ues come from the “outside,” and we cannot go back any

further. Of course, we expect that there are edges from

all sources to the sink that eventually uses the values pro-

duced by the sources. Another endpoint is reached when

a value is produced as an immediate operand of an in-

struction or read from the statically initialized data seg-

ment. In the previous example, the bytes that are written

to the file need not have been read previously. Instead,

they might be originating from a string embedded in the

program binary, and thus, coming from “within.”

When the program slicer finishes for a system call ar-

gument a, it has marked all instructions that are involved

in computing the value of a. That is, we have a subset

(a slice) of the instruction log that “explains” (1) how

the value for a was computed, and (2), which sources

were involved. As mentioned before, these sources can

be constants produced by the immediate operands of in-

structions, values read frommemory location addr (with-

out any other instruction previously writing to this ad-

dress), and the output of previous system calls.

Translating slices into functions. A program slice

contains all the instructions that were involved in com-

puting a specific value for a system call argument. How-

ever, this slice is not a program (a function) that can be

directly run to compute the outputs for different inputs.

A slice can (and typically does) contain a single machine

instruction of the binary program more than once, often

with different operands. For example, consider a loop

that is executed multiple times. In this case, the instruc-

tions of the binary that make up the loop body appear

multiple times in the slice. However, for our function,

we would like to have code that represents the loop it-

self, not the unrolled version. This is because when a

different input is given to the loop, it might execute a dif-

ferent number of times. Thus, it is important to represent

the function as the actual loop code, not as an unrolled

sequence of instruction.

To translate a slice into a self-contained program, we

first mark all instructions in the binary that appear at least

once in the slice. Note that our system handles packed

binaries. That is, when a malware program is packed,

we consider the instructions that it executes after the un-

packing routine as the relevant binary code. All instruc-

tions that do not appear in the slice are replaced with

no operation statements (nops). The input to this code

depends on the sources of the slice. When a source is

a constant, immediate operand, then this constant is di-

rectly included into the function. When the source is a

read operation from a memory address addr that was not

previously written by the program, we replace it with a

special function that reads the value at addr when a pro-

gram is analyzed. Finally, outputs of previous system

calls are replaced with variables.

358 18th USENIX Security Symposium USENIX Association

In principle, we could now run the code as a func-

tion, simply providing as input the output values that we

observe from previous system calls. This would com-

pute a result, which is the pre-computed (expected) in-

put argument for the sink. Unfortunately, this is not

that easy. The reason is that the instructions that make

up the function are taken from a binary program. This

binary is made up of procedures, and these procedures

set up stack frames that allow them to access local vari-

ables via offsets to the base pointer (register %ebp) or

the stack pointer (x86 register %esp). The problem is

that operations that manipulate the base pointer or the

stack pointer are often not part of the slice. As a re-

sult, they are also not part of the function code. Unfor-

tunately, this means that local variable accesses do not

behave as expected. To compensate for that, we have

to go through the instruction log (and the program bi-

nary) and fix the stack. More precisely, we analyze the

code and add appropriate instructions that manipulate

the stack and, if needed, the frame pointer appropriately

so that local variable accesses succeed. For this, some

knowledge about compiler-specific mechanisms for han-

dling procedures and stack frames is required. Currently,

our prototype slicer is able to handle machine code gen-

erated from standard C and C++ code, as well as several

human-written/optimized assembler code idioms that we

encountered (for example, code that is compiled without

the frame pointer).

Once the necessary code is added to fix the stack, we

have a function (program) at our disposal that captures

the semantics of that part of the program that computes

a particular system call argument based on the results of

previous calls. As mentioned before, this is useful, be-

cause it allows us to pre-compute the argument of a sys-

tem call that we would expect to see when an unknown

program exhibits behavior that conforms to our behavior

graph.

Optimizing Functions

Once we have extracted a slice for a system call argument

and translated it into a corresponding function (program),

we could stop there. However, many functions imple-

ment a very simple behavior; they copy a value that is

produced as output of a system call into the input argu-

ment of a subsequent call. For example, when a system

call such as NtOpenFile produces an opaque handle,

this handle is used as input by all subsequent system calls

that operate on this file. Unfortunately, the chain of copy

operations can grow quite long, involving memory ac-

cesses and stack manipulation. Thus, it would be bene-

ficial to identify and simplify instruction sequences. Op-

timally, the complete sequence can be translated into a

formula that allows us to directly compute the expected

output based on the formula’s inputs.

To simplify functions, we make use of symbolic exe-

cution. More precisely, we assign symbolic values to the

input parameters of a function and use a symbolic exe-

cution engine developed previously [23]. Once the sym-

bolic execution of the function has finished, we obtain a

symbolic expression for the output. When the symbolic

execution engine does not need to perform any approxi-

mations (e.g., widening in the case of loops), then we can

replace the algorithmic representation of the slice with

this symbolic expression. This allows us to significantly

shorten the time it takes to evaluate functions, especially

those that only move values around. For complex func-

tions, we fall back to the explicit machine code represen-

tation.

3.3 Matching Behavior Graphs

For every malware program that we analyze in our con-

trolled environment, we automatically generate a behav-

ior graph. These graphs can then be used for detection at

the end host. More precisely, for detection, we have de-

veloped a scanner that monitors the system call invoca-

tions (and arguments) of a program under analysis. The

goal of the scanner is to efficiently determine whether

this program exhibits activity that matches one of the be-

havior graphs. If such a match occurs, the program is

considered malicious, and the process is terminated. We

could also imagine a system that unrolls the persistent

modifications that the program has performed. For this,

we could leverage previous work [45] on safe execution

environments.

In the following, we discuss how our scanner matches

a stream of system call invocations (received from the

program under analysis) against a behavior graph. The

scanner is a user-mode process that runs with adminis-

trative privileges. It is supported by a small kernel-mode

driver that captures system calls and arguments of pro-

cesses that should be monitored. In the current design,

we assume that the malware process is running under the

normal account of a user, and thus, cannot subvert the

kernel driver or attack the scanner. We believe that this

assumption is reasonable because, for recent versions of

Windows, Microsoft has made significant effort to have

users run without root privileges. Also, processes that

run executables downloaded from the Internet can be au-

tomatically started in a low-integritymode. Interestingly,

we have seen malware increasingly adapting to this new

landscape, and a substantial fraction can now success-

fully execute as a normal user.

The basic approach of our matching algorithm is the

following: First, we partition the nodes of a behavior

graph into a set of active nodes and a set of inactive

USENIX Association 18th USENIX Security Symposium 359

nodes. The set of active nodes contains those nodes that

have already been matched with system call(s) in the

stream. Initially, all nodes are inactive.

When a new system call s arrives, the scanner visits

all inactive nodes in the behavior graph that have the cor-

rect type. That is, when a system call NtOpenFile

is seen, we examine all inactive nodes that correspond

to an NtOpenFile call. For each of these nodes, we

check whether all its parent nodes are active. A parent

node for node N is a node that has an edge to N . When

we find such a node, we further have to ensure that the

system call has the “right” arguments. More precisely,

we have to check all functions fi : 1 ≤ i ≤ k asso-

ciated with the k input arguments of the system call s.

However, for performance reasons, we do not do this im-

mediately. Instead, we only check the simple functions.

Simple functions are those for which a symbolic expres-

sion exists. Most often, these functions check for the

equality of handles. The checks for complex functions,

which are functions that represent dependencies as pro-

grams, are deferred and optimistically assumed to hold.

To check whether a (simple) function fi holds, we use

the output arguments of the parent node(s) of N . More

precisely, we use the appropriate values associated with

the parent node(s) of N as the input to fi. When the re-

sult of fi matches the input argument to system call s,

then we have a match. When all arguments associated

with simple functions match, then node N can be acti-

vated. Moreover, once s returns, the values of its output

parameters are stored with node N . This is necessary be-

cause the output of s might be needed later as input for a

function that checks the arguments of N ’s child nodes.

So far, we have only checked dependencies between

system calls that are captured by simple functions. As a

result, we might activate a node y as the child of x, al-

though there exists a complex dependency between these

two system calls that is not satisfied by the actual pro-

gram execution. Of course, at one point, we have to

check these complex relationships (functions) as well.

This point is reached when an interesting node in the be-

havior graph is activated. Interesting nodes are nodes that

are (a) associated with security-relevant system calls and

(b) at the “bottom” of the behavior graph. With security-

relevant system calls, we refer to all calls that write to

the file system, the registry, or the network. In addition,

system calls that start new processes or system services

are also security-relevant. A node is at the “bottom” of

the behavior graph when it has no outgoing edges.

When an interesting node is activated, we go back in

the behavior graph and check all complex dependencies.

That is, for each active node, we check all complex func-

tions that are associated with its arguments (in a way that

is similar to the case for simple functions, as outlined

previously). When all complex functions hold, the node

is marked as confirmed. If any of the complex functions

associated with the input arguments of an active node N

does not hold, our previous optimistic assumption has

been invalidated. Thus, we deactivate N as well as all

nodes in the subgraph rooted in N .

Intuitively, we use the concept of interesting nodes to

capture the case in which a malware program has demon-

strated a chain of activities that involve a series of sys-

tem calls with non-trivial dependencies between them.

Thus, we declare a match as soon as any interesting node

has been confirmed. However, to avoid cases of overly

generic behavior graphs, we only report a program as

malware when the process of confirming an interesting

node involves at least one complex dependency.

Since the confirmed activation of a single interesting

node is enough to detect a malware sample, typically

only a subset of the behavior graph of a malware sample

is employed for detection. More precisely, each interest-

ing node, together with all of its ancestor nodes and the

dependencies between these nodes, can be used for de-

tection independently. Each of these subgraphs is itself

a behavior graph that describes a specific set of actions

performed by a malware program (that is, a certain be-

havioral trait of this malware).

4 Evaluation

We claim that our system delivers effective detection

with an acceptable performance overhead. In this sec-

tion, we first analyze the detection capabilities of our sys-

tem. Then, we examine the runtime impact of our proto-

type implementation. In the last section, we describe two

examples of behavior graphs in more detail.

Name Type

Allaple Exploit-based worm

Bagle Mass-mailing worm

Mytob Mass-mailing worm

Agent Trojan

Netsky Mass-mailing worm

Mydoom Mass-mailing worm

Table 1: Malware families used for evaluation.

4.1 Detection Effectiveness

To demonstrate that our system is effective in detect-

ing malicious code, we first generated behavior graphs

for six popular malware families. An overview of these

families is provided in Table 1. These malware families

were selected because they are very popular, both in our

own malware data collection (which we obtained from

360 18th USENIX Security Symposium USENIX Association

Name Samples Kaspersky variants Our variants Samples detected Effectiveness

Allaple 50 2 1 50 1.00

Bagle 50 20 14 46 0.92

Mytob 50 32 12 47 0.94

Agent 50 20 2 41 0.82

Netsky 50 22 12 46 0.92

Mydoom 50 6 3 49 0.98

Total 300 102 44 279 0.93

Table 2: Training dataset.

Anubis [1]) and according to lists compiled by anti-virus

vendors. Moreover, these families provide a good cross

section of popular malware classes, such as mail-based

worms, exploit-based worms, and a Trojan horse. Some

of the families use code polymorphism to make it harder

for signature-based scanners to detect them. For each

malware family, we randomly selected 100 samples from

our database. The selection was based on the labels pro-

duced by the Kaspersky anti-virus scanner and included

different variants for each family. During the selection

process, we discarded samples that, in our test environ-

ment, did not exhibit any interesting behavior. Specifi-

cally, we discarded samples that did not modify the file

system, spawn new processes, or perform network com-

munication. For the Netsky family, only 63 different

samples were available in our dataset.

Detection capabilities. For each of our six malware

families, we randomly selected 50 samples. These sam-

ples were then used for the extraction of behavior graphs.

Table 2 provides some details on the training dataset. The

“Kaspersky variants” column shows the number of dif-

ferent variants (labels) identified by the Kaspersky anti-

virus scanner (these are variants such as Netsky.k or

Netsky.aa). The “Our variants” column shows the

number of different samples from which (different) be-

havior graphs had to be extracted before the training

dataset was covered. Interestingly, as shown by the

“Samples detected” column, it was not possible to extract

behavior graphs for the entire training set. The reasons

for this are twofold: First, some samples did not perform

any interesting activity during behavior graph extraction

(despite the fact that they did show relevant behavior dur-

ing the initial selection process). Second, for some mal-

ware programs, our system was not able to extract valid

behavior graphs. This is due to limitations of the current

prototype that produced invalid slices (i.e., functions that

simply crashed when executed).

To evaluate the detection effectiveness of our system,

we used the behavior graphs extracted from the train-

ing dataset to perform detection on the remaining 263

samples (the test dataset). The results are shown in Ta-

ble 3. It can be seen that some malware families, such

as Allaple and Mydoom, can be detected very accu-

rately. For others, the results appear worse. However,

we have to consider that different malware variants may

exhibit different behavior, so it may be unrealistic to ex-

pect that a behavior graph for one variant always matches

samples belonging to another variant. This is further ex-

acerbated by the fact that anti-virus software is not par-

ticularly good at classifying malware (a problem that has

also been discussed in previous work [5]). As a result,

the dataset likely contains mislabeled programs that be-

long to different malware families altogether. This was

confirmed by manual inspection, which revealed that cer-

tain malware families (in particular, the Agent family)

contain a large number of variants with widely varying

behavior.

To confirm that different malware variants are indeed

the root cause of the lower detection effectiveness, we

then restricted our analysis to the 155 samples in the test

dataset that belong to “known” variants. That is, we only

considered those samples that belong to malware variants

that are also present in the training dataset (according to

Kaspersky labels). For this dataset, we obtain a detection

effectiveness of 0.92. This is very similar to the result of

0.93 obtained on the training dataset. Conversely, if we

restrict our analysis to the 108 samples that do not belong

to a known variant, we obtain a detection effectiveness

of only 0.23. While this value is significantly lower, it

still demonstrates that our system is sometimes capable

of detecting malware belonging to previously unknown

variants. Together with the number of variants shown in

Table 2, this indicates that our tool produces a behavior-

based malware classification that is more general than

that produced by an anti-virus scanner, and therefore, re-

quires a smaller number of behavior graphs than signa-

tures.

USENIX Association 18th USENIX Security Symposium 361

Name Samples Known variant samples Samples detected Effectiveness

Allaple 50 50 45 0.90

Bagle 50 26 30 0.60

Mytob 50 26 36 0.72

Agent 50 4 5 0.10

Netsky 13 5 7 0.54

Mydoom 50 44 45 0.90

Total 263 155 168 0.64

Table 3: Detection effectiveness.

False positives. In the next step, we attempted to eval-

uate the amount of false positives that our system would

produce. For this, we installed a number of popu-

lar applications on our test machine, which runs Mi-

crosoft Windows XP and our scanner. More precisely,

we used Internet Explorer, Firefox, Thunderbird, putty,

and Notepad. For each of these applications, we went

through a series of common use cases. For example,

we surfed the web with IE and Firefox, sent a mail with

Thunderbird (including an attachment), performed a re-

mote ssh login with putty, and used notepad for writ-

ing and saving text. No false positives were raised in

these tests. This was expected, since our models typi-

cally capture quite tightly the behavior of the individual

malware families. However, if we omitted the checks

for complex functions and assumed all complex depen-

dencies in the behavior graph to hold, all of the above

applications raised false positives. This shows that our

tool’s ability to capture arbitrary data-flow dependencies

and verify them at runtime is essential for effective de-

tection. It also indicates that, in general, system call in-

formation alone (without considering complex relation-

ships between their arguments) might not be sufficient to

distinguish between legitimate and malicious behavior.

In addition to the Windows applications mentioned

previously, we also installed a number of tools for perfor-

mance measurement, as discussed in the following sec-

tion. While running the performance tests, we also did

not experience any false positives.

4.2 System Efficiency

As every malware scanner, our detection mechanism

stands and falls with the performance degradation it

causes on a running system. To evaluate the performance

impact of our detection mechanism, we used 7-zip, a

well-known compression utility, Microsoft Internet Ex-

plorer, and Microsoft Visual Studio. We performed the

tests on a single-core, 1.8 GHz Pentium 4 running Win-

dows XP with 1 GB of RAM.

For the first test, we used a command line option for

7-zip that makes it run a simple benchmark. This re-

flects the case in which an application is mostly perform-

ing CPU-bound computation. In another test, 7-zip was

used to compress a folder that contains 215 MB of data

(6,859 files in 808 subfolders). This test represents a

more mixed workload. The third test consisted of using

7-zip to archive three copies of this same folder, perform-

ing no compression. This is a purely IO-boundworkload.

The next test measures the number of pages per second

that could be rendered in Internet Explorer. For this test,

we used a local copy of a large (1.5MB) web page [3].

For the final test, we measured the time required to com-

pile and build our scanner tool using Microsoft Visual

Studio. The source code of this tool consists of 67 files

and over 17,000 lines of code. For all tests, we first ran

the benchmark on the unmodified operating system (to

obtain a baseline). Then, we enabled the kernel driver

that logs system call parameters, but did not enable any

user-mode detection processing of this output. Finally,

we also enabled our malware detector with the full set of

44 behavior graphs.

The results are summarized in Table 4. As can be

seen, our tool has a very low overhead (below 5%) for

CPU-bound benchmarks. Also, it performs well in the

I/O-bound experiment (with less than 10% overhead).

The worst performance occurs in the compilation bench-

mark, where the system incurs an overhead of 39.8%.

It may seem surprising at first that our tool performs

worse in this benchmark than in the IO-bound archive

benchmark. However, during compilation, the scanned

application is performing almost 5,000 system calls per

second, while in the archive benchmark, this value is

around 700. Since the amount of computation performed

in user-mode by our scanner increases with the number

of system calls, compilation is a worst-case scenario for

our tool. Furthermore, the more varied workload in the

compile benchmark causes more complex functions to be

evaluated. The 39.8% overhead of the compile bench-

mark can further be broken down into 12.2% for the

362 18th USENIX Security Symposium USENIX Association

Test Baseline
Driver Scanner

Score Overhead Score Overhead

7-zip (benchmark) 114 sec 117 sec 2.3% 118 sec 2.4%

7-zip (compress) 318 sec 328 sec 3.1% 333 sec 4.7%

7-zip (archive) 213 sec 225 sec 6.2% 231 sec 8.4%

IE - Rendering 0.41 page/s 0.39 pages/s 4.4% 0.39 page/s 4.4%

Compile 104 sec 117 sec 12.2% 146 sec 39.8%

Table 4: Performance evaluation.

kernel driver, 16.7% for the evaluation of complex func-

tions, and 10.9% for the remaining user-mode process-

ing. Note that the high cost of complex function evalu-

ation could be reduced by improving our symbolic exe-

cution engine, so that less complex functions need to be

evaluated. Furthermore, our prototype implementation

spawns a new process every time that the verification of

complex dependencies is triggered, causing unnecessary

overhead. Nevertheless, we feel that our prototype per-

forms well for common tasks, and the current overhead

allows the system to be used on (most) end user’s hosts.

Moreover, even in the worst case, the tool incurs signifi-

cantly less overhead than systems that perform dynamic

taint propagation (where the overhead is typically several

times the baseline).

4.3 Examples of Behavior Graphs

To provide a better understanding of the type of behavior

that is modeled by our system, we provide a short de-

scription of two behavior graphs extracted from variants

of the Agent and Allaple malware families.

Agent.ffn.StartService. The Agent.ffn variant

contains a resource section that stores chunks of binary

data. During execution, the binary queries for one of

these stored resources and processes its content with a

simple, custom decryption routine. This routine uses a

variant of XOR decryption with a key that changes as

the decryption proceeds. In a later step, the decrypted

data is used to overwrite the Windows system file

C:\WINDOWS\System32\drivers\ip6fw.sys.
Interestingly, rather than directly writing to the file,

the malware opens the \\.\C: logical partition at

the offset where the ip6fw.sys file is stored, and

directly writes to that location. Finally, the malware

restarts Windows XP’s integrated IPv6 firewall service,

effectively executing the previously decrypted code.

Figure 3 shows a simplified behavior graph that cap-

tures this behavior. The graph contains nine nodes,

connected through ten dependencies: six simple de-

pendencies representing the reuse of previously ob-

Figure 3: Behavior graph for Agent.fnn.

tained object handles (annotated with the parameter

name), and four complex dependencies. The com-

plex dependency that captures the previously described

decryption routine is indicated by a bold arrow in

Figure 3. Here, the LockResource function pro-

vides the body of the encrypted resource section. The

NtQueryInformationFile call provides informa-

tion about the ip6fw.sys file. The \\.\C: logical par-

tition is opened in the NtCreateFile node. Finally,

the NtWriteFile system call overwrites the firewall

service program with malicious code. The check of the

complex dependency is triggered by the activation of the

last node (bold in the figure).

Figure 4: Behavior graph for Allaple.b.

