
USENIX Association

Proceedings of the
13th USENIX Security Symposium

San Diego, CA, USA
August 9–13, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Design and Implementation of a TCG-based
Integrity Measurement Architecture

Reiner Sailer and Xiaolan Zhang and Trent Jaeger and Leendert van Doorn
IBM T. J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532
{sailer,cxzhang,jaegert,leendert}@watson.ibm.com

Abstract
We present the design and implementation of a secure in-
tegrity measurement system for Linux. All executable con-
tent that is loaded onto the Linux system is measured be-
fore execution and these measurements are protected by the
Trusted Platform Module (TPM) that is part of the Trusted
Computing Group (TCG) standards. Our system is the first
to extend the TCG trust measurement concepts to dynamic
executable content from the BIOS all the way up into the ap-
plication layer. In effect, we show that many of the Microsoft
NGSCB guarantees can be obtained on today’s hardware and
today’s software and that these guarantees do not require a
new CPU mode or operating system but merely depend on
the availability of an independent trusted entity, a TPM for
example. We apply our trust measurement architecture to a
web server application where we show how our system can
detect undesirable invocations, such as rootkit programs, and
that our measurement architecture is practical in terms of the
number of measurements taken and the performance impact
of making them.

1 Introduction

With the introduction of autonomic computing, grid comput-
ing and on demand computing there is an increasing need to
be able to securely identify the software stack that is running
on remote systems. For autonomic computing, you want to
determine that the correct patches have been installed on a
given system. For grid computing, you are concerned that
the services advertised really exist and that the system is not
compromised. For on demand computing, you may be con-
cerned that your outsourcing partner is providing the software
facilities and performance that have been stipulated in the ser-
vice level agreement. Yet another scenario is where you are
interacting with your home banking or bookselling webser-
vices application and you want to make sure it has not been
tampered with.

The problem with the scenarios above is, who do you trust
to give you that answer? It cannot be the program itself be-

cause is could be modified to give you wrong answers. For
the same reason we cannot trust the kernel or the BIOS on
which these programs are running since they may be tam-
pered with too. Instead we need to go back to an immutable
root to provide that answer. This is essentially the secure boot
problem [1], although for our scenarios we are interested in
an integrity statement of the software stack rather than ensur-
ing compliance with respect to a digital signature.

The Trusted Computing Group (TCG) has defined a set
of standards [2] that describe how to take integrity measure-
ments of a system and store the result in a separate trusted
coprocessor (Trusted Platform Module) whose state cannot
be compromised by a potentially malicious host system. This
mechanism is called trusted boot. Unlike secure boot, this
system only takes measurements and leaves it up to the re-
mote party to determine the system’s trustworthiness. The
way this works is that when the system is powered on it trans-
fers control to an immutable base. This base will measure the
next part of BIOS by computing a SHA1 secure hash over its
contents and protect the result by using the TPM. This pro-
cedure is then applied recursively to the next portion of code
until the OS has been bootstrapped.

The TCG trusted boot process is composed of a set of or-
dered sequential steps and is only defined up to the bootstrap
loader. Conceptually, we would like to maintain the chain of
trust measurements up to the application layer, but unlike the
bootstrap process, an operating system handles a large vari-
ety of executable content (kernel, kernel modules, binaries.
shared libraries, scripts, plugins, etc.) and the order in which
the content is loaded is seemingly random. Furthermore, an
operating system almost continuously loads executable con-
tent and measuring the content at each load time incurs a con-
siderable performance overhead.

The system that we describe in this paper addresses these
concerns. We have modified the Linux kernel and the runtime
system to take integrity measurements as soon as executable
content is loaded into the system, but before it is executed.
We keep an ordered list of measurements inside the kernel.
We change the role of the TPM slightly and use it to pro-

tect the integrity of the in-kernel list rather than holding mea-
surements directly. To prove to a remote party what software
stack is loaded, the system needs to present the TPM state us-
ing the TCG attestation mechanisms and this ordered list. The
remote party can then determine whether the ordered list has
been tampered with and, once the list is validated, what kind
of trust it associates with the measurements. To minimize
the performance overhead, we cache the measurement results
and eliminate future measurement computations as long as
the executable content has not been altered. The amount of
modifications we made to the Linux system were minimal,
about 4000 lines of code.

Our enhancement keeps track of all the software compo-
nents that are executed by a system. The number of unique
components is surprisingly small and the system quickly set-
tles into a steady state. For example, the workstation used by
this author which runs RedHat 9 and whose workload con-
sists of writing this paper, compiling programs, and browsing
the web does not accumulate more than 500 measurement en-
tries. On a typical web server the accumulated measurements
are about 250. Thus, the notion of completely fingerprinting
the running software stack is surprisingly tractable.

Contributions: This paper makes the following contribu-
tions:

• A non-intrusive and verifiable remote software stack
attestation mechanism that uses standard (commodity)
hardware.

• An efficient measurement system for dynamic exe-
cutable content.

• A tractable software stack attestation mechanism that
does not require new CPU modes or a new operating
system.

Outline: Next, we introduce the structure of a typical
run-time system, for which we will establish an integrity-
measurement architecture throughout this paper. In Section 3,
we present related work in the area of integrity protecting sys-
tems and attestation. In Sections 4 and 5, we describe the
design of our approach and its implementation in a standard
Linux operating environment. Section 6 describes experi-
ments that highlight how integrity breaches are made visible
by our solution when validating measurement-lists. It also
summarizes run-time overhead. Finally, Section 7 sketches
enhancements to our architecture that are being implemented
or planned. Our results show and validate that our architec-
ture is efficient, scales with regard to the number of elements,
successfully recognizes integrity breaches, and offers a valu-
able platform for extensions and future experiments.

