Check out the new USENIX Web site.

USENIX Home . About USENIX . Events . membership . Publications . Students
13th USENIX Security Symposium — Abstract

Pp. 271–286 of the Proceedings

Autograph: Toward Automated, Distributed Worm Signature Detection

Hyang-Ah Kim, Carnegie Mellon University, and Brad Karp, Intel Research and Carnegie Mellon University

Abstract

Today's Internet intrusion detection systems (IDSes) monitor edge networks' DMZs to identify and/or filter malicious flows. While an IDS helps protect the hosts on its local edge network from compromise and denial of service, it cannot alone effectively intervene to halt and reverse the spreading of novel Internet worms. Generation of the worm signatures required by an IDS--the byte patterns sought in monitored traffic to identify worms--today entails non-trivial human labor, and thus significant delay: as network operators detect anomalous behavior, they communicate with one another and manually study packet traces to produce a worm signature. Yet intervention must occur early in an epidemic to halt a worm's spread. In this paper, we describe Autograph, a system that automatically generates signatures for novel Internet worms that propagate using TCP transport. Autograph generates signatures by analyzing the prevalence of portions of flow payloads, and thus uses no knowledge of protocol semantics above the TCP level. It is designed to produce signatures that exhibit high sensitivity (high true positives) and high specificity (low false positives); our evaluation of the system on real DMZ traces validates that it achieves these goals. We extend Autograph to share port scan reports among distributed monitor instances, and using trace-driven simulation, demonstrate the value of this technique in speeding the generation of signatures for novel worms. Our results elucidate the fundamental trade-off between early generation of signatures for novel worms and the specificity of these generated signatures.
  • View the full text of this paper in HTML and PDF.
    Click here if you have forgotten your password Until August 2005, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2004 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.
To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 27 July 2004 aw
Technical Program
Security '04 Home
USENIX home