USENIX Association 18th USENIX Security Symposium 363

Allaple.b.CreateProcess. Once started, the

Allaple.b variant copies itself to the file

c:\WINDOWS\system32\urdvxc.exe. Then,

it invokes this executable various times with differ-

ent command-line arguments. First, urdvxc.exe

/installservice and urdvxc.exe /start

are used to execute stealthily as a system service.

In a second step, the malware tries to remove its

traces by eliminating the original binary. This is done

by calling urdvxc.exe /uninstallservice

patch:<binary> (where <binary> is the name

of the originally started program).

The graph shown in Figure 4 models part of

this behavior. In the NtCreateFile node, the

urdvxc.exe file is created. This file is then in-

voked three times with different arguments, resulting

in three almost identical subgraphs. The box on the

right-hand side of Figure 4 is an enlargement of one

of these subgraphs. Here, the NtCreateProcessEx

node represents the invocation of the urdvxc.exe

program. The argument to the uninstall com-

mand (i.e., the name of the original binary) is sup-

plied by the GetModuleFileName function to the

NtCreateThread call. The last NtResumeThread

system call triggers the verification of the complex de-

pendencies.

5 Limitations

In this section, we discuss the limitations and possible

attacks against our current system. Furthermore, we dis-

cuss possible solutions to address these limitations.

Evading signature generation. Amain premise of our

system is that we can observe a sample’s malicious ac-

tivities inside our system emulator. Furthermore, we re-

quire to find taint dependencies between data sources and

the corresponding sinks. If a malware accomplishes to

circumvent any of these two required steps, our system

cannot generate system call signatures or find a starting

point for the slicing process.

Note that our system is based on an unaccelerated ver-

sion of Qemu. Since this is a system emulator (i.e., not

a virtual machine), it implies that certain trivial means of

detecting the virtual environment (e.g., such as Red Pill

as described in [36]) are not applicable. Detecting a sys-

tem emulator is an arms race against the accuracy of the

emulator itself. Malware authors could also use delays,

time-triggered behavior, or command and control mech-

anisms to try to prevent the malware from performing

any malicious actions during our analysis. This is indeed

the fundamental limitation of all dynamic approaches to

the analysis of malicious code.

In maintaining taint label propagation, we imple-

mented data and control dependent taint propagation and

pursue a conservative approach to circumvent the loss of

taint information as much as possible. Our results show

that we are able to deal well with current malware. How-

ever, as soon as we observe threats in the wild targeting

this feature of our system, we would need to adapt our

approach.

Modifying the algorithm (input-output) behavior.

Our system’s main focus lies on the detection of data

input-output relations and the malicious algorithm that

the malware author has created (e.g., propagation tech-

nique). As soon as a malware writer decides to imple-

ment a new algorithm (e.g., using a different propagation

approach), our slices would not be usable for the this new

malware type. However, note that completely modifying

the malicious algorithms contained in a program requires

considerable manual work as this process is difficult to

automate. As a result, our system raises the bar signif-

icantly for the malware author and makes this process

more costly.

6 Related Work

There is a large number of previous work that studies the

behavior [34, 37, 42] or the prevalence [31, 35] of differ-

ent types of malware. Moreover, there are several sys-

tems [6, 47, 54, 55] that aid an analyst in understanding

the actions that a malware program performs. Further-

more, techniques have been proposed to classify mal-

ware based on its behavior using a supervised [39] or

unsupervised [5, 7] learning approach. In this paper, we

propose a novel technique to effectively and efficiently

identify malicious code on the end host. Thus, we focus

on related work in the area of malware detection.

Network detection. One line of research focuses on

the development of systems that detect malicious code at

the network level. Most of these systems use content-

based signatures that specify tokens that are charac-

teristic for certain malware families. These signatures

can either be crafted manually [20, 33] or automati-

cally extracted by analyzing a pool of malicious pay-

loads [32, 41, 49]. Other approaches check for anoma-

lous connections or for network traffic that has suspi-

cious properties. For example, there are systems [19, 38]

that detect bots based on similar connections. Other

tools [50] analyze network packets for the occurrence of

anomalous statistical properties. While network-based

detection has the advantage that a single sensor can mon-

itor the traffic to multiple machines, there are a number of

drawbacks. First, malware has significant freedom in al-

364 18th USENIX Security Symposium USENIX Association

tering network traffic, and thus, evade detection [17, 46].

Second, not all malware programs use the network to

carry out their nefarious tasks. Third, even when an in-

fected host is identified, additional action is necessary to

terminate the malware program.

Static analysis. The traditional approach to detecting

malware on the end host (which is implemented by anti-

virus software) is based on statically scanning executa-

bles for strings or instruction sequences that are char-

acteristic for a malware sample [46]. These strings are

typically extracted from the analysis of individual pro-

grams. The problem is that such strings are typically spe-

cific to the syntactic appearance of a certain malware in-

stance. Using code polymorphism and obfuscation, mal-

ware programs can alter their appearance while keeping

their behavior (functionality) unchanged [10, 46]. As a

result, they can easily evade signature-based scanners.

As a reaction to the limitations of signature-based de-

tection, researchers have proposed a number of higher-

order properties to describe executables. The hope is

that such properties capture intrinsic characteristics of

a malware program and thus, are more difficult to dis-

guise. One such property is the distribution of character

n-grams in a file [26, 27]. This property can help to iden-

tify embedded malicious code in other files types, for ex-

ample, Word documents. Another property is the control

flow graph (CFG) of an application, which was used to

detect polymorphic variants of malicious code instances

that all share the same CFG structure [8, 24]. More so-

phisticated static analysis approaches rely on code tem-

plates or specifications that capture the malicious func-

tionality of certain malware families. Here, symbolic ex-

ecution [25], model checking [21], or techniques from

compiler verification [12] are applied to recognize arbi-

trary code fragments that implement a specific function.

The power of these techniques lies in the fact that a cer-

tain functionality can always be identified, independent

of the specific machine instructions that express it.

Unfortunately, static analysis for malware detection

faces a number of significant problems. One problem is

that current malware programs rely heavily on run-time

packing and self-modifying code [46]. Thus, the instruc-

tion present in the binary on disk are typically different

than those executed at runtime. While generic unpack-

ers [40] can sometimes help to obtain the actual instruc-

tions, binary analysis of obfuscated code is still very dif-

ficult [30]. Moreover, most advanced, static analysis ap-

proaches are very slow (in the order of minutes for one

sample [12]). This makes them unsuitable for detection

in real-world deployment scenarios.

Dynamic analysis. Dynamic analysis techniques de-

tect malicious code by analyzing the execution of a pro-

gram or the effects that this program has on the platform

(operating system). An example of the latter category is

Strider GhostBuster [52]. The tool compares the view of

the system provided by a possible compromised OS to

the view that is gathered when accessing the file system

directly. This can detect the presence of certain types of

rootkits that attempt to hide from the user by filtering the

results of system calls. Another general, dynamic mal-

ware detection technique is based on the analysis of disk

access patterns [16]. The basic idea is that malware ac-

tivity might result in suspicious disk accesses that can be

distinguished from normal program usage. The advan-

tage of this approach is that it can be incorporated into

the disk controller, and thus, is difficult to bypass. Un-

fortunately, it can only detect certain types of malware

that scan for or modify large numbers of files.

The work that most closely relates to our own is

Christodorescu et al. [11]. In [11], malware specifica-

tions (malspecs) are extracted by contrasting the behav-

ior of a malware instance against a corpus of benign be-

haviors. Similarly to our behavior graphs, malspecs are

DAGs where each node corresponds to a system call in-

vocation. However, malspecs do not encode arbitrary

data flow dependencies between system call parameters,

and are therefore less specific than the behavior graphs

described in this work. As discussed in Section 4, us-

ing behavior graphs for detection without verifying that

complex dependencies hold would lead to an unaccept-

ably large number of false positives.

In [22], a dynamic spyware detector system is pre-

sented that feeds browser events into Internet Explorer

Browser Helper Objects (i.e., BHOs – IE plugins) and

observes how the BHOs react to these browser events.

An improved, tainting-based approach called Tquana is

presented in [15]. In this system, memory tainting on a

modified Qemu analysis environment is used to track the

information that flows through a BHO. If the BHO col-

lects sensitive data, writes this data to the disk, or sends

this data over the network, the BHO is considered to be

suspicious. In Panorama [55], whole-system taint anal-

ysis is performed to detect malicious code. The taint

sources are typically devices such as a network card or

the keyboard. In [44], bots are detected by using taint

propagation to distinguish between behavior that is ini-

tiated locally and behavior that is triggered by remote

commands over the network. In [29], malware is de-

tected using a hierarchy of manually crafted behavior

specifications. To obtain acceptable false positive rates,

taint tracking is employed to determine whether a behav-

ior was initiated by user input.

Although such approaches may be promising in terms

of detection effectiveness, they require taint tracking on

the end host to be able to perform detection. Track-

ing taint information across the execution of arbi-

USENIX Association 18th USENIX Security Symposium 365

trary, untrusted code typically requires emulation. This

causes significant performance overhead, making such

approaches unsuitable for deployment on end user’s ma-

chines. In contrast, our system employs taint tracking

when extracting a model of behavior from malicious

code, but it does not require tainting to perform detec-

tion based on that model. Our system can, therefore, ef-

ficiently and effectively detect malware on the end user’s

machine.

7 Conclusion

Although a considerable amount of research effort has

gone into malware analysis and detection, malicious

code still remains an important threat on the Internet to-

day. Unfortunately, the existing malware detection tech-

niques have serious shortcomings as they are based on in-

effective detectionmodels. For example, signature-based

techniques that are commonly used by anti-virus soft-

ware can easily be bypassed using obfuscation or poly-

morphism, and system call-based approaches can often

be evaded by system call reordering attacks. Further-

more, detection techniques that rely on dynamic analysis

are often strong, but too slow and hence, inefficient to be

used as real-time detectors on end user machines.

In this paper, we proposed a novel malware detec-

tion approach. Our approach is both effective and effi-

cient, and thus, can be used to replace or complement

traditional AV software at the end host. Our detection

models cannot be easily evaded by simple obfuscation or

polymorphic techniques as we try to distill the behavior

of malware programs rather than their instance-specific

characteristics. We generate these fine-grained models

by executing the malware program in a controlled envi-

ronment, monitoring and observing its interactions with

the operating system. The malware detection then oper-

ates by matching the automatically-generated behavior

models against the runtime behavior of unknown pro-

grams.

Acknowledgments

The authors would like to thank Christoph Karlberger for

his invaluable programming effort and advice concern-

ing the Windows kernel driver. This work has been sup-

ported by the Austrian Science Foundation (FWF) and by

Secure Business Austria (SBA) under grants P-18764, P-

18157, and P-18368, and by the European Commission

through project FP7-ICT-216026-WOMBAT. Xiaoyong

Zhou and XiaoFeng Wang were supported in part by the

National Science Foundation Cyber Trust program under

Grant No. CNS-0716292.

References

[1] ANUBIS. http://anubis.iseclab.org, 2009.

[2] AGRAWAL, H., AND HORGAN, J. Dynamic Program Slicing. In

Conference on Programming Language Design and Implementa-

tion (PLDI) (1990).

[3] B. COLLINS-SUSSMAN, B. W. FITZPATRICK AND C. M. PI-

LATO. Version Control with Subversion. http://svnbook.

red-bean.com/en/1.5/svn-book.html, 2008.

[4] BAECHER, P., KOETTER, M., HOLZ, T., DORNSEIF, M., AND

FREILING, F. The Nepenthes Platform: An Efficient Approach

To Collect Malware. In Recent Advances in Intrusion Detection

(RAID) (2006).

[5] BAILEY, M., OBERHEIDE, J., ANDERSEN, J., MAO, Z., JA-

HANIAN, F., AND NAZARIO, J. Automated Classification and

Analysis of Internet Malware. In Symposium on Recent Advances

in Intrusion Detection (RAID) (2007).

[6] BAYER, U., KRUEGEL, C., AND KIRDA, E. TTAnalyze: A Tool

for Analyzing Malware. In Annual Conference of the European

Institute for Computer Antivirus Research (EICAR) (2006).

[7] BAYER, U., MILANI COMPARETTI, P., HLAUSCHEK, C.,

KRUEGEL, C., AND KIRDA, E. Scalable, Behavior-Based Mal-

ware Clustering. In Network and Distributed System Security

Symposium (NDSS) (2009).

[8] BRUSCHI, D., MARTIGNONI, L., AND MONGA, M. Detecting

Self-Mutating Malware Using Control Flow Graph Matching. In

Conference on Detection of Intrusions and Malware & Vulnera-

bility Assessment (DIMVA) (2006).

[9] CHRISTODORESCU, M., AND JHA, S. Static Analysis of Exe-

cutables to Detect Malicious Patterns. In Usenix Security Sympo-

sium (2003).

[10] CHRISTODORESCU, M., AND JHA, S. Testing Malware Detec-

tors. In ACM International Symposium on Software Testing and

Analysis (ISSTA) (2004).

[11] CHRISTODORESCU, M., JHA, S., AND KRUEGEL, C. Min-

ing Specifications of Malicious Behavior. In European Software

Engineering Conference and ACM SIGSOFT Symposium on the

Foundations of Software Engineering (2007).

[12] CHRISTODORESCU, M., JHA, S., SESHIA, S., SONG, D., AND

BRYANT, R. Semantics-Aware Malware Detection. In IEEE Sym-

posium on Security and Privacy (2005).

[13] COZZIE, A., STRATTON, F., XUE, H., AND KING, S. Digging

For Data Structures . In Symposium on Operating Systems Design

and Implementation (OSDI) (2008).

[14] DAGON, D., GU, G., LEE, C., AND LEE, W. A Taxonomy

of Botnet Structures. In Annual Computer Security Applications

Conference (ACSAC) (2007).

[15] EGELE, M., KRUEGEL, C., KIRDA, E., YIN, H., AND SONG,

D. Dynamic Spyware Analysis. In Usenix Annual Technical

Conference (2007).

[16] FELT, A., PAUL, N., EVANS, D., AND GURUMURTHI, S. Disk

Level Malware Detection. In Poster: 15th Usenix Security Sym-

posium (2006).

[17] FOGLA, P., SHARIF, M., PERDISCI, R., KOLESNIKOV, O., AND

LEE, W. Polymorphic Blending Attacks. In 15th Usenix Security

Symposium (2006).

[18] FORREST, S., HOFMEYR, S., SOMAYAJI, A., AND

LONGSTAFF, T. A Sense of Self for Unix Processes. In

IEEE Symposium on Security and Privacy (1996).

[19] GU, G., PERDISCI, R., ZHANG, J., AND LEE, W. Bot-

Miner: Clustering Analysis of Network Traffic for Protocol- and

Structure-Independent Botnet Detection. In 17th Usenix Security

Symposium (2008).

366 18th USENIX Security Symposium USENIX Association

[20] GU, G., PORRAS, P., YEGNESWARAN, V., FONG, M., AND

LEE, W. BotHunter: Detecting Malware Infection Through IDS-

Driven Dialog Correlation. In 16th Usenix Security Symposium

(2007).

[21] KINDER, J., KATZENBEISSER, S., SCHALLHART, C., AND

VEITH, H. Detecting Malicious Code by Model Checking. In

Conference on Detection of Intrusions and Malware & Vulnera-

bility Assessment (DIMVA) (2005).

[22] KIRDA, E., KRUEGEL, C., BANKS, G., VIGNA, G., AND KEM-

MERER, R. Behavior-based Spyware Detection. In 15th Usenix

Security Symposium (2006).

[23] KRUEGEL, C., KIRDA, E., MUTZ, D., ROBERTSON, W., AND

VIGNA, G. Automating Mimicry Attacks Using Static Binary

Analysis. In 14th Usenix Security Symposium (2005).

[24] KRUEGEL, C., KIRDA, E., MUTZ, D., ROBERTSON, W., AND

VIGNA, G. Polymorphic Worm Detection Using Structural In-

formation of Executables. In Symposium on Recent Advances in

Intrusion Detection (RAID) (2005).

[25] KRUEGEL, C., ROBERTSON, W., AND VIGNA, G. Detecting

Kernel-Level Rootkits Through Binary Analysis. In Annual Com-

puter Security Applications Conference (ACSAC) (2004).

[26] LI, W., STOLFO, S., STAVROU, A., ANDROULAKI, E., AND

KEROMYTIS, A. A Study of Malcode-Bearing Documents. In

Conference on Detection of Intrusions and Malware & Vulnera-

bility Assessment (DIMVA) (2007).

[27] LI, W., WANG, K., STOLFO, S., AND HERZOG, B. Fileprints:

Identifying File Types by N-Gram Analysis. In IEEE Information

Assurance Workshop (2005).

[28] LI, Z., WANG, X., LIANG, Z., AND REITER, M. AGIS: Au-

tomatic Generation of Infection Signatures. In Conference on

Dependable Systems and Networks (DSN) (2008).

[29] MARTIGNONI, L., STINSON, E., FREDRIKSON, M., JHA, S.,

AND MITCHELL, J. C. A Layered Architecture for Detecting

Malicious Behaviors. In Symposium on Recent Advances in In-

trusion Detection (RAID) (2008).

[30] MOSER, A., KRUEGEL, C., AND KIRDA, E. Limits of Static

Analysis for Malware Detection . In 23rd Annual Computer Se-

curity Applications Conference (ACSAC) (2007).

[31] MOSHCHUK, A., BRAGIN, T., GRIBBLE, S., AND LEVY, H. A

Crawler-based Study of Spyware on the Web. In Network and

Distributed Systems Security Symposium (NDSS) (2006).

[32] NEWSOME, J., KARP, B., AND SONG, D. Polygraph: Automat-

ically Generating Signatures for Polymorphic Worms. In IEEE

Symposium on Security and Privacy (2005).

[33] PAXSON, V. Bro: A System for Detecting Network Intruders in

Real-Time. Computer Networks 31 (1999).

[34] POLYCHRONAKIS, M., MAVROMMATIS, P., AND PROVOS, N.

Ghost turns Zombie: Exploring the Life Cycle of Web-based

Malware. In Usenix Workshop on Large-Scale Exploits and

Emergent Threats (LEET) (2008).

[35] PROVOS, N., MAVROMMATIS, P., RAJAB, M., AND MONROSE,

F. All Your iFrames Point to Us. In 17th Usenix Security Sympo-

sium (2008).

[36] RAFFETSEDER, T., KRUEGEL, C., AND KIRDA, E. Detect-

ing System Emulators. In Information Security Conference (ISC)

(2007).

[37] RAJAB, M., ZARFOSS, J., MONROSE, F., AND TERZIS, A.

A Multifaceted Approach to Understanding the Botnet Phe-

nomenon. In Internet Measurement Conference (IMC) (2006).

[38] REITER, M., AND YEN, T. Traffic aggregation for malware de-

tection. In Conference on Detection of Intrusions and Malware

& Vulnerability Assessment (DIMVA) (2008).

[39] RIECK, K., HOLZ, T., WILLEMS, C., DUESSEL, P., AND

LASKOV, P. Learning and classification of malware behavior.

In Conference on Detection of Intrusions and Malware, and Vul-

nerability Assessment (DIMVA) (2008).

[40] ROYAL, P., HALPIN, M., DAGON, D., EDMONDS, R., AND

LEE, W. PolyUnpack: Automating the Hidden-Code Extraction

of Unpack-Executing Malware. In Annual Computer Security Ap-

plication Conference (ACSAC) (2006).

[41] SINGH, S., ESTAN, C., VARGHESE, G., AND SAVAGE, S. Au-

tomated Worm Fingerprinting. In Symposium on Operating Sys-

tems Design and Implementation (OSDI) (2004).

[42] SMALL, S., MASON, J., MONROSE, F., PROVOS, N., AND

STUBBLEFIELD, A. To Catch A Predator: A Natural Language

Approach for Eliciting Malicious Payloads. In 17th Usenix Secu-

rity Symposium (2008).

[43] SPITZNER, L. Honeypots: Tracking Hackers. Addison-Wesley,

2002.

[44] STINSON, E., AND MITCHELL, J. C. Characterizing bots’ re-

mote control behavior. In Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment (2007).

[45] SUN, W., LIANG, Z., VENKATAKRISHNAN, V., AND SEKAR,

R. One-way Isolation: An Effective Approach for Realizing Safe

Execution Environments. In Network and Distributed Systems

Symposium (NDSS) (2005).

[46] SZOR, P. The Art of Computer Virus Research and Defense. Ad-

dison Wesley, 2005.

[47] VASUDEVAN, A., AND YERRABALLI, R. Cobra: Fine-grained

Malware Analysis using Stealth Localized-Executions. In IEEE

Symposium on Security and Privacy (2006).

[48] WAGNER, D., AND DEAN, D. Intrusion Detection via Static

Analysis. In IEEE Symposium on Security and Privacy (2001).

[49] WANG, H., JHA, S., AND GANAPATHY, V. NetSpy: Automatic

Generation of Spyware Signatures for NIDS. In Annual Com-

puter Security Applications Conference (ACSAC) (2006).