2 Problem Statement

To provide integrity verification services, we first examine the
meaning of system integrity, in general. We then describe a

web server example system to identify the types of problems
that must be solved to prove integrity to a remote system with
a high degree of confidence. We show that the operating sys-
tem lacks the context to provide the level of integrity mea-
surement necessary, but with a hardware root of trust, the op-
erating system can be a foundation of integrity measurement.
Currently, we surmise that it is more appropriate for finding
integrity bugs than full verification, but we aim to define an
architecture that can eventually be extended to meet our mea-
surement requirements.

2.1 Integrity Background

Our goal is to enable a remote system (thechallenger) to
prove that a program on another system (theattesting sys-
tem owned by theattestor) is of sufficient integrity to use.
The integrity of a program is a binary property that indicates
whether the program and/or its environment have been mod-
ified in an unauthorized manner. Such an unauthorized mod-
ification may result in incorrect or malicious behavior by the
program, such that it would be unwise for a challenger to rely
on it.

While integrity is a binary property, integrity is a relative
property that depends on the verifier’s view of the ability of a
program to protect itself. Biba defines that integrity is com-
promised when a program depends on (i.e., reads or executes)
low integrity data [3]. In practice, programs often process low
integrity data without being compromised (but not all pro-
grams, all the time), so this definition is too restricted. Clark-
Wilson define a model in whichintegrity verification proce-
duresverify integrity at system startup and high integrity data
is only modified bytransformation proceduresthat are certi-
fied to maintain integrity even when their inputs include low
integrity data [4]. Unfortunately, the certification of applica-
tions is too expensive to be practical.

More recent efforts focus on measuring code and associ-
ating integrity semantics with the code. The IBM 4758 ex-
plicitly defines that the integrity of a program is determined
by the code of the program and its ancestors [5]. In prac-
tice, this assumption is practical because the program and its
configuration are installed in a trusted manner, it is isolated
from using files that can be modified by other programs, and
it is assumed to be capable of handling low integrity requests
from the external system. To make this guarantee plausible,
the IBM 4758 environment is restricted to a single program
with a well-defined input state and the integrity is enforced
with secure boot. However, even these assumptions have not
been sufficient to prevent compromise of applications running
on the 4758 which cannot handle low integrity inputs prop-
erly [6]. Thus, further measurement of low integrity inputs
and their impact appear to be likely.

The key differences in this paper are that: (1) we endeavor
to define practical integrity for a flexible, traditional sys-
tems environment under the control of a potentially untrusted

party and (2) the only special hardware that we leverage is
the root of trust provided by the Trusted Computing Group’s
Trusted Platform Module (TCG/TPM). In the first case, we
may not assume that all programs are loaded correctly simply
by examining the hash because the untrusted party may try
to change the input data that the program uses. For example,
many programs enable configuration files to be specified in
the command line. Ultimately, applications define the seman-
tics of the inputs that they use, so it is difficult for an oper-
ating system to detect whether all inputs have been used in
an appropriate manner by an application if its environment is
controlled by an untrusted party. However, a number of vul-
nerabilities can be found by the operating system alone, and
it is fundamental that the operating system collect and protect
measurements.

Second, the specialized hardware environment of the IBM
4758 enables secure boot and memory lockdown, but such
features are either not available or not practical for current
PC systems. Secure boot is not practical because integrity
requirements are not fixed, but defined by the remote chal-
lengers. If remote parties could determine the secure boot
properties of a system, systems would be vulnerable to a sig-
nificant denial-of-service threat. Instead the TCG/TPM sup-
ports trusted boot, where the attesting system is measured and
the measurements are used by the challengers to verify their
integrity requirements. Since trusted boot does not terminate
a boot when a low integrity process is loaded, all data could
be subject to attack during the “untrusted” boot. Since multi-
ple applications can run in a discretionary access control en-
vironment concurrently, it is difficult to determine whether
the dynamic data of a system (e.g., a database) is still ac-
ceptable. Discretionary integrity mechanisms, such assealed
storage[7], do not solve this problem in general.

2.2 Example

We use as an example a server machine running an Apache
Webserver and Tomcat Web Containers that serve static and
dynamic content to sell books to clients running on remote
systems. The system is running a RedHat 9.0 Linux environ-
ment. Figure 1 illustrates the runtime environment that affects
the Web server.

The system is initiated by booting the operating system.
The boot process is determined by the BIOS, grub bootloader,
and kernel configuration file (/boot/grub.conf). The
first two can alter the system in arbitrary ways, so they must
be measured. An interesting point is that measurement of
configuration files, such asgrub.conf , is not necessary
as long as they do not: (1) modify code already loaded and
(2) all subsequent file loads can be seen by the measurement
infrastructure. Since the BIOS and grub bootloader are un-
affected, we only need to ensure that the kernel and other
programs whose loads are triggered by the configuration are
measured.

Kernel Space

Basic Input Output System (BIOS)

Linux GRUB Bootstrap Loader

Linux 2.6.5 System Kernel

Kernel
Modules...

User Space

apachectrl, httpd
Static Data:
- httpd.conf
- java.security/policy
- java classes

Libraries
LibrariesLibraries/

Unstructured / Dynamic Data:

- Inter Process Communication
- File / Network /User I|O

- ...

Executables

Modules

catalina.sh, java

e100.ko autofs.ko agpgart.ko

startup.sh

Figure 1: Runtime System Components

The boot process results in a particular kernel being run.
There are a variety of different types of kernels, kernel ver-
sions, and kernel configurations that determine the actual
system being booted. For example, we load Linux 2.6.5-
tcg from/boot/vmlinuz-2.6.5-tcg which includes a
TPM driver and our measurement hooks. Further, the kernel
may be extended by loadable kernel modules. The measure-
ment infrastructure must be able to measure the kernel and
any modules that are loaded. The challenger must be able
to determine whether this specific kernel booted and the dy-
namically loaded modules meet the desired integrity require-
ments.

Once the kernel is booted, then user-level services and ap-
plications may be run. In Linux, a program execution starts
by loading an appropriate interpreter (i.e., a dynamic loader,
such asld.so) based on the format of the executable file.
Loads of the target executable’s code and supporting libraries
are done by the dynamic loader. Executables include the fol-
lowing files on our experimental system:

• Apache server (apachectl, httpd, ...)

• Apache modules (modaccess.so, modauth.so,
mod cgi.so, ...)

• Tomcat servlet machine (startup.sh, catalina.sh, java, ...)

• Dynamic libraries (libjvm.so, libcore.so, libjava.so, libc-
2.3.2.so, libssl.so.4, ...)

All of this code impacts system integrity, so we need to mea-
sure them. The kernel knows when executable code is loaded
because the related file is memory-mapped by using the ex-
ecutable flag. However, the kernel cannot recognize kernel
modules when they are loaded from the file system because
they are loaded by applications such as modprobe or ins-
mod and are memory-mapped as executable only after they
have been loaded into in memory. Finally, the kernel does

not know when executable scripts are loaded into interpreters
such as bash because they are read as normal files.

Some other files loaded by the application itself also de-
fine its execution behavior. For example, the Java class files
that define servlets and web services must be measured be-
cause they are loaded by the Tomcat server to create dynamic
content, such as shopping cart or payment pages. Applica-
tion configuration files, such as the startup files for Apache
(httpd.conf) and Tomcat (startup scripts) may also alter the
behavior of the Web server. These files in our example sys-
tem include:

• Apache configuration file (httpd.conf)

• Java virtual machine security configuration
(java.security, java.policy)

• Servlets and web services libraries (axis.jar, servlet.jar,
wsdl4j.jar, ...)

While each of these files may have standard contents that
can be identified by the challenger, it is difficult to determine
which files are actually being used by an application and for
what purpose. Even ifhttp.conf has the expected con-
tents, it may not be loaded as expected. For example, Apache
has a command line option to load a different file, links in
the file system may result in a different file being loaded,
and races are possible between when the file is measured and
when it is loaded. Thus, a Tripwire-like [8] measurement of
the key system files is not sufficient because the users of the
attesting system (attestors) may change the files that actually
determine its integrity, and these users are not necessarily
trusted by the challengers. As in the dynamic loader case,
the integrity impact of opening a file is only known to the re-
questing program. However, unlike the case for the dynamic
loader, the problem of determining the integrity impact of ap-
plication loads involves instrumentation of many more pro-
grams, and these may be of varying trust levels.

The integrity of the Web server environment also depends
on dynamic, unstructured data that is consumed by running
executables. The key issue is that even if the application
knows that this data can impact its integrity, its measurement
is useless because the challenger cannot predict values that
would preserve integrity. In the web server example, the key
dynamic data are: (1) the various kinds of requests from re-
mote clients, administrators, and other servlets and (2) the
database of book orders. The sorts of things that need to be
determined are whether the order data or administrator com-
mands can be modified only by high integrity programs (i.e.,
Biba) and whether the low integrity requests can be converted
to high integrity data or rejected (i.e., Clark-Wilson). Sealed
storage is insufficient to ensure the first property, informa-
tion flow based on mandatory policy is necessary in general,
and enforcement of the second property requires trusted up-
graders or trust in the application itself.

2.3 Measuring Systems

Based on the analysis of the web server example, we list the
types of tasks that must be accomplished to achieve a Clark-
Wilson level of integrity verification.

• Verification Scope: Unless information flows among
processes are under a mandatory restriction, the integrity
of all processes must be measured. Otherwise, the scope
of integrity impacting a process may be reduced to only
those processes upon which it depends for high integrity
code and data.

• Executable Content: For each process, all code ex-
ecuted must be of sufficient integrity regardless of
whether it is loaded by the operating system, dynamic
loader, or application.

• Structured Data: For each process, data whose content
has an identifiable integrity semantics may be treated in
the same manner as executable content above. How-
ever, we must be sure to capture the data that is actually
loaded by the operating system, dynamic loaders, and
applications.

• Unstructured Data: For each process, the data whose
content does not have an identifiable integrity semantics,
the integrity of the data is dependent on the integrity of
the processes that have modified it or the integrity may
be upgraded by explicit upgrade processes or this pro-
cess (if it is qualified to be a transformation procedure in
the Clark-Wilson sense).