[50] WANG, K., AND STOLFO, S. Anomalous Payload-based Net-

work Intrusion Detection. In Symposium on Recent Advances in

Intrusion Detection (RAID) (2005).

[51] WANG, Y., BECK, D., JIANG, X., ROUSSEV, R., VERBOWSKI,

C., CHEN, S., AND KING, S. Automated Web Patrol with Strider

HoneyMonkeys: Finding Web Sites That Exploit Browser Vul-

nerabilities. In Network and Distributed System Security Sympo-

sium (NDSS) (2006).

[52] WANG, Y., BECK, D., VO, B., ROUSSEV, R., AND VER-

BOWSKI, C. Detecting Stealth Software with Strider Ghost-

buster. In Conference on Dependable Systems and Networks

(DSN) (2005).

[53] WEISER, M. Program Slicing. In International Conference on

Software Engineering (ICSE) (1981).

[54] WILLEMS, C., HOLZ, T., AND FREILING, F. Toward Auto-

mated Dynamic Malware Analysis Using CWSandbox. IEEE

Security and Privacy 2, 2007 (5).

[55] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,

E. Panorama: Capturing System-wide Information Flow for Mal-

ware Detection and Analysis. In ACM Conference on Computer

and Communication Security (CCS) (2007).

[56] ZHANG, X., GUPTA, R., AND ZHANG, Y. Precise dynamic slic-

ing algorithms. In International Conference on Software Engi-

neering (ICSE) (2003).

USENIX Association 18th USENIX Security Symposium 367

Protecting Confidential Data on Personal Computers with Storage Capsules
Kevin Borders, Eric Vander Weele, Billy Lau, and Atul Prakash

University of Michigan
Ann Arbor, MI, 48109

{kborders, ericvw, billylau, aprakash}@umich.edu
Abstract

Protecting confidential information is a major concern for organizations and individuals alike, who stand to suffer
huge losses if private data falls into the wrong hands. One of the primary threats to confidentiality is malicious soft-
ware on personal computers, which is estimated to already reside on 100 to 150 million machines. Current security
controls, such as firewalls, anti-virus software, and intrusion detection systems, are inadequate at preventing malware
infection. This paper introduces Storages Capsules, a new approach for protecting confidential files on a personal
computer. Storage Capsules are encrypted file containers that allow a compromised machine to securely view and
edit sensitive files without malware being able to steal confidential data. The system achieves this goal by taking a
checkpoint of the current system state and disabling device output before allowing access a Storage Capsule. Writes
to the Storage Capsule are then sent to a trusted module. When the user is done editing files in the Storage Capsule,
the system is restored to its original state and device output resumes normally. Finally, the trusted module declassi-
fies the Storage Capsule by re-encrypting its contents, and exports it for storage in a low-integrity environment. This
work presents the design, implementation, and evaluation of Storage Capsules, with a focus on exploring covert
channels.

1. Introduction
Traditional methods for protecting confidential informa-
tion rely on upholding system integrity. If a computer is
safe from hackers and malicious software (malware),
then so is its data. Ensuring integrity in today’s inter-
connected world, however, is exceedingly difficult.
Trusted computing platforms such as Terra [8] and
trusted boot [26] try to provide this integrity by verify-
ing software. Unfortunately, these platforms are rarely
deployed in practice and most software continues to be
unverified. More widely-applicable security tools, such
as firewalls, intrusion detection systems, and anti-virus
software, have been unable to combat malware, with
100 to 150 million infected machines running on the
Internet today according to a recent estimate [34]. Secu-
rity mechanisms for personal computers simply cannot
rely on keeping high integrity. Storage Capsules address
the need for access to confidential data from compro-
mised personal computers.

There are some existing solutions for preserving confi-
dentiality that do not rely on high integrity. One exam-
ple is mandatory access control (MAC), which is used
by Security-Enhanced Linux [23]. MAC can control the
flow of sensitive data with policies that prevent entities
that read confidential information from communicating
over the network. This policy set achieves the goal of
preventing leaks in the presence of malware. However,
defining correct policies can be difficult, and they
would prevent most useful applications from running
properly. For example, documents saved by a word

processor that has ever read secret data could not be
sent as e-mail attachments. Another embodiment of the
same principle can be seen in an “air gap” separated
network where computers are physically disconnected
from the outside world. Unplugging a compromised
computer from the Internet will stop it from leaking
information, but doing so greatly limits its utility. Both
mandatory access control with strict outbound flow
policies and air gap networks are rarely used outside of
protecting classified information due to their severe
impact on usability.

This paper introduces Storage Capsules, a new mecha-
nism for protecting sensitive information on a local
computer. The goal of Storage Capsules is to deliver the
same level of security as a mandatory access control
system for standard applications running on a commod-
ity operating system. Storage Capsules meet this re-
quirement by enforcing policies at a system-wide level
using virtual machines. The user’s system can also
downgrade from high-secrecy to low-secrecy by revert-
ing to a prior state using virtual machine snapshots.
Finally, the system can obtain updated Storage Capsules
from a declassification component after returning to low
secrecy.

Storage Capsules are analogous to encrypted file con-
tainers from the user’s perspective. When the user
opens a Storage Capsule, a snapshot is taken of the cur-
rent system state and device output is disabled. At this
point, the system is considered to be in secure mode.
When the user is finished editing files in a Storage Cap-
sule, the system is reverted to its original state – dis-

368 18th USENIX Security Symposium USENIX Association

carding all changes except those made to the Storage
Capsule – and device output is re-enabled. The storage
capsule is finally re-encrypted by a trusted component.

Storage Capsules guarantee protection against a com-
promised operating system or applications. Sensitive
files are safe when they are encrypted and when being
accessed by the user in plain text. The Capsule system
prevents the OS from leaking information by erasing its
entire state after it sees sensitive data. It also stops cov-
ert communication by fixing the Storage Capsule size
and completely re-encrypting the data every time it is
accessed by the OS. Our threat model assumes that the
primary operating system can do anything at all to un-
dermine the system. The threat model also assumes that
the user, hardware, the virtual machine monitor
(VMM), and an isolated secure virtual machine are
trustworthy. The Capsule system protects against covert
channels in the primary OS and Storage Capsules, as
well as many (though not all) covert channels at lower
layers (disk, CPU, etc.). One of the contributions of
this paper is identifying and suggesting mitigation
strategies for numerous covert channels that could po-
tentially leak data from a high-secrecy VM to a low-
secrecy VM that runs after it has terminated.

We evaluated the impact that Storage Capsules have on
the user’s workflow by measuring the latency of secu-
rity level transitions and system performance during
secure mode. We found that for a primary operating
system with 512 MB of RAM, transitions to secure
mode took about 4.5 seconds, while transitions out of
secure mode took approximately 20 seconds. We also
compared the performance of the Apache build bench-
mark in secure mode to that of a native machine, a plain
virtual machine, and a virtual machine running an en-
cryption utility. Overall, Storage Capsules added 38%
overhead compared to a native machine, and only 5%
compared to a VM with encryption software. The com-
mon workload for a Storage Capsule is expected to be
much lighter than an Apache build. In many cases, it
will add only a negligible overhead.

The main contribution of this work is a system that al-
lows safe access to sensitive files from a normal operat-
ing system with standard applications. The Capsule
system is able to switch modes within one OS rather
than requiring separate operating systems or processes
for different modes. This paper also makes contribu-
tions in the understanding of covert channels in such a
system. In particular, it looks at how virtualization tech-
nology can create new covert channels and how previ-
ously explored covert channels behave differently when
the threat model is a low-security virtual machine run-
ning after a high-security virtual machine.

It is important to keep in mind that Storage Capsules do
not protect integrity. There are a number of attacks that
they cannot prevent. If malicious software stops the user
from ever entering secure mode by crashing, then the
user might be coerced into accessing sensitive files
without Storage Capsules. Furthermore, malware can
manipulate data to present false information that tricks
the user into doing something erroneously, such as plac-
ing a stock transaction. These attacks are beyond the
scope of this paper.

The remainder of this paper is laid out as follows. Sec-
tion 2 discusses related work. Section 3 gives an over-
view of the usage model, the threat model, and design
alternatives. Section 4 outlines the system architecture.
Section 5 describes the operation of Storage Capsules.
Section 6 examines the effect of covert channels on
Storage Capsules. Section 7 presents evaluation results.
Finally, section 8 concludes and discusses future work.

2. Related Work
The Terra system [8] provides multiple security levels
for virtual machines using trusted computing technol-
ogy. Terra verifies each system component at startup
using a trusted platform model (TPM) [29], similar to
trusted boot [26]. However, Terra allows unverified
code to run in low-security virtual machines. One could
imagine a configuration of Terra in which the user’s
primary OS runs inside of a low-integrity machine, just
like in the Capsule system. The user could have a sepa-
rate secure VM for decrypting, editing, and encrypting
files. Assuming that the secure VM always has high
integrity, this approach would provide comparable secu-
rity and usability benefits to Storage Capsules. How-
ever, Terra only ensures a secure VM’s integrity at
startup; it does not protect running software from ex-
ploitation. If this secure VM ever loads an encrypted
file from an untrusted location, it is exposed to attack.
All sources of sensitive data (e-mail contacts, web serv-
ers, etc.) would have to be verified and added to the
trusted computing base (TCB), bloating its size and
impacting both management overhead and security.
Furthermore, the user would be unable to safely include
data from untrusted sources, such as the internet, in sen-
sitive files. The Capsule system imposes no such head-
aches; it can include low-integrity data in protected
files, and only requires trust in local system components
to guarantee confidentiality.

There has been extensive research on controlling the
flow of sensitive information inside of a computer. In-
tra-process flow control techniques aim to verify that
individual applications do not inadvertently leak confi-
dential data [6, 22]. However, this does not stop mali-

USENIX Association 18th USENIX Security Symposium 369

cious software that has compromised a computer from
stealing data at the operating system or file system
level. Another approach for controlling information
flow is at the process level with a mandatory access
control (MAC) system like SELinux [23]. MAC in-
volves enforcing access control policies on high-level
objects (typically files, processes, etc.). However, defin-
ing correct policies can be quite difficult [15] even for a
fixed set of applications. MAC would have a hard time
protecting personal computers that download and install
programs from the internet. Very few computers use
mandatory access control currently, and it is not sup-
ported by Microsoft Windows, a popular operating sys-
tem for personal computers. Storage Capsules employ a
similar approach to MAC systems, but do so at a higher
level of granularity (system-wide) using virtual machine
technology. This allows Storage Capsules to provide
more practical security for commodity operating sys-
tems without requiring modification.

There are a number of security products available for
encrypting and protecting files on a local computer,
including compression utilities [25, 35] and full disk
encryption software [1, 7, 20, 31]. The goal of file en-
cryption is to facilitate file transmission over an un-
trusted medium (e.g., an e-mail attachment), or protect
against adversarial access to the storage device (e.g., a
lost or stolen laptop). File encryption software does
safeguard sensitive information while it is decrypted on
the end host. Malicious software that has control of the
end host can steal confidential data or encryption keys.
Capsule also uses file encryption to allow storage in an
untrusted location, but it maintains confidentiality while
sensitive data is decrypted on the end host.

Storage Capsules rely on the virtual machine monitor as
part of the trusted computing base. VMMs are com-
monly accepted as less complex and more secure than
standard operating systems, with the Xen VMM having
under 50,000 lines of code [36], compared to 5.7 mil-
lion lines in the Linux 2.6 kernel [5]. These numbers are
reinforced by actual vulnerability reports, with Xen 3.x
only having 9 reports up to January 2009 [27], and the
Linux 2.6.x kernel having 165 reports [28] in that same
time period. VMMs are not invulnerable, but they have
proven to be more robust than standard kernels.

Virtualization technology has many useful properties
and features that make it a well-suited platform for
Storage Capsules. Despite these advantages, Garfinkel
et al. warn that virtualization has some shortcomings,
especially when it comes to security [9]. Most impor-
tantly, have many branches and saved states makes
patching and configuration much more difficult. A user
might load an old snapshot that is vulnerable to infec-

tion by an Internet worm. The Capsule system does not
suffer from these limitations because it is designed to
have one primary VM with a fairly straight execution
path. Transitions too and from secure mode are short-
lived, and should have a minimal impact on patching
and management tasks.

3. Overview

3.1 Storage Capsules from a User’s Per-
spective

From the user’s perspective, Storage Capsules are
analogous to encrypted file containers provided by a
program like TrueCrypt [31]. Basing the Capsule sys-
tem off of an existing and popular program’s usage
model makes it easier to gain acceptance. The primary
difference between Storage Capsules and traditional
encryption software is that the system enters a secure
mode before opening the Storage Capsule’s contents. In
this secure mode, network output is disabled and any
changes that the user makes outside of the Storage Cap-
sule will be lost. The user may still edit the Storage
Capsule contents with his or her standard applications.
When the user closes the Storage Capsule and exits
secure mode, the system reverts to the state it was in
before accessing sensitive data.

One motivating example for Storage Capsules is provid-
ing a secure journal. A person, call him Bob, may want
to write a diary in which he expresses controversial po-
litical beliefs. Bob might regularly write in this journal,
possibly pasting in news stories or contributions from
others on the internet. Being a diligent user, Bob might
store this document in an encrypted file container. Un-
fortunately, Bob is still completely vulnerable to spy-
ware when he enters the decryption password and edits
the document. Storage Capsules support the same usage
model as normal encrypted file containers, but also de-
liver protection against spyware while the user is ac-
cessing sensitive data.

Storage Capsules have some limitations compared to
encrypted file containers. These limitations are neces-
sary to gain additional security. First, changes that the
user makes outside of the encrypted Storage Capsule
while it is open will not persist. This benefits security
and privacy by eliminating all traces of activity while
the container was open. Storage Capsules guarantee that
the OS does not inadvertently hold information about
sensitive files as described by Czeskis et al. for the case
of TrueCrypt [4]. Unfortunately, any work from compu-
tational or network processes that may be running in the
background will be lost. One way to remove this limita-
tion would be to fork the primary virtual machine and

370 18th USENIX Security Symposium USENIX Association

allow a copy of it to run in the background. Allowing
low- and high-secrecy VMs to run at the same time,
however, reduces security by opening up the door for a
variety of covert channels.

3.2 Threat Model
Storage Capsules are designed to allow a compromised
operating system to safely edit confidential information.
However, some trusted components are necessary to
provide security. Figure 1 shows the architecture of the
Capsule system, with trusted components having solid
lines and untrusted components having dotted lines. The
user’s primary operating system runs inside of a pri-
mary VM. Neither the applications, the drivers, nor the
operating system are trusted in the primary VM; it can
behave in any arbitrary manner. A virtual machine
monitor (VMM) runs beneath the primary VM, and is
responsible for mediating access to physical devices.
The VMM is considered part of the trusted computing
base (TCB). The Capsule system also relies on a Secure
VM to save changes and re-encrypt Storage Capsules.
This secure VM has only a minimal set of applications
to service Storage Capsule requests, and has all other
services blocked off with a firewall. The secure VM is
also part of the TCB.

The user is also considered trustworthy in his or her
intent. Presumably, the user has a password to decrypt
each Storage Capsule and could do so using rogue soft-
ware without going into secure mode and leak sensitive
data. The user does not require full access to any trusted
components, however. The main user interface is the

primary VM, and the user should only interact with the
Secure VM or VMM briefly using a limited UI. This
prevents the user from inadvertently compromising a
trusted component with bad input.

The threat model assumes that malicious software may
try to communicate covertly within the primary VM.
Storage Capsules are designed to prevent a compro-
mised primary OS from saving data anywhere that will
persist through a snapshot restoration. However, Stor-
age Capsules do not guarantee that a malicious primary
VM cannot store data somewhere in a trusted compo-
nent, such as hardware or the VMM, in such a way that
it can recover information after leaving secure mode.
We discuss several of these covert channels in more
depth later in the paper.

3.3 Designs that do not Satisfy Storage
Capsule Goals

The first system design that would not meet the security
goals laid out in our threat model is conventional file
encryption software [1, 7, 20, 31]. Any information
stored in an encrypted file would be safe from malicious
software, or even a compromised operating system,
while it is encrypted. However, as soon as the user de-
crypts a file, the operating system can do whatever it
wants with the decrypted data.

Another design that would not meet the goals of Storage
Capsules is the NetTop architecture [19]. With NetTop,
a user has virtual machines with multiple security levels.
One is for accessing high-secrecy information, and an-
other for low-secrecy information, which may be con-
nected to the internet. Depending on how policies are
defined, NetTop either suffers from usability limitations
or would have security problems. First assume that the
high-secrecy VM must be able to read data from the
low-secrecy VM to load files from external locations
that are not part of the trusted computing base. Now, if
the high-secrecy VM is prevented from writing anything
back to the low-secrecy VM, then confidentiality is
maintained. However, this prevents the user from mak-
ing changes to a sensitive document, encrypting it, then
sending it back out over a low-secrecy medium. This
effectively makes everything read-only from the high-
secrecy VM to the low-secrecy VM. The other alterna-
tive – letting the high-secrecy VM encrypt and de-
classify data – opens up a major security hole. Data that
comes from the low-secrecy VM also might be mali-
cious in nature. If the high-secrecy VM reads that in-
formation, its integrity – and the integrity of its encryp-
tion operations – may be compromised.

Virtual Device
Drivers

Primary OS

Physical Device Drivers

Hardware

Primary VM

VMM

Virtual Device
Drivers

OS

Secure VM

Figure 1. In the Storage Capsule architecture, the
user’s primary operating system runs in a virtual ma-
chine. The secure VM handles encryption and declas-
sification. The dotted black line surrounding the pri-
mary VM indicates that it is not trusted. The other

system components are trusted.

USENIX Association 18th USENIX Security Symposium 371

4. System Architecture
The Capsule system has two primary modes of opera-
tion: normal mode and secure mode. In normal mode,
the computer behaves the same as it would without the
Capsule system. The primary operating system has ac-
cess to all devices and can communicate freely over the
network. In secure mode, the primary OS is blocked
from sending output to the external network or to de-
vices that can store data. Furthermore, the primary op-
erating system’s state is saved prior to entering secure
mode, and then restored when transitioning back to
normal mode. This prevents malicious software running
on the primary OS from leaking data from secure mode
to normal mode.

The Capsule system utilizes virtual machine technology
to isolate the primary OS in secure mode. Virtual ma-
chines also make it easy to save and restore system state
when transitioning to or from secure mode. Figure 1
illustrates the architecture of the Capsule system. The
first virtual machine, labeled Primary VM, contains the
primary operating system. This VM is the equivalent of
the user’s original computer. It contains all of the user’s
applications, settings, and documents. This virtual ma-
chine may be infected with malicious software and is
not considered trustworthy. The other virtual machine,
labeled Secure VM, is responsible for managing access
to Storage Capsules. The secure VM is trusted. The
final component of the Capsule system shown in Figure
1 is the Virtual Machine Monitor (VMM). The VMM is
responsible for translating each virtual device I/O re-
quest into a physical device request, and for governing
virtual networks. As such, it can also block device I/O
from virtual machines. The VMM has the power to
start, stop, save, and restore entire virtual machines.
Because it has full control of the computer, the VMM is
part of the trusted computing base.

The Capsule system adds three components to the
above architecture to facilitate secure access to Storage
Capsules. The first is the Capsule VMM module, which
runs as service inside of the VMM. The Capsule VMM
module performs the following basic functions:

• Saves and restores snapshots of the primary VM
• Enables and disables device access by the primary

VM
• Catches key escape sequences from the user
• Switches the UI between the primary VM and the

secure VM

The Capsule VMM module executes operations as re-
quested by the second component, the Capsule server,
which runs inside of the secure VM. The Capsule server
manages transitions between normal mode and secure

mode. During secure mode, it also acts as a disk server,
handling block-level read and write requests from the
Capsule viewer, which runs in the primary VM. The
Capsule server has dedicated interfaces for communi-
cating with the Capsule viewer and with the Capsule
VMM module. These interfaces are attached to separate
virtual networks so that the viewer and VMM module
cannot impersonate or communicate directly with each
other.

The third component, the Capsule viewer, is an applica-
tion that accesses Storage Capsules on the primary VM.
When the user first loads or creates a new Storage Cap-
sule, the viewer will import the file by sending it to the
Capsule server. The user can subsequently open the
Storage Capsule, at which point the viewer will ask the
Capsule server to transition the system to secure mode.
During secure mode, the viewer presents the contents of
the Storage Capsule to the user as a new mounted parti-
tion. Block-level read and write requests made by the
file system are forwarded by the viewer to the Capsule
server, which encrypts and saves changes to the Storage
Capsule. Finally, the Capsule viewer can retrieve the
encrypted Storage Capsule by requesting an export from
the Capsule server. The Capsule viewer is not trusted
and may cause a denial-of-service at any time. How-
ever, the Capsule system is designed to prevent even a
compromised viewer from leaking data from secure
mode to normal mode.