The first statement indicates that for systems that use dis-
cretionary policy (e.g., NGSCB), the integrity of all processes
must be measured because all can impact each other. Second,
we must measure all code including modules, libraries, and
code loaded in an ad hoc fashion by applications to verify the
integrity of an individual process. Third, some data may have
integrity semantics similar to code, such that it may be treated
that way. Fourth, dynamic data cannot be verified as code, so
data history, security policy, etc. are necessary to determine
its integrity. The challengers may assume that some code can
handle low integrity data as input. The lack of correct under-
standing about particular code’s ability to handle low integrity
data is the source of many current security problems, so we
would ultimately prefer a clear identification of how low in-
tegrity data is used.

Further, an essential part of our architecture is the ability
of challengers to ensure that the measurement list is:

• fresh and complete, i.e., includes all measurements up to
the point in time when the attestation is executed,

• unchanged, i.e., the fingerprints are truly from the loaded
executable and static data files and have not been tam-
pered with.

An attestor that has been corrupted can try to cheat by ei-
ther truncating measurements or delivering changed measure-
ments to hide the programs that have corrupted its state. Re-
playing old measurement lists is equivalent to hiding new
measurements.

This analysis indicates that integrity verification for a flex-
ible systems environment is a difficult problem that requires
several coordinated tasks. Rather than tackle all problems at
once, a more practical approach is to provide an extensible
approach that can identify some integrity bugs now and form
a basis for constructing reasonable integrity verification in the
future. This approach is motivated by the approach adopted
by static analysis researchers in recent work [9]. Rather than
proving the integrity of a program, these tools are designed
to find bugs and be extensible to finding other, more com-
plex bugs in the future. Finding integrity bugs is also useful
for identifying that code needs to be patched, illegal informa-
tion flows, or cases where low integrity data is used without
proper safeguards. For example, a challenger can verify that
an attesting system is using high integrity code for its current
applications.

In this paper, we define operating systems support for mea-
suring the integrity of code and structured data. The operat-
ing system ensures that the code loaded into every individ-
ual user-level process is measured, and this is used as a basis
for applications to measure other code and data for which in-
tegrity semantics may be defined. Thus, our architecture en-
sures that the breadth of the system is measured (i.e., all user-
level processes), but the depth of measurement (i.e., which
things are subsequently loaded into the processes) is not com-
plete, but it is extensible, such that further measurements to
increase confidence in integrity are possible. At present, we
do not measure mandatory access control policy, but the ar-
chitecture supports extensions to include such measurements
and we are working on how to effectively use them.

3 Related Work

Related work includes previous efforts to measure a system
to improve its integrity and/or enable remote integrity verifi-
cation. The key issues in prior work are: (1) the distinction
betweensecure bootandauthenticated bootand (2) the se-
mantic value of previous integrity measurement approaches.

Secure boot enables a system to measure its own integrity
and terminate the boot process if an action compromises this
integrity. The AEGIS system by Arbaugh [1] provides a prac-
tical architecture for implementing secure boot on a PC sys-
tem. It uses signed hash values to identify and validate each
layer in the boot process. It will abort booting the system
if the hashes cannot be validated. Secure boot does not en-
able a challenging party to verify the integrity of a boot pro-
cess (i.e., authenticated boot) because it simply measures and
checks the boot process, but does not generate attestations of
the integrity of the process.

The IBM 4758 secure coprocessor [10] implements both
secure boot and authenticated boot, albeit in a restricted en-
vironment. It promises secure boot guarantees by verify-
ing (flash) partitions before activating them and by enforcing
valid signatures before loading executables into the system.
A mechanism calledoutgoing authentication[5] enables at-
testation that links each subsequent layer to its predecessor.
The predecessor attests to the subsequent layer by generating
a signed message that includes the cryptographic hash and the
public key of the subsequent layer. To protect an application
from flaws in other applications, only one application is al-
lowed to run at a time. Thus, the integrity of the application
depends on hashes of the code and manual verification of the
application’s installation data. This data is only accessible to
trusted code after installation. Our web server example runs
in a much more dynamic environment where multiple pro-
cesses may access the same data and may interact. Further,
the security requirements of the challenging party and the at-
testing party may differ such that secure boot based on the
challenging party’s requirements is impractical.

The Trusted Computing Group [11] is a consortium of
companies that together have developed an open interface for
a Trusted Platform Module, a hardware extension to systems
that provides cryptographic functionality and protected stor-
age. By default, the TPM enables the verification of static
platform configurations, both in terms of content and order,
by collecting a sequence of hashes over target code. For ex-
ample, researchers have examined how a TPM can be used to
prove that a system has booted a valid operating system [12].
The integrity of applications running on the operating system
is outside the scope of this work and is exactly where we look
to expand the application of the TPM.

Marchesini et al. [13] describe an approach that uses signed
trustworthy configurations to protect a system’s integrity.
Such a configuration stores signatures of sensitive configura-
tion files. A so-called Enforcer checks the integrity of signed
files in the configuration against the real file every time the
real file is opened. The approach enforces integrity through
TPM- sealing of long-lived server certificates and binding
of the unsealing to a correct configuration. In this respect
the work is related to the platform configurations described
in [12]. None of the known existing work extends the mea-
surement of a software stack from the static boot configura-
tion seamlessly into the application level.