5. Storage Capsule Operation

5.1 Storage Capsule File Format
A Storage Capsule is actually an encrypted partition that
is mounted during secure mode. The Storage Capsule
model is based on TrueCrypt [31] – a popular encrypted
storage program. Like TrueCrypt, each new Storage
Capsule is created with a fixed size. Storage Capsules
employ XTS-AES – the same encryption scheme as
TrueCrypt – which is the IEEE standard for data en-
cryption [13]. In our implementation, the encryption
key for each file is created by taking the SHA-512 hash
of a user-supplied password. In a production system, it
would be beneficial to employ other methods, such as
hashing the password many times and adding a salt, to
make attacks more difficult. The key could also come
from a biometric reader (fingerprint reader, retina scan-
ner, etc.), or be stored on a key storage device like a
smart card. Storage Capsules operation does not depend
on a particular key source.

With XTS-AES, a different tweak value is used during
encryption for each data unit. A data unit can be one or
more AES blocks. The Storage Capsule implementation

372 18th USENIX Security Symposium USENIX Association

uses a single AES block for each data unit. In accor-
dance with the IEEE 1619 standard [13], Storage Cap-
sules use a random 128-bit starting tweak value that is
incremented for each data unit. This starting tweak
value is needed for decryption, so it is stored at the be-
ginning of the file. Because knowledge of the tweak
value does not weaken the encryption [18], it is stored
in the clear.

5.2 Creating and Importing a Storage
Capsule

The first step in securing data is creating a new Storage
Capsule. The following tasks take place during the crea-
tion process:

1. The Capsule viewer solicits a Storage Capsule file
name and size from the user.

2. The viewer makes a request to the Capsule server
on the secure VM to create a new Storage Cap-
sule.

3. The viewer asks the user to enter the secure key
escape sequence that will be caught by a keyboard
filter driver in the VMM. This deters spoofing by
a compromised primary VM.

4. After receiving the escape sequence, the VMM
module will give the secure VM control of the
user interface.

a. If the escape sequence is received unexpect-
edly (i.e. when the VMM has not received a
request to wait for an escape sequence from
the Capsule server), then the VMM module
will still give control of the UI to the secure
VM, but the secure VM will display a warn-
ing message saying that the user is not at a
secure password entry page.

5. The Capsule server will ask the user to select a
password, choose a random starting tweak value
for encryption, and then format the encapsulated
partition.

6. The Capsule server asks the VMM module to
switch UI focus back to the primary VM.

After the creation process is complete, the Capsule
server will send the viewer a file ID that it can store
locally to link to the Storage Capsule on the server.

Loading a Storage Capsule from an external location
requires fewer steps than creating a new Storage Cap-
sule. If the viewer opens a Storage Capsule file that has
been created elsewhere, it imports the file by sending it
to the Capsule server. In exchange, the Capsule server
sends the viewer a file ID that it can use as a link to the
newly imported Storage Capsule. After a Storage Cap-
sule has been loaded, the link on the primary VM looks

the same regardless of whether the Capsule was created
locally or imported from an external location.

5.3 Opening a Storage Capsule in Secure
Mode

At this point, one or more Storage Capsules reside on
the Capsule server, and have links to them on the pri-
mary VM. When the user opens a link with the Capsule
viewer, it will begin the transition to secure mode,
which consists of the following steps:

1. The Capsule viewer sends the Capsule server a
message saying that the user wants to open a Stor-
age Capsule, which includes the file ID from the
link in the primary VM.

2. The Capsule viewer asks the user to enter the es-
cape sequence that will be caught by the VMM
module.

3. The VMM module receives the escape sequence
and switches the UI focus to the secure VM. This
prevents malware on the primary VM from spoof-
ing a transition and stealing the file password.

a. If the escape sequence is received unexpect-
edly, the secure VM still receives UI focus,
but displays a warning message stating the
system is not in secure mode.

4. The VMM module begins saving a snapshot of the
primary VM in the background. Execution contin-
ues, but memory and disk data is copied to the
snapshot on write.

5. The VMM module disables network and other de-
vice output.

6. The Capsule server asks the user to enter the file
password.

7. The VMM module returns UI focus to the primary
VM.

8. The Capsule server tells the viewer that the transi-
tion is complete and begins servicing disk I/O re-
quests to the Storage Capsule.

9. The Capsule viewer mounts a local partition that
uses the Capsule server for back-end disk block
storage.

The above process ensures that the primary VM gains
access to the Storage Capsule contents only after its
initial state has been saved and the VMM has blocked
device output. The exact set of devices blocked during
secure mode is discussed more in the section on covert
channels.

Depending on the source of the Storage Capsule en-
cryption key, step 6 could be eliminated entirely. If the
key was obtained from a smart card or other device,
then the primary VM would retain UI focus throughout
the entire transition, except in the case of an unexpected

USENIX Association 18th USENIX Security Symposium 373

escape sequence from the user. In this case, the secure
VM must always take over the screen and warn the user
that he or she is not in secure mode.

5.4 Storage Capsule Access in Secure Mode
When the Capsule system is running in secure mode, all
reads and writes to the Storage Capsule are sent to the
Capsule server. The server will encrypt and decrypt the
data for each request as it is received, without perform-
ing any caching itself. The Capsule server instead relies
on the caches within the primary VM and its own oper-
ating system to minimize unnecessary encryption and
disk I/O. The disk cache in the primary VM sits above
the driver that sends requests through to the Capsule
server. On the secure VM, disk read and write requests
from the Capsule server go through the local file system
cache before they are sent to the disk. Later, we meas-
ure Storage Capsule disk performance during secure
mode and demonstrate that is comparable to current
encryption and virtualization software.

During secure mode, the VMM stores all writes to the
primary VM’s virtual disk in a file. This file contains
differences with respect to the disk state at the time of
the last snapshot operation (during the transition to se-
cure mode). In the Capsule system, this difference file is
stored on a partition that resides in main memory,
commonly referred to as a RAM disk. Our implementa-
tion uses the ImDisk Virtual Disk Driver [14]. Storing
the files on a RAM disk prevents potentially sensitive
data that the primary VM writes to its virtual disk from
reaching the physical disk. Although malicious access
to the physical disk is not the focus of this paper’s threat
model, allowing confidential data to touch the disk in-
creases the overall risk of leakage and the cost of hard-
ware destruction.

The main downside to storing virtual disk modifications
in memory is that the system requires more memory in
secure mode. However, the size of primary disk modifi-
cations in secure mode should be small under normal
circumstances because they are all temporary. Under
normal circumstances, the user has no reason to store
big files in a location where they will soon be deleted. If
the change buffer does fill up due to a denial-of-service
by malware or non-standard usage, then writes to the
main virtual disk will fail until the system reverts to
normal mode. If there turns out to be a legitimate need
for large amounts of temporary storage in secure mode,
then the change buffer could be stored on the physical
disk and the VMM could use an encrypted file system
for added protection.

5.5 Reverting to Normal Mode
Transitioning the Capsule system from secure mode
back to normal mode is the most security-sensitive op-
eration. Care must be taken to prevent leaks from secure
mode back to normal mode insofar as practical for the
desired level of security. A full discussion of the chan-
nels through which information might flow during this
transition and countermeasures can be found in the next
section. The Capsule system begins reverting to normal
mode when the user enters a key escape sequence. Here,
the escape sequence is not to prevent spoofing, but in-
stead to reduce the primary VM’s ability to leak data
through a timing channel. After the user hits the escape
sequence, the following steps take place:

1. The VMM module notifies the Capsule server of
the pending transition, which in turn notifies the
Capsule viewer.

2. The Capsule server waits up to 30 seconds for the
primary VM to flush disk writes to the Storage
Capsule. In our experiments, flushing always took
less than one second, but uncommon workloads
could make it take longer. We chose 30 seconds
because it is the default maximum write-back de-
lay for linux.

3. The secure VM reboots in order to flush any state
that was affected by the primary VM. (This blocks
some covert channels that are discussed in the
next section.)

4. The VMM module halts the primary VM, and
then reverts its state to the snapshot taken before
entering secure mode and resumes execution.

5. The VMM module re-enables network and other
device output for the primary VM.

After the Capsule system has reverted to normal mode,
all changes that were made in the primary VM during
secure mode, except those to the Storage Capsule, are
lost. Also, when the Capsule viewer resumes executing
in normal mode, it queries the Capsule to see what
mode it is in (if the connection fails due to the reboot,
normal mode is assumed). This is a similar mechanism
to the return value from a fork operation. Without it, the
Capsule viewer cannot tell whether secure mode is just
beginning or the system has just reverted to normal
mode, because both modes start from the same state.

5.6 Exporting Storage Capsules
After modifying a storage capsule, the user will proba-
bly want to back it up or transfer it to another person or
computer at some point. Storage Capsules support this
use case by providing an export operation. The Capsule
viewer may request an export from the Capsule server at
any time during normal mode. When the Capsule server

374 18th USENIX Security Symposium USENIX Association

exports an encrypted Storage Capsule back to the pri-
mary VM, it is essential that malicious software can
glean no information from the difference between the
Storage Capsule at export compared to its contents at
import. This should be the case even if malware has full
control of the primary VM during secure mode and can
manipulate the Storage Capsule contents in a chosen-
plaintext attack.

For the Storage Capsule encryption scheme to be se-
cure, the difference between the exported cipher-text
and the original imported cipher-text must appear com-
pletely random. If the primary VM can change specific
parts of the exported Storage Capsule, then it could leak
data from secure mode. To combat this attack, the Cap-
sule server re-encrypts the entire Storage Capsule using
a new random 128-bit starting tweak value before each
export. There is a small chance of two exports colliding.
For any two Storage Capsules, each of size 2 GB (227

encryption blocks), the chance of random 128-bit tweak
values partially colliding would be approximately 1 in 2
* 227 / 2128 or 1 in 2100. Because of the birthday paradox,
however, there will be a reasonable chance of a colli-
sion between a pair of exports after only 250 exports.
This number decreases further with the size of Storage
Capsules. Running that many exports would still take an
extremely long time (36 million years running 1 export /
second). We believe that such an attack is unlikely to be
an issue in reality, but could be mitigated if future
tweaked encryption schemes support 256-bit tweak val-
ues.

5.7 Key Escape Sequences
During all Capsule operations, the primary VM and the
Capsule viewer are not trusted. Some steps in the Cap-
sule system’s operation involve the viewer asking the
user to enter a key escape sequence. If the primary VM
becomes compromised, however, it could just skip ask-
ing the user to enter escape sequences and display a
spoofed UI that looks like what would show up if the
user did hit the escape sequence. This attack would steal
the file decryption password while the system is still in
normal mode. The defense against this attack is that the
user should be accustomed to entering the escape se-
quence and therefore hit it anyway or notice anomalous
behavior.

It is unclear how susceptible real users would be to
spoofing attack that omits asking for an escape se-
quence. The success of such an attack is likely to de-
pend on user education. Formally evaluating the usabil-
ity of escape sequences in the Capsule system is future
work. Another design alternative that may help if spoof-
ing attacks are found to be a problem is reserving a se-

cure area on the display. This area would always tell the
user whether the system is in secure mode or the secure
VM has control of the UI.

6. Covert Channel Analysis
The Storage Capsule system is designed to prevent any
direct flow of information from secure mode to normal
mode. However, there are a number of covert channels
through which information may be able to persist during
the transition from secure to normal mode. This section
tries to answer the following questions about covert
channels in the Capsule system as best as possible:

• Where can the primary virtual machine store in-
formation that it can retrieve after reverting to
normal mode?

• What defenses might fully or partially mitigate
these covert information channels?

We do not claim to expose all covert channels here, but
list many channels that we have uncovered during our
research. Likewise, the proposed mitigation strategies
are not necessarily optimal, but represent possible ap-
proaches for reducing the bandwidth of covert channels.
Measuring the maximum bandwidth of each covert
channel requires extensive analysis and is beyond the
scope of this paper. There has been a great deal of re-
search on measuring the bandwidth of covert channels
[2, 16, 21, 24, 30, 33], which could be applied to calcu-
late the severity of covert channels in the Capsule sys-
tem in future work.

The covert channels discussed in this section can be
divided into five categories:

1. Primary OS and Capsule – Specific to Storage
Capsule design

2. External Devices – Includes floppy, CD-ROM,
USB, SCSI, etc.

3. External Network – Changes during secure mode
that affect responsiveness to external connections

4. VMM – Arising from virtual machine monitor
implementation, includes memory mapping and
virtual devices

5. Core Hardware – Includes CPU and disk drives.

The Capsule system prevents most covert channels in
the first three categories. It can use the VMM to medi-
ate the primary virtual machine’s device access and
completely erase the primary VM’s state when reverting
to normal mode. The Capsule system also works to pre-
vent timing channels when switching between modes of
operation, and does respond to external network traffic
while in secure mode.

USENIX Association 18th USENIX Security Symposium 375

Storage Capsules do not necessarily protect against
covert channels in the last two categories. There has
been a lot of work on identifying, measuring, and miti-
gating covert channels in core hardware for traditional
MLS systems [16, 17, 21, 30]. Similar methods for
measuring and mitigating those core channels could be
applied to Storage Capsules. Covert channels arising
from virtualization technology have not received much
attention. This research hopes to highlight some of the
key mechanisms in a VMM that can facilitate covert
communication. The remainder of this section explores
covert channels in each of these categories, including
mitigation strategies and their required trade-offs.

6.1 Primary OS and Storage Capsule
Channels

In addition to covert channels that one might find in
other systems, the design of Storage Capsules creates
opportunities for covert communication. This section
focuses on the interactions between the primary VM
and the secure VM. The primary VM should not be able
to affect the secure VM’s state during secure mode in a
way that it can detect during normal mode. Here we
examine three attack vectors that a compromised pri-
mary VM might use to steal data, and corresponding
counter-measures.

Transition Timing
When the VMM restores the primary virtual machine
from a snapshot, the restored state contains the exact
same information as prior to entering secure mode. Fol-
lowing the restoration, the primary VM can obtain addi-
tional information by fetching the system time, which
tells it when the system returned to normal mode. If the
primary VM can manipulate the transition timing from
secure mode, then it can leak data.

The Capsule system prevents direct leaks through tran-
sition timing by requiring a secure key escape sequence
to switch back to normal mode. However, the primary
VM may still be able to affect transition timing depend-
ing on how long the Capsule server waits for the pri-
mary VM to flush disk writes to the Storage Capsule
upon leaving secure mode. One option that would pre-
clude manipulation of transition timing would be for the
Capsule server to wait a fixed time-period for disk
writes to complete. This would be the most secure ap-
proach. Unfortunately, this strategy would either impact
usability or threaten correctness. If the server were to
stall 30 seconds – the default write-back delay for Linux
– then the transition time would be unnecessarily long
in most cases. On the other hand, if it only waited a few
seconds, then some delayed writes might fail and cor-
rupt the Storage Capsule.

For our implementation of the Capsule system, we
chose a transition timing policy that sacrifices a few bits
of potential information leakage per transition, but is
more usable. The Capsule server will wait for the pri-
mary VM to flush Storage Capsule writes for up to 30
seconds. If the primary VM finishes the disk flush in
less than 30 seconds, the server will immediately pro-
ceed with restoration. This opens up the possibility of
the primary VM stalling a precise length of time after
flushing writes so that it can read back timing informa-
tion after returning to normal mode. The maximum
bandwidth of this timing channel is somewhat limited,
however, because the snapshot restoration adds noise to
the transition time. Depending on how much memory
the primary VM has, the amount of time between exit-
ing secure mode and resuming in normal mode can vary
by several seconds. By notifying the server at a specific
offset from the most recent half-minute, the primary
VM will only be able to communicate a few bits of data.
One possible counter-measure to this type of timing
channel would be to deliberately skew the clock during
secure mode so the primary VM cannot accurately
judge system time.

Storage Capsule Contents
The ideal place for a compromised primary VM to store
data would be in the Storage Capsule itself. It is essen-
tial that the Capsule server cut off this channel. First,
Storage Capsules must have a fixed size. This imposes a
small usability limitation, which we believe is reason-
able given that other popular systems like TrueCrypt
[31] fix the size of encrypted file containers. Enforcing
the next constraint required to cut off storage channels
is slightly more complicated. No matter what changes
the primary VM makes to the Storage Capsule in secure
mode, it must not be able to deduce what has been
changed after the Capsule server exports the Storage
Capsule. As discussed earlier, XTS-AES encryption
with a different tweak value for each export satisfies
this requirement. Whether the primary VM changes
every single byte or does not touch anything, the result-
ing exported Storage Capsule will be random with re-
spect to its original contents.

Social Engineering Attacks
If the primary virtual machine cannot find a way to leak
data directly, then it can resort to influencing user be-
havior. The most straightforward example of a social
engineering attack would be for the primary VM to
deny service to the user by crashing at a specific time,
and then measuring transition time back to normal
mode. There is a pretty good chance that the user would
respond to a crash by switching back to normal mode
immediately, especially if the system is prone to crash-

376 18th USENIX Security Symposium USENIX Association

ing under normal circumstances. In this case, the user
may not even realize that an attack is taking place. An-
other attack that is higher-bandwidth, but perhaps more
suspicious, would be for the primary VM to display a
message in secure mode that asks the user to perform a
task that leaks information. For example, a message
could read “Automatic update failed, please open the
update dialog and enter last scan time ‘4:52 PM’ when
internet connectivity is restored.” Users who do not
understand covert channels could easily fall victim to
this attack. In general, social engineering is difficult to
prevent. The Capsule system currently does not include
any counter-measures to social engineering. In a real
deployment, the best method of fighting covert channels
would be to properly educate the users.

6.2 External Device Channels
Any device that is connected to a computer could poten-
tially store information. Fortunately, most devices in a
virtual machine are virtual devices, including the key-
board, mouse, network card, display, and disk. In a tra-
ditional system, two processes that have access to the
keyboard could leak data through the caps-, num-, and
scroll-lock state. The VMware VMM resets this device
state when reverting to a snapshot, so a virtual machine
cannot use it for leaking data. We did not test virtualiza-
tion software other than VMware to see how it resets
virtual device state.

Some optional devices may be available to virtual ma-
chines. These include floppy drives, CD-ROM drives,
sound adapters, parallel ports, serial ports, SCSI de-
vices, and USB devices. In general, there is no way of
stopping a VM that is allowed to access these devices
from leaking data. Even devices that appear to be read-
only, such as a CD-ROM drive, may be able to store
information. A VM could eject the drive or position the
laser lens in a particular spot right before switching
back to normal mode. While these channels would be
easy to mitigate by adding noise, the problem worsens
when considering a generic bus like USB. A USB de-
vice could store anything or be anything, including a
disk drive. One could allow access to truly read-only
devices, but each device would have to be examined on
an individual basis to uncover covert channels. The
Capsule system prevents these covert channels because
the primary VM is not given access to external devices.
If the primary VM needs access to external devices,
then they would have to be disabled during secure
mode.

6.3 External Network Channels
In addition to channels from the Primary VM in secure
mode to normal mode, it is also important to consider
channels between the Storage Capsule system and ex-
ternal machines during secure mode. If malware can
utilize so many resources that it affects how responsive
the VMM is to external queries (such as pings), then it
can leak data to a colluding external computer.

The best way to mitigate external network channels is
for the VMM to immediately drop all incoming packets
with a firewall, not even responding with reset packets
for failed connections. If the VMM does not require any
connections during secure mode, which it did not for
our implementation, then this is the easiest and most
effective approach.

6.4 Virtual Machine Monitor Channels
In a virtualization system, everything is governed by the
virtual machine monitor, including memory mapping,
device I/O, networking, and snapshot saving/restoration.
The VMM’s behavior can potentially open up new cov-
ert channels that are not present in a standard operating
system. These covert channels are implementation-
dependent and may or may not be present in different
VMMs. This section serves as a starting point for think-
ing about covert channels in virtual machine monitors.

Memory Paging
Virtual machines are presented with a virtual view of
their physical memory. From a VM’s perspective, it has
access to a contiguous “physical” memory segment with
a fixed size. When a VM references its memory, the
VMM takes care of mapping that reference to a real
physical page, which is commonly called a machine
page. There are a few different ways that a VMM can
implement this mapping. First, it could directly pin all
of the virtual machine’s physical pages to machine
pages. If the VMM uses this strategy, and it keeps the
page mapping constant during secure mode and after
restoration, then there is no way for a virtual machine to
affect physical memory layout. However, this fixed
mapping strategy is not always the most efficient way to
manage memory.

Prior research describes resource management strategies
in which the VMM may over-commit memory to virtual
machines and page some of the VM’s “physical” mem-
ory out to disk [11, 32]. If the VMM employs this strat-
egy, then a virtual machine can affect the VMM’s page
table by touching different pages within its address
space. The residual effects of page table manipulation
may be visible to a VM after a snapshot restoration,
unless the VMM first pages in all of the VM’s memory.

USENIX Association 18th USENIX Security Symposium 377

A snapshot restoration should page in all of a VM’s
memory in most cases. But, if it is a “background” res-
toration, then accessing a memory location that has not
been loaded from the snapshot yet and is paged out to
disk might incur two page faults instead of one, which
can be measured and may leak information.

VMware ESX server employs a number of tricks that
allow it to over-commit memory to virtual machines
[32]. Each of the mechanisms described by Wald-
spurger allow efficient server consolidation, but also
create an opportunity for covert channels. The first
mechanism he describes is ballooning. Guest virtual
machines contain balloon drivers that allocate extra
memory and then tell the VMM it can page out the cor-
responding “physical” pages. With ballooning, a misbe-
having guest OS can touch the balloon driver’s pages
and cause the VMM to load them in from disk. When
the VM is subsequently reverted to a snapshot, the
compromised OS can again touch all of the balloon
driver pages to see whether they have already been
faulted in prior to the snapshot restoration. The VMM
could mitigate this ballooning channel by restoring the
state of its page table to match the original set of bal-
looned pages when restoring a snapshot. Of course,
ballooning may be used as a covert channel between
simultaneously executing VMs in systems other than
Capsule.

There has also been research on sharing memory pages
with the same content in virtual machines [3, 32]. If the
VMM maps multiple pages to one machine page and
marks them as copy-on-write, then the virtual machine
will encounter a page fault when writing to one of them.
If a VM sets a large number of pages to have the same
value during secure mode, then a much larger number
of page faults will take place when restoring a snapshot.
However, these page faults will only be noticeable to
the VM if execution resumes in normal mode before all
of the VM’s memory pages are loaded from the snap-
shot file. In this case, the VM can measure the total
restoration time or write to pages before they have
loaded and test for page faults to recover information. If
the VM resumes execution after its memory has been
fully restored and pages have been re-scanned for du-
plication, then this covert channel will not work.

The Capsule system does not over-commit memory for
virtual machines, so the memory saving techniques
mentioned above do not take effect. Our implementa-
tion of the Capsule system does not employ any
counter-measures to covert channels based on memory
paging.

Virtual Networks
The Capsule system blocks external network access
during secure mode, but it relies on a virtual network
for communication between the secure VM and the
primary VM. While the virtual network itself is stateless
(to the best of our knowledge), anything connected to
the network could potentially be a target for relaying
information from secure mode to normal mode. The
DHCP and NAT services in the VMM are of particular
interest. A compromised virtual machine may send arbi-
trary packets to these services in an attempt to affect
their state. For example, a VM might be able to claim
several IP addresses with different spoofed MAC ad-
dresses. It could then send ARP requests to the DHCP
service following snapshot restoration to retrieve the
spoofed MAC addresses, which contain arbitrary data.
The Capsule system restarts both the DHCP and NAT
services when switching back to normal mode to avert
this covert channel.

Any system that allows both a high-security and low-
security VM to talk to a third trusted VM (the secure
VM in Capsule) exposes itself another covert channel.
Naturally, all bets are off if the primary VM can com-
promise the secure VM. Even assuming the secure VM
is not vulnerable, the primary VM may still be able to
convince it to relay data from secure mode to normal
mode. Like the DHCP service on the host, the secure
VM’s network stack stores information. For example,
the primary VM could send out TCP SYN packets with
specific source port numbers that contain several bits of
data right before reverting to normal mode. When the
primary VM resumes execution, it could see the source
ports in SYN/ACK packets from the secure VM.

It is unclear exactly how much data can be stashed in
the network stack on an unsuspecting machine and how
long that information will persist. The only way to guar-
antee that a machine will not inadvertently relay state
over the network is to reboot it. This is the approach we
take to flush the secure VM’s network stack state when
switching back to normal mode in Capsule.

Guest Additions
The VMware VMM supports additional software that
can run inside of virtual machines to enhance the virtu-
alization experience. The features of guest additions
include drag-and-drop between VMs and a shared clip-
board. These additional features would undermine the
security of any virtual machine system with multiple
confidentiality levels and are disabled in the Capsule
system.

378 18th USENIX Security Symposium USENIX Association

6.5 Core Hardware Channels
Core hardware channels allow covert communication
via one of the required primary devices: CPU or disk.
Memory is a core device, but memory mapping is han-
dled by the VMM, and is discussed in the previous sec-
tion. Core hardware channels might exist in any multi-
level secure system and are not specific to Storage Cap-
sules or virtual machines. One difference between prior
research and this work is that prior research focuses on
a threat model of two processes that are executing si-
multaneously on the same hardware. In the Capsule
system, the concern is not with simultaneous processes,
but with a low-security process (normal-mode VM)
executing on the same hardware after a high-security
process (secure-mode VM) has terminated. This con-
straint rules out some traditional covert channels that
rely on resource contention, such as a CPU utilization
channel.

CPU State
Restoring a virtual machine’s state from a snapshot will
overwrite all of the CPU register values. However,
modern processors are complex and store information in
a variety of persistent locations other than architecture
registers. Many of these storage areas, such as branch
prediction tables, are not well-documented or exposed
directly to the operating system. The primary method
for extracting this state is to execute instructions that
take a variable number of clock cycles depending on the
state and measure their execution time, or exploit specu-
lative execution feedback. Prior research describes how
one can use these methods to leak information through
cache misses [24, 33].

There are a number of counter-measures to covert
communication through CPU state on modern proces-
sors. In general, the more instructions that execute in
between secure mode and normal mode, the less state
will persist. Because the internal state of a microproces-
sor is not completely documented, it is unclear exactly
how much code would need to run to eliminate all CPU
state. One guaranteed method of wiping out all CPU
state is to power off the processor. However, recent
research on cold boot attacks [12] shows that it may
take several minutes for memory to fully discharge.
This strategy would lead to an unreasonably long delay
when switching from secure mode to normal mode.

The ideal solution for eliminating covert CPU state
channels in Capsule and other virtualization systems
would be with hardware support. The latest CPUs al-
ready support hardware virtualization, which allows
them to fully emulate instruction sets for virtual ma-
chines. An additional mechanism is needed when

switching between virtual machines that not only re-
stores register and memory mappings, but also restores
all state that could affect VM execution. This operation
would load all of the cache data (L1, L2, and instruc-
tion), the branch prediction table, and any other inter-
mediate state. It would also be sufficient to provide an
instruction that would erase all of this data.

Although the Capsule system does not take counter-
measures to prevent CPU state covert channels, the
VMM restores a significant portion of the primary
VM’s original memory state before the VM can resume
execution. This restoration will likely eliminate any
residual cache lines from secure mode. It will also add a
great deal of noise to any other CPU state, such as
branch predictor tables, due to the number of instruc-
tions that execute during restoration. Computing the
maximum bandwidth of CPU state channels in the Cap-
sule system is future work.

Disk State
The caching and layout of files on disk, and in the file
system, can be used to transmit information. Another
covert channel exists in the positioning of the disk arm
[10]. If the primary VM can manipulate disk state in a
way that is readable after transitioning back to normal
mode, then it can leak data. There are a few aspects of
the Capsule system’s design that make such an attack
much more difficult. Any writes to the virtual disk dur-
ing secure mode actually go to flat difference file that
stores changes since the last snapshot operation. The
primary VM has no control over where the data goes on
disk, only how much is written, which would make ex-
ploitation of such a channel difficult. The VMM deletes
this file when transitioning back to normal mode. This
frees up any blocks that were allocated for the differ-
ence file. Finally, the VMM reads in the primary VM’s
original memory state from disk during snapshot resto-
ration. This moves the position of the disk arm and adds
considerable noise to the cache.

Despite the noise from transitioning back to normal
mode, the disk cache is the most likely candidate for a
covert channel. All writes are sent to a difference file
and deleted, but reads touch the same virtual disk file
during secure mode and normal mode. Consider the
primary VM sequentially reading every block on its
disk during secure mode to transmit a 1, or reading very
little to transmit a 0. The primary VM might be able to
tell what happened in secure mode by reading back disk
blocks and measuring if they hit the disk cache. One
would need to flush all of the disk caches to eliminate
this channel. The Capsule system does not take any
steps to mitigate disk state channels.

USENIX Association 18th USENIX Security Symposium 379

6.6 Mitigating VMM and Core Hardware
Covert Channels

The design of Storage Capsules centers around improv-
ing local file encryption with a minimal impact on exist-
ing behavior. The user only has to take a few additional
steps, and no new hardware is required. The current
implementation is designed to guard against many cov-
ert channels, but does not stop leakage through all of
them, such as the CPU state, through which data may
leak from secure to normal mode. If the cost of small
leaks outweighs usability and the cost of extra hard-
ware, then there is an alternative design that can provide
additional security.

One way of cutting off almost all covert channels would
be to migrate the primary VM to a new isolated com-
puter upon entering secure mode. This way, the virtual
machine would be running on different core hardware
and a different VMM while in secure mode, thus cutting
off covert channels at those layers. VMware ESX server
already supports live migration, whereby a virtual ma-
chine can switch from one physical computer to another
without stopping execution. The user would have two
computers at his or her desk, and use one for running
the primary VM in secure mode, and the other for nor-
mal mode. When the user is done accessing a Storage
Capsule, the secure mode computer would reboot and
then make the Storage Capsule available for export over
the network. This extension of the Capsule system’s
design would drastically reduce the overall threat of
covert channels, but would requires additional hardware
and could add usability impediments that would not be
suitable in many environments.

7. Performance Evaluation
There are three aspects of performance that are impor-
tant for Storage Capsules: (1) transition time to secure
mode, (2) system performance in secure mode, and (3)
transition time to normal mode. It is important for tran-
sitions to impose only minimal wait time on the user
and for performance during secure mode to be compa-
rable to that of a standard computer for common tasks.
This section evaluates Storage Capsule performance for
transitions and during secure mode. The experiments
were conducted on a personal laptop with a 2 Ghz Intel
T2500 processor, 2 GB of RAM, and a 5200 RPM hard
drive. Both the host and guest operating systems (for the
secure VM and primary VM) were Windows XP Ser-
vice Pack 3, and the VMM software was VMware
Workstation ACE Edition 6.0.4. The secure VM and the
primary VM were both configured with 512 MB of
RAM and to utilize two processors, except where indi-
cated otherwise.

The actual size of the Storage Capsule does not affect
any of the performance numbers in this section. It does,
however, influence how long it takes to run an import or
export. Both import and export operations are expected
to be relatively rare in most cases – import only occurs
when loading a Storage Capsule from an external
location, and export is required only when sending a
Storage Capsule to another user or machine. Importing
and exporting consist of a disk read, encryption (for
export only), a local network transfer, and a disk write.
On our test system, the primary VM could import a 256
MB Storage Capsule in approximately 45 seconds and
export it in approximately 65 seconds. Storage Capsules
that are imported and exported more often, such as e-
mail attachments, are likely to be much smaller and
should take only a few seconds.

0
1
2
3
4
5
6
7
8
9

10

256 512 1024
VM Memory (MB)

Se
co

nd
s

0

50

100

150

200

250

300

256 512 1024
VM Memory (MB)

Se
co

nd
s

Snapshot

Mount
Capsule
Disable
Netw ork

0
10
20
30
40
50
60
70
80
90

100

256 512 1024
VM Memory (MB)

Se
co

nd
s

0

50

100

150

200

250

300

256 512 1024
VM Memory (MB)

Se
co

nd
s Restore

Reset VM
Flush Disk

 (a) (b) (c) (d)
Figure 2. Transition times for different amounts of primary VM memory.

(a) to secure mode with background snapshot, (b) to secure mode with full snapshot
(c) to normal mode with background restore, and (d) to normal mode with full restore.

380 18th USENIX Security Symposium USENIX Association

7.1 Transitioning to and from Secure
Mode

The transitions to and from secure mode consist of sev-
eral tasks. These include disabling/enabling device out-
put, mounting/dismounting the Storage Capsule, sav-
ing/restoring snapshots, waiting for an escape sequence,
and obtaining the encryption key. Fortunately, some
operations can happen in parallel. During the transition
to secure mode, the system can do other things while
waiting for user input. The evaluation does not count
this time, but it will reduce the delay experienced by the
user in a real deployment. VMware also supports both
background snapshots (copy-on-write) and background
restores (copy-on-read). This means that execution may
resume in the primary VM before memory has been
fully saved or restored from the snapshot file. The sys-
tem will run slightly slower at first due to page faults,
but will speed up as the snapshot or restore operation
nears completion. A background snapshot or restore
must complete before another snapshot or restore opera-
tion can begin. This means that even if the primary VM
is immediately usable in secure mode, the system can-
not revert to normal mode until the snapshot is finished.

Figure 2 shows the amount of time required for transi-
tioning to and from secure mode with different amounts
of RAM in the primary VM. Background snapshots and
restorations make a huge difference. Transitioning to
secure mode takes 4 to 5 seconds with a background
snapshot, and 60 to 230 seconds without. The time re-
quired for background snapshots, mounting the Storage
Capsule, and disabling network output also stays fairly
constant with respect to primary VM memory size.
However, the full snapshot time scales linearly with the
amount of memory. Note that the user must wait for the
full snapshot time before reverting to normal mode.

The experiments show that reverting to normal mode is
a more costly operation than switching to secure mode,
especially when comparing the background restore to
the background snapshot operation. This is because
VMware allows a virtual machine to resume immedi-
ately during a background snapshot, but waits until a
certain percentage of memory has been loaded in a
background restore. Presumably, memory reads are
more common than memory writes, so copy-on-read for
the restore has worse performance than copy-on-write
for the snapshot. VMware also appears to employ a
non-linear strategy for deciding what portion of a back-
ground restore must complete before the VM may re-
sume execution. It waited approximately the same
amount of time when a VM had 256 MB or 512 MB of
RAM, but delayed significantly longer for the 1 GB
case.

The total transition times to secure mode are all reason-
able. Many applications will take 4 or 5 seconds to load
a document anyway, so this wait time imposes little
burden on the user. The transition times back to normal
mode for 256 MB and 512 MB are also reasonable.
Waiting less than 20 seconds does not significantly dis-
rupt the flow of work. However, 60 seconds may be
long wait time for some users. It may be possible to
optimize snapshot restoration by using copy-on-write
memory while the primary VM is in secure mode. This
way, the original memory would stay in tact and the
VMM would only need to discard changes when transi-
tioning to normal mode. Optimizing transition times in
this manner is future work.

7.2 Performance in Secure Mode
Accessing a Storage Capsule imposes some overhead
compared to a normal disk. A Storage Capsule read or
write request traverses the file system in the primary
VM, and is then sent to the secure VM over the virtual
network. The request then travels through a layer of
encryption on the secure VM, out to its virtual disk, and
then to the physical drive. We compared the disk and
processing performance of Storage Capsules to three
other configurations. These configurations consisted of
a native operating system, a virtual machine, and a vir-
tual machine with a TrueCrypt encrypted file container.
For the evaluation, we ran an Apache build benchmark.
This benchmark involves decompressing and extracting
the Apache web server source code, building the code,
and then removing all of the files. The Apache build
benchmark probably represents the worst case scenario
for Storage Capsule usage. We expect that the primary
use of Storage Capsules will be for less disk-intensive
activities like editing documents or images, for which
the overhead should be unnoticeable.

0
50

100

150
200
250
300

350
400
450

Native VM VM + TC Capsule

Configuration

Ti
m

e
(s

ec
on

ds
)

Remove
Build
Unpack

Figure 3. Results from building Apache with a native
OS, a virtual machine, a virtual machine running True-
Crypt, and Capsule. Storage Capsules add only a 5%
overhead compared to a VM with TrueCrypt, 18%

slower than a plain VM, and 38% overhead compared
to a native OS.

USENIX Association 18th USENIX Security Symposium 381

Figure 3 shows the results of the Apache build bench-
mark. Storage Capsules performed well overall, only
running 38% slower than a native system. Compared to
a single virtual machine running similar encryption
software (TrueCrypt), Storage Capsules add an over-
head of only 5.1% in the overall benchmark and 31% in
the unpack phase. This shows that transferring reads
and writes over the virtual network to another VM has a
reasonably small performance penalty. The most sig-
nificant difference can be seen in the remove phase of
the benchmark. It executes in 1.9 seconds on a native
system, while taking 5.5 seconds on a VM, 6.5 seconds
on a VM with TrueCrypt, and 7.1 seconds with Storage
Capsules. The results from the VM and VM with True-
Crypt tests show, however, that the slowdown during
the remove phase is due primarily to disk performance
limitations in virtual machines rather than the Capsule
system itself.

8. Conclusion and Future Work
This paper introduced Storage Capsules, a new mecha-
nism for securing files on a personal computer. Storage
Capsules are similar to existing encrypted file contain-
ers, but protect sensitive data from malicious software
during decryption and editing. The Capsule system pro-
vides this protection by isolating the user’s primary
operating system in a virtual machine. The Capsule sys-
tem turns off the primary OS’s device output while it is
accessing confidential files, and reverts its state to a
snapshot taken prior to editing when it is finished. One
major benefit of Storage Capsules is that they work with
current applications running on commodity operating
systems.

Covert channels are a serious concern for Storage Cap-
sules. This research explores covert channels at the
hardware layer, at the VMM layer, in external devices,
and in the Capsule system itself. It looks at both new
and previously examined covert channels from a novel
perspective, because Storage Capsules have different
properties than side-by-side processes in a traditional
multi-level secure system. The research also suggests
ways of mitigating covert channels and highlights their
usability and performance trade-offs. Finally, we evalu-
ated the overhead of Storage Capsules compared to
both a native system and standard virtual machines. We
found that transitions to and from secure mode were
reasonably fast, taking 5 seconds and 20 seconds, re-
spectively. Storage Capsules also performed well in an
Apache build benchmark, adding 38% overhead com-
pared to a native OS, but only a 5% penalty when com-
pared to running current encryption software inside of a
virtual machine.

In the future, we plan to further explore covert channels
discussed in this work. This includes measuring their
severity and quantifying the effectiveness of mitigation
strategies. We also hope to conduct a study on usability
of keyboard escape sequences for security applications.
Storage Capsules rely on escape sequences to prevent
spoofing attacks by malicious software, and it would be
beneficial to know how many users of the Capsule sys-
tem would still be vulnerable to such attacks.

Acknowledgements
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0705672.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the
National Science Foundation

References
[1] M. Blaze. A Cryptographic File System for

UNIX. In Proc. of the 1st ACM Conference on
Computer and Communications Security, Nov.
1993.

[2] R. Browne. An Entropy Conservation Law for
Testing the Completeness of Covert Channel
Analysis. In Proc. of the 2nd ACM Conference on
Computer and Communication Security (CCS),
Nov. 1994.

[3] E. Bugnion, S. Devine, K. Govil, and M. Rosen-
blum. Disco: Running Commodity Operating
Systems on Scalable Multiprocessors. ACM
Transactions on Computer Systems, 15(4), Nov.
1997.

[4] A. Czeskis, D. St. Hilair, K. Koscher, S. Gribble,
and T. Kohno. Defeating Encrypted and Deni-
able File Systems: TrueCrypt v5.1a and the Case
of the Tattling OS and Applications. In Proc. of
the 3rd USENIX Workshop on Hot Topics in Se-
curity (HOTSEC '08), Aug. 2008.

[5] M. Delio. Linux: Fewer Bugs than Rivals. Wired
Magazine, http://www.wired.com/ soft-

ware/coolapps/news/2004/12/66022, Dec.
2004.

[6] D. Denning and P. Denning. Certification of
Programs for Secure Information Flow. Commu-
nications of the ACM, 20(7), Jul. 1977.

[7] C. Fruhwirth. LUKS – Linux Unified Key Setup.
http://code.google.com/p/

cryptsetup/, Jan. 2009.
[8] T. Garfinkel, B. Pfaff, J, Chow, M. Rosenblum,

D. Boneh. Terra: a Virtual Machine-based Plat-
form for Trusted Computing. In Proc. of the 19th

382 18th USENIX Security Symposium USENIX Association

ACM Symposium on Operating Systems Princi-
ples (SOSP), Oct. 2003.

[9] T. Garfinkel and M. Rosenblum. When Virtual is
Harder than Real: Security Challenges in Virtual
Machine Based Computing Environments. In
Proc. of the 10th Workshop on Hot Topics in Op-
erating Systems, Jun. 2005.

[10] B. Gold, R. Linde, R. Peeler, M. Schaefer, J.
Scheid, and P. Ward. A Security Retrofit of
VM/370. In AFIPS Proc., 1979 National Com-
puter Conference, 1979.

[11] K. Govil, D. Teodosiu, Y. Huang, and M.
Rosenblum. Cellular Disco: Resource Manage-
ment Using Virtual Clusters on Shared-Memory
Multiprocessors. In Proc. of the Symposium on
Operating System Principles, Dec. 1999.

[12] J. Halderman, S. Schoen, N. Heninger, W.
Clarkson, W. Paul, J. Calandrino, A. Feldman, J.
Appelbaum, and E. Felten. Lest We Remember:
Cold Boot Attacks on Encryption Keys. In Proc.
of 17th USENIX Security Symposium, Jul. 2008.