Terra [14] and Microsoft’s Next Generation Secure Com-
puting Base (NGSCB [7]) are based on the same hardware
security architecture (TCG/TPM) and are similar in provid-
ing a “whole system solution” to authenticated boot. NGSCB
partitions a platform into a trusted and untrusted part each of
which runs its own operating system. Only the trusted por-
tion is measured which limits the flexibility of the approach
(not all programs of interest should be fully trusted) and it
depends on hardware and base software not yet available.

Terra is a trusted computing architecture that is built

around a trusted virtual machine monitor that –among other
things– authenticates the software running in a VM for chal-
lenging parties. Terra tries to resolve the conflict between
building trusted customized closed-box run-time environ-
ments (e.g., IBM 4758) and open systems that offer rich func-
tionality and significant economies of scale that, however, are
difficult to trust because of their flexibility. As such, Terra
tries to solve the same problem as we do, however in a very
different way. Terra measures the trusted virtual machine
monitor on the partition block level. Thus, on the one hand,
Terra produces about 20 Megabyte of measurement values
(i.e., hashes) when attesting an exemplary 4 Gigabyte VM
partition. On the other hand, because those measurements
are representative of blocks, it is difficult to interpret varying
measurement values. Thus, our system measures selectively
those parts of the system that contribute to the dynamic run-
time system; it does so on a high level that is rich in semantics
and enables remote parties to interpret varying measurements
on a file level.

4 Design of an Integrity
Measurement Architecture

Our integrity Measurement architecture consists of three ma-
jor components:

• TheMeasurement Mechanismon the attested system de-
termines what parts of the run-time environment to mea-
sure, when to measure, and how to securely maintain the
measurements.

• An Integrity Challenge Mechanismthat allows autho-
rized challengers to retrieve measurement lists of a com-
puting platform and verify their freshness and complete-
ness.

• An Integrity Validation Mechanism, validating that the
measurement list is complete, non-tampered, and fresh
as well as validating that all individual measurement en-
tries of runtime components describe trustworthy code
or configuration files.

Figure 2 shows how these mechanisms interact to enable
remote attestation. Measurements are initiated by so-called
measurement agents, which induce a measurement of a file,
(a) store the measurement in an ordered list in the kernel, and
(b) report the extension of the measurement list to the TPM.

The integrity challenge mechanism allows remote chal-
lenger to request the measurement list together with the TPM-
signed aggregate of the measurement list (step 1 in Fig 2).
Receiving such a challenge, the attesting system first retrieves
the signed aggregate from the TPM (steps 2 and 3 in Fig 2)
and afterwards the measurement list from the kernel (step 4
in Fig 2). Both are then returned to the attesting party in step
5. Finally, the attesting party can validate the information

Measurement
Agent

TPM

Platform Configuration Register 0

Platform Configuration Register N
...

Measurement
Agent

Measurement
Agents

Trusted BIOS
Measurements

Report

b) Report 2.
 Q

u
o

te
R

eq

Kernel + Run-Time + File Systems

Trusted Platform

Attestation
Service

1. IntegrityChallenge

5. IntegrityResponse

3.
 Q

u
o

te
R

es

Measurement
List

a) Store
4. R

etri
eve

Challenger

6. validate
Response

Attesting System Platform

Figure 2: TPM-based Integrity Measurement

and reason about the trustworthiness of the attesting system’s
run-time integrity in step 6.

4.1 Assumptions

Before we describe these three components of our architec-
ture, we establish assumptions about the attacker model be-
cause without such restrictions, there would always be attack-
ers that are able to fool a remote client.

We use services and protection offered by the TCG stan-
dards [11] in order to: (1) enable challenging parties to
establish trust into the platform configuration of the attest-
ing system (measurement environment) and (2) ensure chal-
lengers that the measurement list compiled by the measure-
ment environment has not been tampered with. We assume
that the TPM hardware works according to the TPM speci-
fications [11] and that the TPM is embedded correctly into
the platform, ensuring the proper measurement of the BIOS,
bootloader, and following system environment parts.

The TPM cannot prevent direct hardware attacks against
the system, so we assume that these are not part of the threat
model.

We assume that code measurements are sufficient to de-
scribe its behavior. Thus, self-changing code can be evalu-
ated because the intended ability of code to change itself is
reflected in the measurement and can be taken into account
in verification. The same holds for the kernel code that is
thought to be changed only through loading and unloading
modules. Kernel changes based on malicious DMA transfers
overwriting kernel code are not addressed; however, the code
setting up the DMA is measured and thus subject to evalua-
tion.

We also assume that the challenging party holds a valid and
trusted certificate binding a public RSA identity keyAIKpub

of the attesting system’s TPM.AIKpub will be used by the
challenging party to validate the quoted register contents of
the attesting system’s TPM before using those registers to val-
idate the measurement list.

We assume that there are no confidentiality requirements
on measurement data that cannot be satisfied by controlling

the access to the attestation service.
Finally, for the interpretation of system integrity measure-

ments, we rely on the challenger’s run-time because the val-
idation results must be securely computed, interpreted, and
acted upon. We assume that the challenger can safely decide
which measurements to trust either by comparing them to a
list of trusted measurements or by off-loading the decision to
trusted parties that sign trusted measurements according to a
common policy (i.e., common evaluation criteria).