[13] IEEE Computer Society. IEEE Standard for
Cryptographic Protection of Data on Block-
Oriented Storage Devices. IEEE Std 1619-2007,
Apr. 2008.

[14] O. Lagerkvist. ImDisk Virtual Disk Driver.
http://www.ltr-data.se/opencode.

html#ImDisk, Dec. 2008.
[15] T. Jaeger, R. Sailer, and X. Zhang. Analyzing

Integrity Protection in the SELinux Example Pol-
icy. In Proc. of the 12th USENIX Security Sym-
posium, Aug. 2003.

[16] M. Kang and I. Moskowitz. A Pump for Rapid,
Reliable, Secure Communication. In Proc. of the
1st ACM Conference on Computer and Commu-
nication Security (CCS), Nov. 1993.

[17] R. Kemmerer. An Approach to Identifying Stor-
age and Timing Channels. In ACM Transactions
on Computer Systems, 1(3), Aug. 1983.

[18] M. Liskov, R. Rivest, and D. Wagner. Tweak-
able Block Ciphers. In Advances in Cryptology –
CRYPTO ’02, 2002.

[19] R. Meushaw and D. Simard. NetTop: Commer-
cial Technology in High Assurance Applications.
http://www.vmware.com/pdf/Tech-

TrendNotes.pdf, 2000.
[20] Microsoft Corporation. BitLocker Drive Encryp-

tion: Technical Overview. http://technet.
microsoft.com/en-us/library/cc732774

.aspx, Jan. 2009.

[21] I. Moskowitz and A. Miller. Simple Timing
Channels. In Proc. of the IEEE Symposium on
Security and Privacy, May 1994.

[22] A. Myers. JFlow: Practical Mostly-Static Infor-
mation Flow Control. In Proc. of the 26th ACM
Symposium on Principles of Programming Lan-
guages (POPL), Jan. 1999.

[23] National Security Agency. Security-enhanced
Linux. http://www.nsa.gov/selinux, Jan.
2008.

[24] C. Percival. Cache Missing for Fun and Profit. In
Proc. of BSDCan 2005, May 2005.

[25] A. Roshal. WinRAR Archiver, a Powerful Tool
to Process RAR and ZIP Files.
http://www.rarlab.com/, Jan. 2009.

[26] R. Sailer, X. Zhang, T. Jaeger, and L. Van
Doorn. Design and Implementation of a TCG-
Based Integrity Measurement Architecture. In
Proc. of the 13th USENIX Security Symposium,
Aug. 2004.

[27] Secunia. Xen 3.x – Vulnerability Report.
http://secunia.com/product/

15863/?task=statistics, Jan. 2009.
[28] Secunia. Linux Kernel 2.6.x – Vulnerability Re-

port. http://secunia.com/product/2719/
?task=statistics, Jan. 2009.

[29] Trusted Computing Group. Trusted Platform
Module Main Specification. http://www.

trustedcomputinggroup.org, Ver. 1.2, Rev.
94, June 2006.

[30] J. Trostle. Multiple Trojan Horse Systems and
Covert Channel Analysis. In Proc. of Computer
Security Foundations Workshop IV, Jun. 1991.

[31] TrueCrypt Foundation. TrueCrypt – Free Open-
Source On-the-fly Encryption. www.truecrypt
.org, Jan. 2009.

[32] C. Waldspurger. Memory Resource Management
in VMware ESX Server. In Proc. of the 5th
Symposium on Operating Systems Design and
Implementation, Dec. 2002.

[33] Z. Wang and R. Lee. Covert and Side Channels
Due to Processor Architecture. In Proc. of the
22nd Annual Computer Security Applications
Conference (ACSAC), Dec. 2006.

[34] T. Weber. Criminals ‘May Overwhelm the Web’.
BBC News, http://news.bbc.co.uk/

1/hi/business/6298641.stm, Jan. 2007.
[35] WinZip International LLC. WinZip – The Zip

File Utility for Windows. http://www.winzip
.com/, Jan. 2009.

[36] XenSource, Inc. Xen Community. http://

xen.xensource.com/, Apr. 2008.

USENIX Association 18th USENIX Security Symposium 383

Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms

Ralf Hund Thorsten Holz Felix C. Freiling

Laboratory for Dependable Distributed Systems
University of Mannheim, Germany

hund@uni-mannheim.de, {holz,freiling}@informatik.uni-mannheim.de

Abstract

Protecting the kernel of an operating system against at-
tacks, especially injection of malicious code, is an impor-
tant factor for implementing secure operating systems.
Several kernel integrity protection mechanism were pro-
posed recently that all have a particular shortcoming:
They cannot protect against attacks in which the attacker
re-uses existing code within the kernel to perform mali-
cious computations. In this paper, we present the design
and implementation of a system that fully automates the
process of constructing instruction sequences that can be
used by an attacker for malicious computations. We eval-
uate the system on different commodity operating sys-
tems and show the portability and universality of our
approach. Finally, we describe the implementation of a
practical attack that can bypass existing kernel integrity
protection mechanisms.

1 Introduction

Motivation. Since it is hard to prevent users from run-
ning arbitrary programs within their own account, all
modern operating systems implement protection con-
cepts that protect the realm of one user from another.
Furthermore, it is necessary to protect the kernel itself
from attacks. The basis for such mechanisms is usu-
ally called reference monitor [2]. A reference monitor
controls all accesses to system resources and only grants
them if they are allowed. While reference monitors are
an integral part of any of today’s mainstream operating
systems, they are of limited use: because of the sheer
size of a mainstream kernel, the probability that some
system call, kernel driver or kernel module contains a
vulnerability rises. Such vulnerabilities can be exploited
to subvert the operating system in arbitrary ways, giv-
ing rise to so called rootkits, malicious software running
without the user’s notice.

In recent years, several mechanism to protect the in-
tegrity of the kernel were introduced [6, 9, 15, 19, 22],
as we now explain. The main idea behind all of these
approaches is that the memory of the kernel should be
protected against unauthorized injection of code, such as
rootkits. Note that we focus in this work on kernel in-
tegrity protection mechanisms and not on control-flow
integrity [1, 7, 14, 18] or data-flow integrity [5] mech-
anisms, which are orthogonal to the techniques we de-
scribe in the following.

1.1 Kernel Integrity Protection Mecha-
nisms

Kernel Module Signing. Kernel module signing is a
simple approach to achieve kernel code integrity. When
kernel module signing is enabled, every kernel module
should contain an embedded, valid digital signature that
can be checked against a trusted root certification author-
ity (CA). If this check fails, loading of the code fails, too.
This technique has been implemented most notably for
Windows operating systems since XP [15] and is used in
every new Windows system.

Kernel module signing allows to establish basic secu-
rity guidelines that have to be followed by kernel code
software developers. But the security of the approach
rests on the assumption that the already loaded kernel
code, i.e., the kernel and all of its modules, does not
have a vulnerability which allows for execution of un-
signed kernel code. It is thus insufficient to check for
kernel code integrity only upon loading.

W⊕X. W⊕X is a general approach which aims at pre-
venting the exploitation of software vulnerabilities at
runtime. The idea is to prevent execution of injected
code by enforcing the W⊕X property on all, or certain,
page tables of the virtual address space: A memory page
must never be writable and executable at the same time.
Since injected code execution always implies previous

384 18th USENIX Security Symposium USENIX Association

instruction writes in memory, the integrity of the code
can be guaranteed. The W⊕X technique first appeared in
OpenBSD 3.3; similar implementations are available for
other operating systems, including the PaX [28] and Exec
Shield patches for Linux, and PaX for NetBSD. Data Ex-
ecution Prevention (DEP) [16] is a technology from Mi-
crosoft that relies on W⊕X for preventing exploitation of
software vulnerabilities and has been implemented since
Windows XP Service Pack 2 and Windows Server 2003.

The effectiveness of W⊕X relies on the assumption
that the attacker wishes to modify and execute code in
kernel space. In practice, however, an attacker usually
first gains userspace access which implies the possibil-
ity to alter page-wise permission in the userspace por-
tion of the virtual address space. Due to the fact that
the no-executable bit in the page-table is not fine-grained
enough, it is not possible to mark a memory page to be
executably only in user mode. So an attacker may simply
prepare her instructions in userspace and let the vulnera-
ble code jump there.

NICKLE. NICKLE [19] is a system which allows for
lifetime kernel code integrity, and thus rootkit preven-
tion, by exploiting a technology called memory shadow-
ing. NICKLE is implemented as virtual machine moni-
tor (VMM) which maintains a separate so-called shadow
memory. The shadow memory is not accessible from
within the VM guest and contains copies of certain por-
tions of the VM guest’s main memory. Newly executing
code, i.e., code that is executed for the first time, is au-
thenticated using a simple cryptographic hash value com-
parison and then copied to the shadow memory trans-
parently by NICKLE. Since the VMM is trusted in this
model, it is guaranteed that no unauthenticated modifica-
tions to the shadow memory can be applied as executing
guest code can never access the privileged shadow mem-
ory. Therefore, any attempt to execute unauthenticated
code can be foiled in the first place. Another positive
aspect of this approach is that it can be implemented in
a rather generic fashion, meaning that it is perfectly ap-
plicable to both open source and commodity operating
systems. Of course, NICKLE itself has to make certain
assumptions about underlying file format of executable
code, e.g., driver files, since it needs to understand the
loading of these files. Currently, NICKLE supports Win-
dows 2000, Windows XP, as well as Linux 2.4 and 2.6
based kernels. So far, NICKLE has been implemented
for QEMU, VMware, and VirtualBox hypervisors. The
QEMU source code is publicly available [20].

The isolation of the VMM from the VM Guest allows
for a comparably unrestrictive threat model. In the given
system, an attacker may have gained the highest level of
privilege within the VM guest and may access the en-
tire memory space of the VM. In other words, an ad-

versary may compromise arbitrary system entities, e.g.,
files, processes, etc., as long as the compromise happens
only inside the VM.

SecVisor. SecVisor [22] is a software solution that con-
sist of a general, operating system independent approach
to enforce W⊕X based on a hypervisor and memory vir-
tualization. In the threat model for SecVisor an attacker
can control everything but the CPU, the memory con-
troller, and kernel memory. Furthermore, an attacker
can have the knowledge of kernel exploits, i.e., she can
exploit a vulnerability in kernel mode. In this setting,
SecVisor “protects the kernel against code injection at-
tacks such as kernel rootkits” [22]. This is achieved by
implementing a hypervisor that restricts what code can
be executed by a (modified) Linux kernel. The hyper-
visor virtualizes the physical memory and the MMU to
set page-table-based memory protections. Furthermore,
SecVisor verifies certain properties on kernel mode en-
try and exit, e.g., all kernel mode exits set the privilege
level of the CPU to that of user mode or the instruction
pointer points to approved code at kernel entry. Franklin
et al. showed that these properties are prone to attacks
and successfully injected code in a SecVisor-protected
Linux kernel [8], but afterwards also corrected the errors
found.

1.2 Bypassing Integrity Protection Mecha-
nisms

Based on earlier programming techniques like return-to-
libc [17, 21, 27], Shacham [23] introduced the technique
of return-oriented programming. This technique allows
to execute arbitrary programs in privileged mode with-
out adding code to the kernel. Roughly speaking, it mis-
uses the system stack to “re-use” existing code fragments
(called gadgets) of the kernel (we explain this technique
in more detail in Section 2). Shacham analyzed the GNU
Linux libc of Fedora Core 4 on an Intel x86 machine
and showed that executing one malicious instruction in
system mode is sufficient to construct arbitrary computa-
tions from existing code. No malicious code is needed,
so most of the integrity protection mechanisms fail to
stop this kind of attack.

Buchanan et al. [4] recently extended the approach to
the Sparc architecture. They investigated the Solaris 10
C library, extracted code gadgets and wrote a compiler
that can produce Sparc machine programs that are made
up entirely of the code from the identified gadgets. They
concluded that it is not sufficient to prevent introduction
of malicious code; we must rather prevent introduction
of malicious computations.

2

USENIX Association 18th USENIX Security Symposium 385

Attacker Model. Like the mentioned literature, we
base our work on the following reasonable attacker
model. We assume that the attacker has full access to
the user’s address space in normal mode (local attacker)
and that there exists at least one vulnerability within a
system call such that it is possible to point the control
flow to an address of the attacker’s choice at least once
while being in privileged mode. In practice, a vulnerable
driver or kernel module is sufficient to satisfy these as-
sumptions. Our attack model also covers the typical “re-
mote compromise” attack scenario in network security
where attackers first achieve local user access by guess-
ing a weak password and then escalate privileges.

Contributions. In this paper, we take the obvious next
step to show the futility of current kernel integrity pro-
tection techniques. We make the following research con-
tributions:

• While previous work [4, 21, 23] was based on man-
ual analysis of machine language code to create
gadgets, we present a system that fully automates
the process of constructing gadgets from kernel
code and translating arbitrary programs into return-
oriented programs. Our automatic system can use
any kernel code (not only libc, but also drivers for
example) even on commodity operating systems.

• Using our automatic system, we construct a
portable rootkit for Windows systems that is en-
tirely based on return-oriented-programming. It
therefore is able to bypass even the most sophisti-
cated integrity checking mechanism known today
(for example NICKLE [19] or SecVisor [22]).

• We evaluate the performance of return-oriented pro-
grams and show that the runtime overhead of this
programming technique is significant: In our tests
we measured a slowdown factor of more than 100
times in sorting algorithms. However, for exploit-
ing a system this slowdown might not be important.

Outline. The paper is structured as follows. In Sec-
tion 2 we provide a brief introduction to the technique of
return-oriented-programming. In Section 3 we introduce
in detail our framework for automating the gadget con-
struction and translating arbitrary programs into return-
oriented programs. We present evaluation results for our
framework in Section 4: Using ten different machines,
we confirm the portability and universality of our ap-
proach. We present the design and implementation of a
return-oriented rootkit in Section 5 and finally conclude
the paper in Section 6 with a discussion of future work.

2 Background: Return-Oriented Pro-
gramming

The idea behind a return-to-libc attack [17, 27] is that the
attacker can use a buffer overflow to overwrite the return
address on the stack with the address of a legitimate in-
struction which is located in a library, e.g., within the C
runtime libc on UNIX-style systems. Furthermore, the
attacker places the arguments to this function to another
portion of the stack, similar to classical buffer overflow
attacks. This approach can circumvent some buffer over-
flow protection techniques, e.g., non-executable stack.

The technique of return-oriented programming was
introduced by Shacham et al. [4, 23]. It generalizes
return-to-libc attacks by chaining short new instructions
streams (“useful instructions”) that then return. Several
instructions can be combined to a gadget, the basic block
within return-oriented programs that for example com-
putes the AND of two operands or performs a compar-
ison. Gadgets are self-contained and perform one well-
defined step of a computation. The attacker uses these
gadgets to cleverly craft stack frames that can then per-
form arbitrary computations. Fig. 1 illustrates the pro-
cess of return-oriented programming. First, the attacker
identifies useful instructions that are followed by a ret
instruction (e.g., instruction sequences A, B and C in
Fig. 1). These are then chained to gadgets to perform
a certain operation. For example, instruction sequences
A and B are chained together to gadget 1 in Fig. 1. On
the stack, the attacker places the appropriate return ad-
dresses to these instruction sequences. In the example
of Fig. reffig:rop the return addresses on the stack will
cause the executions of gadget 1 and then gadget 2. The
stack pointer ESP determines which instruction to fetch
and execute, i.e., within return-oriented programming the
stack pointer adopts the role of the instruction pointer
(IP): Note that the processor does not automatically in-
crement the stack pointer, but the ret instruction at the
end of each useful instruction does.

The authors showed that both the libc library of Linux
running on the x86 architecture (CISC) as well as the libc
library of Solaris running on a SPARC (RISC) contain
enough useful instructions to construct meaningful gad-
gets. They manually analyzed the libc of both environ-
ments and constructed a library of gadgets that is Turing-
complete. We extend their work by presenting the design
and implementation of a fully automated return-oriented
framework that can be used on commodity operating sys-
tems. Furthermore, we describe an actual attack against
kernel integrity protection systems by implementing a
return-oriented rootkit.

3

386 18th USENIX Security Symposium USENIX Association

0x00000000

0xFFFFFFFF

0x80000000

User address space

Kernel address space

Stack

Heap

C

B

A ESP

instruction a

ret
A

gadget 2
instruction b

ret
B

instruction c

ret
C

gadget 1

Figure 1: Schematic overview of return-oriented pro-
gramming on the Windows platform

3 Automating Return-Oriented Program-
ming

In order to be able to create and execute return-oriented
programs in a generic way, we created our own, modu-
lar toolset which enables one to abstract from the vary-
ing concrete conditions one faces in this context. Ad-
ditionally, our system greatly simplifies the development
of return-oriented programs by providing high-level con-
structs to accomplish certain tasks. Figure 2 provides a
schematic overview of our system; it is partitioned into
three core components:

• Constructor. The Constructor scans a given set of
files containing executable code, spots useful in-
struction sequences and builds return-oriented gad-
gets in an automatic fashion. These well-defined
gadgets serve as a low-level abstraction and inter-
face to the Compiler.

• Compiler. The Compiler provides a comparatively
high-level language for programming in a return-
oriented way. It takes the output of the Construc-
tor along with a source file written in a dedicated
language to produce the final memory image of the
program.

• Loader. As the Compiler’s output is position inde-
pendent, it is the task of the Loader to resolve rela-
tive memory addresses to absolute addresses. This
component is implemented as library that is sup-
posed to be linked against by an exploit.

All components have been implemented in C++ and
currently we support Windows NT-based operating sys-
tems running on an IA-32 architecture. In the following
paragraphs, we give more details on each component’s
inner workings.

3.1 Automated Gadget Construction
One of the most essential parts of our system is the auto-
mated construction of return-oriented gadgets, thus en-
abling us to abstract from a concrete set of executable
code being exploited for our purposes. This is in con-
trast to previous work [4, 23], which focused on concrete
versions of a C library instead. Our system works on an
arbitrary set of files containing valid x86 machine code
instructions; we will henceforth refer to these files as the
codebase.

Our framework implements the creation of gadgets in
the so-called Constructor, which performs three subse-
quent jobs: First, it scans the codebase to find useful
instruction sequences, i.e., instructions preceding a re-
turn (ret) instruction. These instructions can then be
used to implement a return-oriented program by concate-
nating the sequences in a specific way. Our current im-
plementation targets machines running an arbitrary Win-
dows version as operating system and thus we use all
driver executables and the kernel as codebase in the scan-
ning phase. In the second step, our algorithm chains the
instruction sequences together to form gadgets that per-
form basic operations. We define the term gadget analog
to Shacham [23], i.e., gadgets comprise composite useful
instruction sequences to accomplish a well-defined task
(e.g., perform an AND operation or check a boolean con-
dition). More precisely, when we talk of concrete gad-
gets, we mean the corresponding stack allocation, i.e.,
the contents (return-addresses, constants, etc.) of the
memory area the stack register points to. Gadgets rep-
resent an intermediate abstraction layer whose elements
are the basic units subsequently used by the Compiler for
building the final return-oriented program. Gadgets be-
ing written to the Constructor’s final output file are called
final gadgets. In the third step, the Constructor searches
for exported symbols in the codebase and saves these in
the output file for later use by the Compiler.

3.1.1 Finding Useful Instruction Sequences

The first decision that has do be made is describing
the basic instruction sequences being the very core of a
return-oriented program. As previously mentioned, these
instructions occur prior to a ret x86 assembler instruc-
tion. We have to decide how many instructions preced-
ing a return are considered. For instance, the Construc-
tor might look for sequences such as mov eax, ecx;
add eax, edx; ret, and incorporate these in the
subsequent gadget construction. An easier approach,
however, is to consider only a single instruction before a
return instruction. Of course, the former attempt has the
advantage of being more comprehensive, along with the
drawback of requiring additional overhead. This stems
from the fact that one has to take every instruction’s pos-

4

USENIX Association 18th USENIX Security Symposium 387

0xFFFFFFFF

0x80000000

Kernel address space

Constructor

win32k.sys

ntfs.sys

ntoskrnl.exe

hal.dll

. . .
. . .

Useful Instructions Gadgets

Compiler

Source Code

Return-oriented

Program

Loaderexploit

Figure 2: Schematic system overview

sible side-effects on registers and memory into account.
In our work, we have thus chosen to implement the lat-
ter approach. Rudimentary research has shown that the
additional value of using longer instruction sequences
hardly justifies the imposed overhead since the effect of
the former is not very significant in practice: We have
observed that the high density of the x86 instructions en-
coding does not introduce substantial surplus concerning
additional instruction sequences. We would also like to
stress that this simplified approach has not turned out to
be problematic in our work so far since the codebase of
every system we evaluated held sufficient instruction se-
quences to implement arbitrary return-oriented programs
(see Section 4 for details). However, our system might
still be extended in the future in order to support more
than one instruction preceding a return instruction.