4.2 Measurement Mechanism

Our measurements mechanism consists of a base measure-
ment when a new executable is loaded and the ability to mea-
sure other executable content and sensitive data files. The
idea is that BIOS and bootloader measure the initial kernel
code and then enable the kernel to measure changes to itself
(e.g., module loads) and the creation of user-level processes.
The kernel uses the same approach with respect to user-
level processes, where it measures the executable code loaded
into processes (e.g., dynamic loader andhttpd loaded via
mmap). Then, this code can measure subsequent security sen-
sitive inputs it loads (e.g., configuration files or scripts mea-
sured byhttpd). The challenger’s trust is dependent on its
trust in the measured code to measure its security sensitive in-
puts, protect itself from unmeasured inputs, and protect data
it is dependent upon across reboots. The operating system
can provide further protection of applications through manda-
tory access control policy which can limit the sources of mali-
cious, unmeasured inputs and protect data from modification.
However, the use of such policy is future work.

In this section, we discuss how measurements are made.
The application of these measurements to a complete mea-
surement system is described in Section 5.

To uniquely identify any particular executable content, we
compute a SHA1 hash over the complete contents of the file.
The resulting 160bit hash value unambiguously identifies the
file’s contents. Different file types, versions, and extensions
can be distinguished by their unique fingerprints.

The individual hashes are collected into ameasurement list
that represents the integrity history of the attesting system.
Modifications to the measurement list are not permissible as
that would enable an attacker to hide integrity-relevant ac-
tions. As our architecture is non-intrusive, it does not prevent
systems from being corrupted, nor does it prevent the mea-
surement list from being tampered with afterwards. How-
ever, to prevent such malicious behavior from going unno-
ticed (preventing corrupted systems from cheating), we use a
hardware extension on the attesting system, known as Trusted
Platform Module, to make modifications of the measurement
list visible to challenging parties.

The TPM [11] provides some protected data registers,
called Platform Configuration Registers, which can be
changed only by two functions: The first function is reboot-

ing the platform, which clears all PCRs (value 0). The sec-
ond function is theTPM extend function, which takes one
160bit numbern and the numberi of a PCR register as ar-
guments and then aggregatesn and the current contents of
PCR[i] by computing a SHA1(PCR[i] || n). This new value
is stored in PCR[i]. There is no other way for the system to
change the value of any PCR register, based on our assump-
tions that the TPM hardware behaves according to the TCG
specification and no direct physical attacks occur.

We use the Platform Configuration Registers to maintain
an integrity verification value over all measurements taken by
our architecture. Any measurement that is taken is also ag-
gregated into a TPM PCR (usingTPM extend) before the
measured component can affect and potentially corrupt the
system. Thus, any measured software is recorded before tak-
ing control directly (executable) or indirectly (static data file
of the configuration). For example, ifi measurementsm1..mi

have been taken, the aggregate in the chosen PCR contains
SHA1(..SHA1(SHA1(0||m1)||m2)..||mi). The protected
storage of the TPM prevents modification by devices or sys-
tem software. While it can be extended with other chosen
values by a corrupted system, the way that the extension is
computed (properties of SHA1) prevents a malicious system
from adjusting the aggregate in the PCR to represent a pre-
scribed system. Once a malicious component gains control,
it is too late to hide this component’s existence and fingerprint
from attesting parties.

Thus, corrupted systems can manipulate the measurement
list, but this is detected by re-computing the aggregate of the
list and comparing it with the aggregate stored securely inside
the TPM.

4.3 Integrity Challenge Mechanism

The Integrity Challenge protocol describes how challenging
parties securely retrieve measurements and validation infor-
mation from the attesting system. The protocol must protect
against the following major threats when retrieving attesta-
tion information:

• Replay attacks: a malicious attesting system can replay
attestation information (measurement list + TPM aggre-
gate) from before the system was corrupted.

• Tampering: a malicious attesting system or intermedi-
ate attacker can tamper with the measurement list and
TPM aggregate before or when it is transmitted to the
challenging party.

• Masquerading: a malicious attesting system or interme-
diate attacker can replace the original measurement list
and TPM aggregate with the measurement list and TPM
aggregate of another (non-compromised) system.

We assume that this mechanism is used over a secure (e.g.,
SSL-authenticated and protected) connection to guarantee au-

thenticity and confidentiality requirements. Fig. 3 depicts the
integrity challenge protocol used by the challenging partyC
to securely validate integrity claims of the attesting system
AS. In steps 1 and 2,C creates a non-predictable 160bit
randomnonce and sends it in a challenge request message
ChReq to AS. In step 3, the attesting system loads a pro-
tected RSA keyAIK into the TPM. ThisAIK is encrypted
with the so-called Storage Root Key (SRK), a key known only
to the TPM. The TPM specification [11] describes, how a
2048-bit AIK is created securely inside the TPM and how the
corresponding public keyAIKpub can be securely certified
by a trusted party. This trusted party certificate links the sig-
nature of the PCR to a specific TPM chip in a specific system.
Then, theAS requests aQuote from the TPM chip that now
signs the selectedPCR (or multiple PCRs) and thenonce
originally provided byC with the private keyAIKpriv. To
complete step 3, theAS retrieves the ordered list of all mea-
surements (in our case from the kernel). Then,AS responds
with a challenge response messageChRes in step 4, includ-
ing the signed aggregate and nonce inQuote, together with
the claimed complete measurement listML.