To scan the codebase for useful instruction sequences,
the Constructor first enumerates all sections of the PE
file that contain executable code and scans these for x86
ret opcodes. In addition to the standard ret instruc-
tion, which has the opcode 0xC3, we are also interested
in return instructions that add an immediate value to the
stack, represented by opcode 0xC2 and followed by the
16bit immediate offset. The former are favorable to the
latter as they induce less memory consumption in the
stack allocation since we need to append effectively un-
used memory before the next instruction.

Having found all available return instructions, the
Constructor then bytewise disassembles the sequence
backwards, thereby building a trie. This works analo-
goulsy to the method already described by Shacham [23].
In order to disassemble encoded x86 instructions, our
program uses the distorm library [10].

3.1.2 Building Gadgets

The next logical step is chaining together instruction se-
quences to form structured gadgets that perform basic
operations. Gadgets built by the Constructor form the
very basic entities that are chained together by the Com-
piler for building the program stack allocation. Due to
the clear separation of the Constructor and the Com-
piler, final gadgets are independent of each other. There-
fore, each final gadget constitutes an autonomous piece
of return-oriented code: Final gadgets take a set of source
operands, perform a well-defined operation on these, and
then write the result into a destination operand. In our
model, source and destination operands are always mem-
ory variable addresses. For example, an addition gad-
get takes two source operands, i.e., memory addresses to
both input variables, as input, adds both values, and then
writes back the result to the memory address pointed to
by the destination operand. There are certain exceptions
to this rule, namely final gadgets that perform very spe-
cific tasks for certain situations, e.g., manipulating the
stack register directly. Final gadgets are designed to be
fine-grained with respect to the constraints imposed by
the operand model. They can be separated into three
classes: Arithmetic, logical and bitwise operations; con-
trol flow manipulations (static and dynamic); and stack
register manipulations.

The crucial point in gadget construction concerns the
algorithm that is deployed to spot appropriate useful in-
structions and the rules in which they are chained to-
gether. We consider completeness, memory consump-
tion, and runtime to be the three dominating properties.
By completeness, we mean the algorithm’s fundamental
ability to construct gadgets even in a minimal codebase,

5

388 18th USENIX Security Symposium USENIX Association

EAX ECX

EDX

direct

directindirect (ECX)

1.

1.2.

Figure 3: MOV connection graph: Chained instructions
can be used to emulate other instructions.

where minimal indicates a codebase with a theoretically
minimal set of instruction sequences to allow for corre-
sponding gadget computations. By memory consump-
tion, we denote that the constructed gadgets should be
preferably small in size. By runtime, we mean that the
algorithm should terminate within a reasonable period
of time. Due to the CISC nature of x86 and the corre-
sponding complexity of the machine language, we con-
sider the completeness property to be the most difficult
one to achieve. The many subtle details of this platform
make it hard to find all possible combinations of useful
instruction performing a given operation.

In the following, we provide a deeper look into our
gadget construction algorithm. As with every modern
CPU, x86 is a register-based architecture. This observa-
tions drives the starting point of our algorithm in that its
first step is to define a set of general purpose registers
that are allowed to be used, i.e., read from or written to,
by gadget computations. This also has the positive side-
effect that it enables an easy way to control which reg-
isters are modified by the return-oriented program. We
will henceforth call these registers working registers.

Basic Gadgets. Starting from this point, we gradually
construct lists of gadgets performing a related task for
each working register. More precisely, the first step
is to check which register can be loaded with fixed
values, an operation that can easily be achieved with
a pop <register>; ret sequence (register-based
constant load gadgets). Afterwards, the Constructor
searches for unary instructions sequences, e.g., not
or neg, that take working registers as their operands
(register-based unary operation gadgets). Subsequently,
the algorithm checks which working registers are con-
nected by binary instruction sequences, e.g., mov, add,
and, and the like (register-based binary operation gad-
gets). In order to find indirectly connected registers,
we build a directed graph for each operation whereas a
node represents a register and an edge depicts an oper-
ation from the source register to the destination register

(also always being a source operand on x86). Then, we
traverse all paths in the graph for each node. For ex-
ample, let us assume the following situation: The given
codebase allows for the execution of mov ecx, eax;
ret and mov edx, ecx; ret sequences, but does
not supply mov edx, eax sequences. We can easily
find the corresponding path in our graph and hence con-
struct a gadget that moves the content of eax to edx by
chaining together both sequences (see Fig. 3). Since x86
is not a load-store-architecure, i.e., most instructions may
take direct memory operands, we also search for memory
operand based instructions (register-based memory load-
/operation gadgets). This also allows us to check which
working registers can be loaded with memory contents,
for instance, mov eax, [ecx]; ret easily allows
us to load an arbitrary memory location into eax by
preparing ecx accordingly. The result of this first stage
of the algorithm are lists of internal gadgets being bound
to working registers and performing certain operations
on these.

In the next stage, our algorithm merges working
register-based gadgets to form new, final gadgets that
perform certain operations, e.g., addition, multiplication,
bitwise OR, and so on (final unary/binary operation gad-
gets). Therefore, it generates every possible combina-
tion of according register-based load/store and operation
gadgets to choose the one being minimal with respect to
consumed memory space. In the construction, we have
to take into account possibly emerging side-effects when
connecting instruction sequences. We say that a gadget
has a side-effect on a given register when it is modified
during execution. For instance, if we wish to build a gad-
get that loads two memory addresses into eax and ecx
and appends an and eax, ecx; ret sequence, we
have to make sure that both load gadgets do not have
side-effects on each other’s working register.

Control Flow Alteration Gadgets. Afterwards, the al-
gorithm constructs final gadgets that allow for static and
dynamic control flow alterations in a return-oriented pro-
gram (final comparison and dynamic control flow gad-
gets). Therefore, we must first compare two operands
with either a cmp or sub instruction, both have the same
impact on the eflags registers which holds the condi-
tion flags. The main problem in this context is gaining
access to the CPU’s flag registers as this is only possible
with a limited set of instructions. As already pointed out
by Shacham [23], a straightforward solution is to search
for the lahf instruction, which stores the lower part of
the eflags register into ah. Another possibility is to
search for setCC instructions, which store either one or
zero depending on whether the condition is true or not.
Thereby, CC can be any condition known to the CPU,
e.g., equal, less than, greater or equal, and so on. Once

6

USENIX Association 18th USENIX Security Symposium 389

we have stored the result of the comparison (where 1
means true and 0 means false) the natural way to pro-
ceed is to multiply this value by four and add it to a jump
table pointer. Then, we simply move the stack register to
the value being pointed at.

Additional Gadgets. Finally, the Constructor builds
some special gadgets that enable very specific tasks,
such as, e.g., pointer dereferencing (final dereferencing
gadgets), and direct stack or base register manipulation
(stack register manipulation gadgets). The latter are re-
quired in certain situation as described in the next sec-
tion. The final output of the Constructor is an XML file
that describes the finals gadgets along with a list of ex-
ported symbols from the codebase.

Turing Completeness. Gadgets are used within
return-oriented programming as the basis blocks of each
computation. An interesting question is now which kind
of gadgets are needed such that return-oriented pro-
gramming is Turing complete, i.e., it can compute every
Turing-computable function [30]. We construct gadgets
to load/store variables (including pointer dereferencing),
branch instructions, and also gadgets for arithmetic
operations (i.e., addition and not). This set of gadgets is
minimal in the sense that we can construct from these
gadgets any program: Our return-oriented framework
can implement so called GOTO languages, which are
Turing complete [12].

3.2 Compiler

The Compiler is the next building block of our return-
oriented framework: This tool takes the final gadgets
constructed by the Constructor along with a high-level
language source file as input to produce the stack allo-
cation for the return-oriented program. The Compiler
acts as an abstraction of the concrete codebase so that
developers do not have to mess with the intricacies of
the codebase on the lowest layer; moreover, it provides a
comparatively easy and abstract way to formulate a com-
plex task to be realized in a return-oriented fashion. The
Compiler’s output describes the stack allocation as well
as additional memory areas serving a specific purpose
in a position independent way, i.e., it only contains rel-
ative memory addresses. This stems from the fact that
the Compiler cannot be aware of the final code locations
since drivers may be relocated in kernel memory due to
address conflicts. Moreover, the program memory’s base
location may be unknown at this stage. It is hence the
task of the Loader to resolve these relative addresses to
absolute addresses (see next section).

3.2.1 Dedicated Language

Naturally, one of the first considerations in compiler
development concerns the programming language em-
ployed. One possibility is to build the Compiler on top of
an already existing language, ideally one that is designed
the accomplish low-level tasks, such as C. However, this
also introduces a profound overhead as all the language’s
peculiarities, e.g., the entire type system, must be imple-
mented in a correct manner. Due to our very specific
needs, we have found none of the existing language to be
suited for our purpose and thus decided to create a dedi-
cated language. It bears certain resemblance to many ex-
isting languages, specifically C. Our dedicated language
provides the following code constructs:

• subroutines and recursive subroutine calls,

• a basic type-system that consists of two variable
types,

• all arithmetic bitwise, logical and pointer operators
known to the C language with some minor devia-
tions, and

• nested dynamic control flow decisions and nested
conditional looping.

Additionally, we also supports external subroutine calls
which enables one to dispatch operations to exported
symbols from drivers or the kernel; this gives us more
flexibility, greatly simplifies the development of return-
oriented programs, and also substantially decreases stack
allocation memory consumption.

Two basic variable types are supported: Integers and
character arrays, the former being 32bit long while in
case of the latter, strings are zero-terminated just as in C.
Along with the ability to call external subroutines, this
enables us to use standard C library functions exported
by the kernel to process strings within the program. We
do not need support for short and char integers for now
as we do not consider these to be substantially relevant
for our needs. Short integer operations thus must be em-
ulated by the return-oriented program when needed.

The Compiler has been implemented in C++ using the
ANTLR compiler generation framework [29]. Source
code examples for our dedicated programming language
are introduced in Section 5.4 and in Appendix B.

3.2.2 Memory Layout

Just as the Constructor chains together instruction se-
quences, the Compiler chains together gadgets to build
a program performing the semantics imposed by the
source code. Apart from that, it also defines the memory
layout and assigns code and data to memory locations.
By code, we henceforth mean the stack allocation of the

7

390 18th USENIX Security Symposium USENIX Association

Backup Code

ESA (emulated stack area)

Data

Code

ICA (import call area)

addresses

Figure 4: Memory layout of program image within our
return-oriented framework

sum of all gadgets of a program (mostly return addresses
to instruction sequences); this must not be confused with
real CPU code, i.e., the code as we defined does not need
any executable memory, but appears like usual data to
the processor. This is the key concept in bypassing ker-
nel integrity protection mechanisms: We do not need to
inject code since we re-use existing code within the ker-
nel during an exploit.

When we use the term data, we henceforth mean the
memory area composed by the program’s variables and
temporary internal data required by computations. We
then constitute the memory layout to consist of a lin-
ear memory space we hereafter call the program image,
which is shown in Fig. 4. Furthermore, some regions of
this space serve special purposes we describe later on. In
total, we separate the program image into five sections:
Code, data, ICA, ESA and backup code.

The so-called import call area (ICA) resides at the
very beginning, i.e., the lowest address, of the address
space. When executing external function calls, the pro-
gram prepares the call to be dispatched with the stack
pointer esp pointing at the end (the highest address)
of the ICA. Therefore, it first prepares this region by
copying the arguments and return addresses to point to
specific stack manipulation gadgets. Special care has
to be taken concerning the imposed calling convention
of the callee. We support both relevant conventions,
namely stdcall, i.e., the callee cleans up the stack,
and cdecl, i.e., the caller cleans up the stack. The
need for such a dedicated section stems from the fact
that, upon entry, the callee considers all memory regions
below esp to be available to hold its local variables,
hence overwriting return-oriented code that might still
be needed at a later stage, i.e., when a jump back occurs.

Following the ICA, the Compiler places the code, i.e.,
return addresses and constant values to be popped into
registers, followed by the data section which holds the

actual explicit variables as well as some implicit tem-
porary variables that are mandatory during computation.
After that, the emulated stack area (ESA) resides, which
is used to emulate a “stack in the stack” to allow for re-
cursive subroutine calls in the return-oriented program.
The program image is terminated by an optional backup
of the code section, a necessity that arises from a pecu-
liarity of the Windows operating system we discuss later
on in Section 5.2.

3.2.3 Miscellaneous

We also provide special language constructs enabling
one to retransfer the CPU control flow to a non-return
oriented source. For instance, in the typical case of an ex-
ploit and subsequent execution of return-oriented code,
we might wish to return to the vulnerable code to allow
for a continuation of execution. Therefore, we must re-
store the esp register to point to its original value. Our
language hence provides appropriate primitives to tam-
per with the stack.

3.3 Loader

The final building block of our system consists of
the Loader whose main task is to resolve the pro-
gram image’s relative addresses to absolute addresses.
Therefore, it must first enumerate all loaded drivers in
the system and retrieve their base addresses. Luck-
ily, Windows provides a function by the name of
EnumDeviceDrivers that lets us accomplish this
task even in usermode.

For the sake of flexibility, the Loader is implemented
as a dynamic link library (DLL). The actual exploit trans-
fers the task of building the final program image to the
Loader and then adjusts the exploit to modify the instruc-
tion pointer eip to a gadget that modifies the stack (e.g.,
pop esp; ret) to start the execution of the return-
oriented program. It is therefore sufficient for the exploit
to be able to modify eight subsequent bytes in the stack
frame: The first four bytes are a return address (of the se-
quence pop esp; ret) that is executed upon the next
ret in the current control flow; the last four bytes point
to the entry point of the program image to which control
will flow after the execution of the next ret.

4 Evaluation Results

We implemented the system we described in the pre-
vious section in the C++ programming language. The
Constructor consists of about 3,400 lines of code (LOC),
whereas the Compiler is implemented in about 3,200
LOC. The loader only needs 700 LOC.

8

USENIX Association 18th USENIX Security Symposium 391

In the following, we present evaluation results for the
individual components of our framework. We first show
measurement results for the Constructor and Compiler
and then provide several examples of the gadgets con-
structed by our tools. Finally we also measure the run-
time overhead of return-oriented programs.

4.1 Constructor and Compiler

4.1.1 Evaluation of Useful Instructions and Gadget
Construction

One goal of our work is to fully automate the process
of constructing gadgets from kernel code on different
platforms without the need of manual analysis of ma-
chine language code. We thus tested the Constructor on
ten different machines running different versions of Win-
dows as operating system: Windows 2003 Server, Win-
dows XP, and Windows Vista were considered in differ-
ent service pack versions to assess a wide variety of plat-
forms. On each tested platform the Constructor was able
to find enough useful instructions to construct all impor-
tant gadgets that are needed by the Compiler, i.e., on each
platform we are able to compile arbitrary return-oriented
programs. This substantiates our claim that our frame-
work is general and portable.

Table 1 provides an overview of the results for the gad-
get construction algorithm for six of the ten test config-
urations. We omitted the remaining four test results for
the sake of brevity; the results for these machines are
very similar to the listed ones. The table contains test
results for two scenarios: On the one hand, we list the
number of return instructions and trie leaves when us-
ing any kernel code, e.g., all drivers and kernel com-
ponents. On the other hand, we list in the restricted
column (res.) the results when using only the main
kernel component (ntoskrnl.exe) and the Win32-
subsystem (win32k.sys) for extracting useful instruc-
tions. These two components are available in any Win-
dows environment and thus constitute a memory region
an attacker can always use to build gadgets.

The number of return instructions found varies with
the platform and is influenced by many factors, mainly
OS version/service pack and hardware configuration. Es-
pecially the hardware configuration can significantly en-
large the number of available return instructions since the
installed drivers add a large codebase to the system: We
found that often graphic card drivers add thousands of
instructions that can be used by an attacker. For the com-
plete codebase we found that on average every 162nd in-
struction is a return. Therefore an attacker typically finds
tens of thousands of instructions she can use.

If the attacker restricts herself to using only the core
kernel components, she is still able to find enough re-

turn instructions to be able to construct all necessary gad-
gets: We found that on average every 153rd instruction
is a return, indicating a more dense structure within the
core kernel components. These returns and the preced-
ing instructions could be used to construct the gadgets
in all tested environments. This result indicates that on
Window-based systems an attacker can implement an ar-
bitrary return-oriented program since all important gad-
gets can be built.

The most common instruction preceding a return is
pop ebp: On average across all tested systems, this
instruction was found in about 72% of the cases. This
is no surprise since the sequence pop ebp; ret is
the standard exit sequence for C code. Other com-
mon instructions the Constructor finds are add esp,
<const> (12.2%), pop (eax|ecx|edx) (4.2%),
and xor eax, eax (3.7%). Other instructions can be
found rather seldom, but if a given instruction occurs at
least once the attacker can use it. For example, the in-
struction lahf, which is used to access the CPU’s flag
registers, was commonly found less than 10 times, but
nevertheless the attacker can take advantage of it.

4.1.2 Gadget Examples

In order to illustrate the gadgets constructed by our
framework, we present a few examples of gadgets in this
section. A full listing of all gadgets constructed during
the evaluation on ten different machines is available on-
line [13] such that our results can be verified.

Figure 5 shows the AND gadget constructed on two
different machines both running Windows XP SP2. In
each of the sub-figures, the left part displays the instruc-
tions that are actually used for the computation: Re-
member that our current implementation considers one
instruction preceding a return instruction, i.e., after each
of the displayed instructions one implicit ret instruction
is executed. The right part shows the memory locations
where the instruction is found within kernel memory (R),
or indicates the label name (L). Labels are memory vari-
able addresses.

The two gadgets each perform a logical AND of two
values. This is achieved by loading the two operands into
the appropriate registers (pop, mov sequence), then
performing the and instruction on the registers, and fi-
nally writing the result back to the destination address.
Although both programs are executed on Windows XP
SP2 machines, the resulting return-oriented code looks
completely different since useful instructions in different
kernel components are used by the Constructor.

Another example of a gadget constructed by our
framework is shown in Figure 6. The left example shows
a gadget for a machine running Windows Vista, while the
example on the right hand side is constructed on a ma-

9

392 18th USENIX Security Symposium USENIX Association

Machine configuration # ret inst. # trie leaves # ret inst. (res) # trie leaves (res)
Native / XP SP2 118,154 148,916 22,398 25,968
Native / XP SP3 95,809 119,533 22,076 25,768
VMware / XP SP3 58,933 67,837 22,076 25,768
VMware / 2003 Server SP2 61,080 70,957 23,181 26,399
Native / Vista SP1 181,138 234,685 30,922 36,308
Bootcamp / Vista SP1 177,778 225,551 30,922 36,308

Table 1: Overview of return instructions found and generated trie leaves on different machines

pop ecx | R: ntkrnlpa.exe:0006373C
| L: <RightSourceAddress>+4

mov edx, [ecx-0x4] | R: vmx_fb.dll:00017CBD
pop eax | R: ntkrnlpa.exe:000436AE

| L: <LeftSourceAddress>
mov eax, [eax] | R: win32k.sys:000065D1
and eax, edx | R: win32k.sys:000ADAE6
pop ecx | R: ntkrnlpa.exe:0006373C

| L: <DestinationAddress>
mov [ecx], eax | R: win32k.sys:0000F0AC

pop ecx | R: nv4_mini.sys:00005A15
| L: <RightSourceAddress>-4

pop eax | R: nv4_mini.sys:00074EF2
| L: <LeftSourceAddress>

mov eax, [eax] | R: nv4_disp.dll:00125F30
and eax, [ecx+0x4] | R: sthda.sys:000024ED
pop ecx | R: nv4_mini.sys:00005A15

| L: <DestinationAddress>
mov [ecx], eax | R: nv4_disp.dll:000DE9DA

Figure 5: Example of two AND gadgets constructed on different machines running Windows XP SP2. The implicit
ret instruction after each instruction is omitted for the sake of brevity.

chine running Windows 2003 Server. Again, the mem-
ory locations of the gadget instructions are completely
different since the Constructor found different useful in-
struction sequences that are then used to build the gadget.

4.2 Runtime Overhead

The average runtime of the Constructor for the restricted
set of drivers that should be analyzed is 2,009 ms, thus
the time for finding and constructing the final gadgets is
rather small.

To assess the overhead of return-oriented program-
ming in real-world settings, we also measured the over-
head of an example program written within our frame-
work compared to a “native” implementation in C.
Therefore, we implemented two identical versions of
QuickSort, one in C and one in our dedicated return-
oriented language. The source code of the latter can be
seen in Appendix B.

Both algorithms sort an integer array of 500,000 ran-
domly selected elements and the evaluations were carried
out on an Intel Core 2 Duo T7500 based notebook run-
ning Windows XP SP3. The C code was compiled with
Microsoft Visual Studio 2008; in order to improve the
fundamental expressiveness of the comparison, all com-
piler optimizations were disabled. Each algorithm was
executed three times and we calculated the average of
the runtimes.