1. C : create non-predictable 160bitnonce
2. C → AS : ChReq(nonce)
3a.AS : load protectedAIKpriv into TPM
3b. AS : retrieveQuote = sig{PCR, nonce}AIKpriv

3c. AS : retrieve Measurement ListML
4. AS → C: ChRes(Quote, ML)
5a.C : determine trustedcert(AIKpub)
5b. C : validatesig{PCR, nonce}AIKpriv

5c. C : validatenonce andML usingPCR

Figure 3: Integrity Challenge Protocol

In step 5a, C first retrieves a trusted certificate
cert(AIKpub). This AIK certificate binds the verification
key AIKpub of theQUOTE to a specific system and states
that the related secret key is known only to this TPM and
never exported unprotected. Thusmasqueradingcan be dis-
covered by the challenging party by comparing the unique
identification ofAS with the system identification given in
cert(AIKpub). This certificate must be verified to be valid,
e.g., by checking the certificate revocation list at the trusted
issuing party.C then verifies the signature in step 5b.

In step 5c,C validates thefreshnessof theQUOTE and
thus the freshness of thePCR (the measurement aggregate).
Freshness is guaranteed if the nonces match as long thenonce
in step 2 is unique and not predictable. As soon asAS re-
ceives a nonce twice or can predict the nonce (or predict even
a small enough set into which the nonce will fall), it can
decide to replay old measurements or request TPM-signed
quotes early using predicted nonces. In both cases, the quoted
integrity measurementsML might not reflect the actual sys-
tem status, but a past one. If the nonce offers insufficient

security, then the validity of the signature keys can be re-
stricted, because the replay window for signed aggregates is
also bound to using a valid signature key.

Validating the signature in step 5b,C can detecttampering
with the TPM aggregate, because it will invalidate the sig-
nature (assuming cryptographic properties of a digital 2048-
bit signature today, assuming the secret key is known only
to the TPM, and assuming no hardware tampering of the
TPM). Tampering with the measurement list is made visible
in step 5c by walking through the measurement listML and
re-computing the TPM aggregate (simulating the TPM ex-
tend operations as described in Section 4.2) and comparing
the result with the TPM aggregatePCR that is included in
the signedQuote received in step 4. If the computed aggre-
gate matches the signed aggregate, then the measurement list
is valid and untampered, otherwise it is invalid.

4.4 Integrity Validation Mechanism

The challenging party must validate the individual measure-
ments of the attesting party’s platform configuration and the
dynamic measurements that have taken place on the attest-
ing system since it has been rebooted. The aggregate for the
configuration and the measurement list has already been val-
idated throughout the integrity challenge protocol and is as-
sumed here. The same holds for the validity of the TPM ag-
gregate.

Concluding whether to trust or distrust an attesting sys-
tem is based on testing each measurement list entry indepen-
dently, comparing its measurement value with a list of trusted
measurement values. More sophisticated validation models
can relate multiple measurements to reach an evaluation re-
sult. Testing measurement entries is logically the same re-
gardless of whether the entry is code or data. The idea is that
the entry matches some predefined value that has known in-
tegrity semantics. Unknown fingerprints can result from new
program versions, unknown programs, or otherwise manipu-
lated code. As such, fingerprints of program updates can be
measured by the challenging party and added to the database;
in turn, old program versions with known vulnerabilities [15]
might be reclassified to distrusted.

The challenging party must have a policy in place that
states how to classify the fingerprints and how to proceed
with unknown or distrusted fingerprints. Usually, a distrusted
fingerprint leads to distrusting the integrity of the whole at-
testing system if no additional policy enforcement mecha-
nisms guarantee isolation of the distrusted executable. Al-
ternatively, trustworthy fingerprints can be signed by trusted
third parties, e.g., regarding their suitability to enforce certain
security targets (Common Criteria Evaluation) related to their
purpose.

Transaction Integrity Usually, the integrity of the attest-
ing system is of interest when it processes a transaction that
is important to a challenging party. To verify the integrity

of a transaction that is taking place between the challenging
and the attesting party (e.g., a Web request), the challenging
party can challenge the integrity of the attesting system before
and after the transaction was processed, e.g., before sending
the Web request and after receiving the Web response. Then,
the attestation and the transaction can be bound to the same
system by securely linking the certificate used to validate the
TPM quote and the certificate used to authenticate the server
during the SSL connection setup as part of the Web request.
If the attesting system is trusted both times, then– so it seems
–the transaction can be trusted, too.

This is, however, not entirely true because it assumes that
both measurements have taken place in the same epoch (va-
lidity period), i.e., that any system change throughout the
transaction would have been recorded in the second measure-
ment. However, the attesting system could have been com-
promised just after the first challenge and before the trans-
action took place. Then, the attesting system could have re-
booted before the second challenge took place. Thus, though
trusted at two points in time, the reboot covered the distrusted
attesting system state against the challenger. Even if the pos-
sibility seems small, systems can reboot very fast and actually
come up into an exactly pre-defined state (thus exhibiting the
same measurement list as in earlier measurements)1.

Fortunately, there is a way to discover if an epoch changes,
i.e., whether the system rebooted between two attestations.
For this purpose, we can use so-called TPM counters. As op-
posed to the PCRs, these counters are never cleared or de-
creased but can only increase throughout the lifetime of a
TPM. Increases of one of these counters could be triggered
by the BIOS each time the system reboots. The BIOS is
also responsible to disable the TPM as soon as the counter
has reached its maximum value. Typical TPM have multi-
ple counters that can be combined and thus are sufficient for
normal platform lifetimes2. Thus, a trusted kernel includ-
ing such a counter into the measurement list ensures that the
prefixes of two measurement lists differ at least in this single
counter measurement once the system is rebooted.