The return-oriented QuickSort took 21,752 ms on av-
erage compared to 161 ms for C QuickSort. The re-
sults clearly show that the overhead imposed by return-

oriented programs is significant; on average, they were
135 times slower than their C counterparts. We would
like to stress that we did not build our system with
speed optimizations in mind. Additionally, in our do-
main, return-oriented rootkits usually do not involve
time-intensive computations, thus the slowness might not
be a problem in practice. On the other hand, the overhead
might well be exploited by detection mechanisms that try
to find return-oriented programs.

5 Return-Oriented Rootkit

In order to evaluate our system in the presence of a kernel
vulnerability, we have implemented a dedicated driver
containing insecure code. Remember that our attack
model includes this situation. By this example, we show
that our systems allows us to implement a return-oriented
rootkit in an efficient and portable manner. This rootkits
bypasses kernel code integrity mechanisms like NICKLE
and SecVisor since we do not inject new code into the
kernel, but only execute code that is already available.
While the authors of NICKLE and SecVisor acknowl-
edge that such a vulnerability could exist [19, 22], we
are the first to actually show an implementation of an at-
tack against these systems. In the following, we first in-
troduce the different stages of the infection process and
afterwards describe the internals of our rootkit example.

10

USENIX Association 18th USENIX Security Symposium 393

’LoadEspPointer’ gadget:
pop ecx | R: nvlddmkm.sys:000156F5

| L: <Address>
mov eax, [ecx] | R: ntkrnlpa.exe:002D15C3
mov eax, [eax] | R: win32k.sys:000011AE
pop ecx | R: nvlddmkm.sys:000156F5

| L: &<LocalVar>
mov [ecx], eax | R: ntkrnlpa.exe:0002039B
pop esp | R: nvlddmkm.sys:00036A54

| L: <LocalVar>

’LoadEspPointer’ gadget:
pop eax | R: ntkrnlpa.exe:0001CD4F

| L: <Address>
mov eax, [eax] | R: win32k.sys:00087E17
mov eax, [eax] | R: win32k.sys:00087E17
pop ecx | R: ntkrnlpa.exe:00080A8D

| L: &<LocalVar>
mov [ecx], eax | R: win32k.sys:000A8DDB
pop esp | R: ntkrnlpa.exe:00081A67

| L: <LocalVar>

Figure 6: Example of gadget constructed on a machine running Windows Vista SP1 (left) and Windows 2003 Server
(right). Again, the implicit ret instruction after each instruction is omitted.

5.1 Experimental Setup

Vulnerability. As already stated, we assume the pres-
ence of a vulnerability in kernel code that enables an
exploit to corrupt the program flow in kernel mode.
More precisely, our dedicated driver contains a specially
crafted buffer overflow vulnerability that allows an at-
tacker to tamper with the kernel stack. The usual way
to implement driver-to-process communication is to pro-
vide a device file name being accessible from userspace.
The process hence opens this device file and may send
data to the driver by writing to it. Write requests trigger
so-called I/O request packets (IRP) at the driver’s call-
back routine. The driver then takes the input data from
userspace and copies it into its own local buffer with-
out validating its length. This leads to a classical buffer
overflow attack and enables us to write stack values of
arbitrary length.

Exploit. We exploit this vulnerability by writing an
oversized buffer to the device file, thereby replacing the
return value on the stack to point to a pop esp; ret
sequence, and the next stack value to point to the en-
trypoint of the return-oriented program. By overwriting
these eight bytes, we manage to modify the stack register
to point to the beginning of our return-oriented program.
Of course, the vulnerability itself may vary in its concrete
nature, however, any similar insecure code allows us to
mount our attack: A single vulnerability within the ker-
nel or any third-party driver is enough to attack a system
and start the return-oriented program.

The only question that remains is where to put the pro-
gram image. We basically have two options: First, the
exploit could overwrite the entire kernel stack with our
return-oriented program; in case of the above vulnerabil-
ity, this would be possible as there is no upper limit. In
case of Windows, the kernel stack size has a fixed limit
of 3 pages which heavily constrains this option. Second,
the exploit could, at least initially, keep the program im-
age in userspace memory. We prefer the latter approach

to implement our rootkit loader, although it has some im-
plications that need to be addressed as we now explain.

5.2 Intricacies in Practice

One of the main practical obstacles that we faced stems
from the way how Windows treats its kernel stack.
All current Windows operating systems separate ker-
nel space execution into several interrupt request lev-
els (IRQL). IRQLs introduce a priority mechanism into
kernel-level execution and are similar to user-level thread
priorities. Every interrupt is executed in a well-defined
IRQL; whenever such an interrupt occurs, it is compared
to the IRQL of the currently executing thread. In case
the current IRQL is above the requested one, the inter-
rupt is queued for later rescheduling. As a consequence,
an interrupt cannot suspend a computation running at
a higher IRQL. This has some implications concern-
ing accessing pageable memory in kernel mode since
page-access exceptions are being processed in a specific
IRQL (APC LEVEL, to be precise) while other interrupts
are handled at higher IRQLs. Hence, the kernel and
drivers must not access pageable memory areas at cer-
tain IRQLs.

Unfortunately, this leads to some problems due to a pe-
culiarity of Windows kernels: Whenever interrupts occur
and hence must be handled, the Windows kernel borrows
the current kernel stack to perform its interrupt handling.
Therefore, the interrupt handler allocates the memory
below the current value of esp as the handler’s stack
frame. While this is totally acceptable in common sit-
uations, it leads to undesirable implications in case of
return-oriented programs as the stack values below the
current stack pointer may indeed be needed in the sub-
sequent execution. As described in Section 3.1.2, con-
trol flow branches are stack register modifications: When
the program wants to jump backwards, it may fail at this
point since the prior code might have been overwritten
by the interrupt handler in the first place. To solve this
problem, the Compiler provides an option to dynamically
restore affected code areas: Whenever a return-oriented

11

394 18th USENIX Security Symposium USENIX Association

control flow transition backwards occurs (which hence
could have been subject to unsolicited modifications), we
first prepare the ICA to perform a memcpy call that re-
stores the affected code from the backup code section and
subsequently performs the return-oriented jump. This
works since the ICA is located below the code section
and hence the code section cannot be overwritten during
the call. The data and backup section will never be over-
written as they are always on top of every possible value
of esp.

Furthermore, we will also run into IRQL problems in
case the program stack is located in pageable memory:
As soon as an interrupt is dispatched above APC LEVEL,
a blue-screen-of-death occurs. This problem should be
overcome by means of the VirtualLock function
which allows a process to lock a certain amount of pages
into physical memory, thereby eliminating the possibil-
ity of paging errors on access. However, due to reasons
which are yet not known to us, this does not always work
as intended for memory areas larger than one page. We
have frequently encountered paging errors in kernelmode
although the related memory pages have previously been
locked. We therefore introduce a workaround for this is-
sue in the next section.

5.3 Rootkit Loader
To overcome the paging IRQL problem, we have im-
plemented a pre-step in the loading phase. More pre-
cisely, in the first stage, we prepare a tiny return-oriented
rootkit loader that fits into one memory page and pre-
pares the entry of the actual return-oriented rootkit. It al-
locates memory from the kernel’s non-paged pool, which
is definitely never paged out, and copies the rootkit code
from userspace before performing a transition to the ac-
tual rootkit. This has proven to work reliably in practice
and we have not encountered any further IRQL prob-
lems. Again, the Rootkit Loader program image re-
sides in userspace, which limits the ability of kernel in-
tegrity protection mechanisms to prohibit the loading of
our rootkit.

5.4 Rootkit Implementation
To demonstrate our system’s capability, we have im-
plemented a return-oriented rootkit that is able to hide
certain system processes. This is achieved by an ap-
proach similar to the one introduced by Hoglund and
Butler [11]: Our rootkit cycles through Windows’ inter-
nal process block list to search for the process that should
be hidden and, if successful, then modifies the pointers in
the doubly-linked list accordingly to release the process’
block from the list. Since the operating system holds
a separate, independent scheduling list, the process will

int ListStartOffset =
&CurrentProcess−>process_list .Flink −
CurrentProcess ;

int ListStart =
&CurrentProcess−>process_list .Flink ;

int ListCurrent = ∗ListStart ;
while (ListCurrent != ListStart) {

struct EPROCESS ∗NextProcess =
ListCurrent − ListStartOffset ;

if (RtlCompareMemory (NextProcess−>ImageName ,
”Ghost .exe” , 9) == 9) {

break ;
}
ListCurrent = ∗ListCurrent ;

}

if (ListCurrent != ListStart) {
// process found, do some pointer magic
struct EPROCESS ∗GhostProcess =

ListCurrent − ListStartOffset ;

// Current->Blink->Flink = Current->Flink
GhostProcess−>process_list .Blink−>Flink =

GhostProcess−>process_list .Flink ;

// Current->Flink->Blink = Current->Blink
GhostProcess−>process_list .Flink−>Blink =

GhostProcess−>process_list .Blink ;

// Current->Flink = Current->Blink = Current
GhostProcess−>process_list .Flink =

ListCurrent ;
GhostProcess−>process_list .Blink =

ListCurrent ;
}

Figure 7: Rootkit source code snippet in dedicated lan-
guage for return-oriented programming that can be com-
piled with our Compiler.

still be running in the system, albeit not being present
in the results of process enumeration requests: The pro-
cess is hidden within Windows and not visible within
the Taskmanager. Figure 8 in Appendix A illustrates the
rootkit in practice.

Figure 7 shows an excerpt of the rootkit source code
written in our dedicated language. This snippet shows
the code for (a) finding the process to be hidden and (b)
hiding the process as explained above.

Once the process hiding is finished, the rootkit per-
forms a transition back to the vulnerable code to continue
normal execution. This seems to be complicated since
we have modified the stack pointer in the first place and
must hence restore its original value. However, in prac-
tice this turns out to be not problematic since this value is
available in the thread environment block that is always
located at a fixed memory location. Hence, we recon-
struct the stack and jump back to our vulnerable driver.
Besides process hiding, arbitrary data-driven attacks can
be implemented in the same way: The rootkit needs to

12

USENIX Association 18th USENIX Security Symposium 395

exploit the vulnerability repeatedly in order to gain con-
trol and can then execute arbitrary return-oriented pro-
grams that perform the desired operation [3].

We would like to mention at this point that more so-
phisticated rootkit functionality, e.g., file and socket hid-
ing, might demand more powerful constructs, namely
persistent return-oriented callback routines. Data-only
modifications as implemented by our current version of
the rootkit hence might not be sufficient in this case. In
contrast to Riley et al. [19], we do believe that this is
possible in the given environment by the use of specific
instruction sequences. However, we have not yet had the
time to prove our hypothesis and hence leave this topic
up to future work in this area.

The rootkit example works on Windows 2000, Win-
dows Server 2003 and Windows XP (including all ser-
vice packs). We did not port it to the Vista platform yet
as the publicly available information on the Vista kernel
is still limited. We also expect problems with the Vista
PatchGuard, a kernel patch protection system developed
by Microsoft to protect x64 editions of Windows against
malicious patching of the kernel. However, we would
like to stress that PatchGuard runs at the same privilege
level as our rootkit and hence could be defeated. In the
past, detailed reports showed how to circumvent Vista
PatchGuard in different ways [24, 26, 25].

6 Conclusion and Future Work

In this paper we presented the design and implementation
of a framework to automate return-oriented program-
ming on commodity operating systems. This system is
portable in the sense that the Constructor first enumerates
what instruction sequences can be used and then dynam-
ically generates gadgets that perform higher-level opera-
tions. The final gadgets are then used by the Compiler to
translate the source code of our dedicated programming
language into a return-oriented program. The language
we implemented resembles the syntax of the C program-
ming language which greatly simplifies developing pro-
grams within our framework. We confirmed the porta-
bility and universality of our framework by testing the
framework on ten different machines, providing deeper
insights into the mechanisms and constraints of return-
oriented programming. Finally we demonstrated how a
return-oriented rootkit can be implemented that circum-
vents kernel integrity protection systems like NICKLE
and SecVisor.

In the future, we want to investigate effective detec-
tion techniques for return-oriented rootkits. We also plan
to extend the research in two other important directions.
First, we plan to examine how the current rootkit can be
improved to also support persistent kernel modifications.
This change is necessary to implement rootkit functions

like hiding of files or network connections, which require
a persistent return-oriented callback routine. This change
would enhance the rootkit beyond the current data-driven
attacks. Second, we plan to analyze how the techniques
presented in this paper could be used to attack control-
flow integrity [1, 7, 14, 18] or data-flow integrity [5]
mechanisms. These mechanisms are orthogonal to the
kernel integrity protection mechanisms we covered in
this paper.

References

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and
Jay Ligatti. Control-Flow Integrity – Principles,
Implementations, and Applications. In Proceed-
ings of the 12th ACM Conference on Computer and
Communications Security (CCS), November 2005.

[2] James P. Anderson. Computer Security Technol-
ogy Planning Study. Technical Report ESD-TR-73-
51, AFSC, Hanscom AFB, Bedford, MA, October
1972. AD-758 206, ESD/AFSC.

[3] Arati Baliga, Pandurang Kamat, and Liviu Iftode.
Lurking in the Shadows: Identifying Systemic
Threats to Kernel Data. In Proceedings of the 2007
IEEE Symposium on Security and Privacy, 2007.

[4] Erik Buchanan, Ryan Roemer, Hovav Shacham,
and Stefan Savage. When Good Instructions Go
Bad: Generalizing Return-Oriented Programming
to RISC. In Proceedings of the 15th ACM Con-
ference on Computer and Communications Security
(CCS), October 2008.

[5] Miguel Castro, Manuel Costa, and Tim Harris. Se-
curing software by enforcing data-flow integrity. In
Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[6] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis,
Pratap Subrahmanyam, Carl A. Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan R.K. Ports.
Overshadow: A Virtualization-Based Approach to
Retrofitting Protection in Commodity Operating
Systems. In Proceedings of the 13th Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), May 2008.

[7] John Criswell, Andrew Lenharth, Dinakar Dhurjati,
and Vikram Adve. Secure Virtual Architecture: A
Safe Execution Environment for Commodity Op-
erating Systems. SIGOPS Oper. Syst. Rev., 41(6),
2007.

13

396 18th USENIX Security Symposium USENIX Association

[8] Jason Franklin, Arvind Seshadri, Ning Qu, Sagar
Chaki, and Anupam Datta. Attacking, Repairing,
and Verifying SecVisor: A Retrospective on the
Security of a Hypervisor. Technical Report Cy-
lab Technical Report CMU-CyLab-08-008, CMU,
June 2008.

[9] Tal Garfinkel and Mendel Rosenblum. A Virtual
Machine Introspection Based Architecture for In-
trusion Detection. In Proceedings of the 10th Net-
work and Distributed Systems Security Symposium
(NDSS), February 2003.

[10] Gil Dabah. diStorm64 - The ultimate disas-
sembler library. http://www.ragestorm.net/

distorm, 2009.

[11] Greg Hoglund and Jamie Butler. Rootkits : Sub-
verting the Windows Kernel. Addison-Wesley Pro-
fessional, July 2005.

[12] John E. Hopcroft, Rajeev Motwani, and Jeffrey D.
Ullman. Introduction to Automata Theory, Lan-
guages, and Computation (3rd Edition). Addison-
Wesley, 2006.

[13] Ralf Hund. Listing of gadgets constructed
on ten evaluation machines. http://pi1.

informatik.uni-mannheim.de/filepool/

projects/return-oriented-rootkit/

measurements-ro.tgz, May 2009.

[14] Vladimir Kiriansky, Derek Bruening, and Saman P.
Amarasinghe. Secure Execution via Program Shep-
herding. In Proceedings of the 11th USENIX Secu-
rity Symposium, pages 191–206, 2002.

[15] Microsoft. Digital Signatures for Ker-
nel Modules on Systems Running Win-
dows Vista. http://download.

microsoft.com/download/9/c/5/

9c5b2167-8017-4bae-9fde-d599bac8184a/

kmsigning.doc, July 2007.

[16] Microsoft. A detailed description of the Data Ex-
ecution Prevention (DEP) feature in Windows XP
Service Pack 2. http://support.microsoft.

com/kb/875352, 2008.

[17] Nergal. The advanced return-into-lib(c) exploits:
PaX case study. http://www.phrack.org/

issues.html?issue=58&id=4, 2001.

[18] Nick L. Petroni, Jr. and Michael Hicks. Automated
Detection of Persistent Kernel Control-Flow At-
tacks. In Proceedings of the 14th ACM Conference
on Computer and Communications Security (CCS),
pages 103–115, October 2007.

[19] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-
Transparent Prevention of Kernel Rootkits with
VMM-Based Memory Shadowing. In Proceedings
of the 11th Symposium on Recent Advances in In-
trusion Detection (RAID), 2008.

[20] Ryan Riley, Xuxian Jiang, and Dongyan Xu.
NICKLE: No Instructions Creeping into Kernel
Level Executed. http://friends.cs.purdue.
edu/dokuwiki/doku.php?id=nickle, 2008.

[21] Sebastian Krahmer. x86-64 Buffer Overflow Ex-
ploits and the Borrowed Code Chunks Exploitation
Techniques. http://www.suse.de/˜krahmer/

no-nx.pdf, September 2005.

[22] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian
Perrig. SecVisor: A Tiny Hypervisor to Pro-
vide Lifetime Kernel Code Integrity for Commod-
ity OSes. In Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles, 2007.

[23] Hovav Shacham. The Geometry of Innocent Flesh
on the Bone: Return-into-libc without Function
Calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Se-
curity (CCS), October 2007.

[24] skape and Skywing. Bypassing PatchGuard on
Windows x64. Uninformed, 3, January 2006.

[25] Skywing. PatchGuard Reloaded: A Brief Analysis
of PatchGuard 3. Uninformed, 8, September 2007.

[26] Skywing. Subverting PatchGuard Version 2. Unin-
formed, 6, January 2007.

[27] Solar Designer. Getting around non-executable
stack (and fix). http://seclists.org/

bugtraq/1997/Aug/0063.html, 1997.

[28] PaX Team. Documentation for the PaX project -
overall description. http://pax.grsecurity.

net/docs/pax.txt, 2008.

[29] Terence Parr. ANTLR Parser Generator. http:

//www.antlr.org, 2009.

[30] A. M. Turing. On Computable Numbers, with an
application to the Entscheidungsproblem. Proc.
London Math. Soc., 2(42):230–265, 1936.

A Return-Oriented Rootkit in Practice

Figure 8 depicts the results of an attack using our return-
oriented rootkit: The process Ghost.exe (lower left win-
dow) is a simple application that periodically prints a sta-
tus message on the screen. The rootkit (upper left win-
dow) first exploits the vulnerability in the driver to start

14

USENIX Association 18th USENIX Security Symposium 397

Figure 8: Return-oriented rootkit in practice, hiding the process Ghost.exe.

the return-oriented program. This program then hides
the presence of Ghost.exe as explained in Section 5.4:
The process Ghost.exe is running, however, the rootkit
removed it from the list of running processes and it is not
visible in the Taskmanager.

B Return-Oriented QuickSort

The following listing shows an implementation of Quick-
Sort within our dedicated programming language. The
syntax is close to the C programming language, allow-
ing a programmer to implement a return-oriented pro-
gram without too much effort. The most notable ex-
ception from C’s syntax is related to importing of exter-
nal functions: Our language can import subroutine calls
from other libraries, enabling an easy way to call external
functions like printf() or srand(). However, each
function needs to be imported explicitly. Furthermore,
the language implements only a basic type-system con-
sisting of integers and character arrays, but this should
not pose a limitation.

import (”msvcrt .dll” , printf :cdecl ,
srand :cdecl ,
rand :cdecl ,
malloc :cdecl) ;

import (”kernel32 .dll” , GetCurrentProcess ,
TerminateProcess ,
GetTickCount) ;

int data ;
int size = 500000;

function partition (int left , int right ,
int pivot_index) {

int pivot = data [pivot_index] ;
int temp = data [pivot_index] ;
data [pivot_index] = data [right] ;
data [right] = temp ;
int store_index = left ;
int i = left ;

while (i < right) {
if (data [i] <= pivot) {
temp = data [i] ;
data [i] = data [store_index] ;
data [store_index] = temp ;
store_index = store_index + 1 ;

}
i = i + 1 ;

}

temp = data [store_index] ;
data [store_index] = data [right] ;
data [right] = temp ;

return store_index ;
}

15

398 18th USENIX Security Symposium USENIX Association

function quicksort (int left , int right) {
if (left < right) {

int pivot_index = left ;
pivot_index = partition (left , right ,

pivot_index) ;
quicksort (left , pivot_index − 1) ;
quicksort (pivot_index + 1 , right) ;

}
}

function start () {
printf (”Welcome to ro−QuickSort\n ”) ;
data = malloc (4 ∗ size) ;
srand (GetTickCount ()) ;
int i = 0 ;
while (i < size) {

data [i] = rand () ;
i = i + 1 ;

}

int time_start = GetTickCount () ;
quicksort (0 , size − 1) ;
int time_end = GetTickCount () ;
printf (”Sorting completed in %u ms :\n” ,

time_end − time_start) ;
}

16