Consequently, in this enhanced version, transaction in-
tegrity can be validated by ensuring that the measurement list
validated at the first challenge before the transaction is a pre-
fix of the measurement list validated at the second challenge
after the transaction. Then, the system did not reboot and thus
(given our assumptions) any distrusted system component po-
tentially impacting the transaction on the attesting system,
would show in the measurement list of the second challenge.
In effect, our architecture does not offer predictable security
as long as it is non-intrusive, yet it can offer retrospective as-

1This is used in another TPM mechanism allowing to seal a secret to a
platform configuration, though originally this did not include any dynamic
measurements.

2The TPM specification [11] demands that the externally accessible coun-
ters must allow for 7 years of increments every 5 seconds without causing a
hardware failure.

surance of the integrity state of a system.

5 Implementation

This section describes the enhancements we have made to
the Linux system to implement the measurement function-
ality. Before any of our dynamic measurements are initiated
(i.e., before linuxrc or init are started), our kernel pre-loads its
measurement list with the expected measurements for BIOS,
bootloader, kernel, and initrd (if applies), and uses the ag-
gregate of the real boot process, found in a pre-defined TPM
PCR, as the starting point for our own measurement aggre-
gate. If the actual boot process differs from the expected one,
the validation of the measurement list will fail. We focus on
the stages measuring dynamic run-time content following the
initial OS boot.

Our prototype implementation is done on a RedHat 9.0
Linux distribution as a Linux Security Module (LSM) of a
2.6.5 kernel3. The prototype implementation is divided into
four major components: inserting measurement points into
the system to measure files or memory (Section 5.1), mea-
suring files or memory (Section 5.2), protecting against by-
passing the measurements (Section 5.3), and validating the
measurements to ensure that an implementation of our ar-
chitecture is actually in place on the attesting system (Sec-
tion 5.4).

5.1 Inserting Measurement Points

In Section 4.2, we outlined the approach to measurement, in-
cluding measurement in the kernel and also by user-level pro-
grams. Here we describe the implementation.

We implemented kernel measurements based on the Linux
kernel LSM interface. Using thefile_mmap LSM hook,
we induce a measurement on any file before it is mapped ex-
ecutable into virtual memory.

Using the sysfs file system, we allow user-space appli-
cations to issue measure requests by writing requests to
/sys/security/measure , including the file descriptor
of the file to measure. Using the kernelload_module rou-
tine, we induce ameasure call on the memory area of a
loading module before it is relocated.

In Section 4.2, we outline the approach to measurement,
where measured executable code itself (e.g., shell) can induce
additional measurements on loaded file contents its behavior
depends on (e.g., shell command files). If that executable
code is not of high integrity, it will be detected (because it is
already in the measurement list). If it is of high-integrity, then
it may be trusted to measure its loaded data.

We describe below how we measure dynamic run-time
loads and how we protect measured files throughout their use.

3The mechanisms presented here are sufficiently generic that porting to a
Unix-like system should be straightforward.

User-level Executables:User-level executables are loaded
through the user-levelloader. When a binary executable is in-
voked via the system callexecve , the kernel calls the binary
handler routine, which then interprets the binary and locates
the appropriate loader for the executable. The kernel then
mapsthe loader into memory and sets up the environment
such that when theexecve call returns, execution resumes
with the loader. The loader in turn performs further loading
operations and finally passes control to themain function of
the target executable. In the case of a statically linked binary,
the only file being loaded is the target binary itself, which we
measure in thefile_mmap LSM hook, called by the kernel
before mapping it.

Dynamically Loadable Libraries: A dynamically linked
binary typically requires loading of additional libraries that
it depends on. This process is done by the user-level loader
and is transparent to the kernel. However, the linker maps
shared libraries (flagged executable) into virtual memory
by using themmapsystem call, which always invokes the
file_mmap LSM hook. Thus, the mediation provided by
thefile_mmap LSM hook instrumentation yields measure-
ments of all statically and dynamically linked executables in-
cluding shared libraries.

Kernel Modules: Kernel modules are extensions to the
kernel that can be dynamically loaded after the system is
booted. Module loading can be explicit (viainsmodor mod-
probe) or implicit if automatic module loading is enabled.
In the latter case, when the kernel detects that a module is
needed, it automatically finds and loads the appropriate mod-
ule by invokingmodprobein the context of a user process.
With a 2.6 kernel, both programs load kernel modules into
memory and then call thesys_init_module system call
to inform the kernel about the new module that is then copied
into kernel memory and relocated. Thus, kernel modules can
either be measured byinsmod or modprobeon user level
when they are loaded from the file system, or they can be
measured in the kernel when they reside in kernel memory
and before they are relocated. We implemented both versions.
However, we prefer the latter version because it prevents
exploits of (possibly unknown) vulnerabilities in the kernel
loader applicationsinsmod or modprobefrom tampering the
measurement of kernel level code. Because there is no suit-
able LSM hook available, we added ameasure call into the
load_module routine that is called by theinit_module
system call to relocate a module that is in memory.

Scripts: Script interpreters are loaded and measured as
binary executables. However, interpreters load additional
code that determines their behavior, so we would prefer that
the script interpreters also be capable of measuring their
integrity-relevant input. At present, we have instrumented the
bashshell to measure any interpreted script and configuration
files before loading and interpreting them. This includes all
service startup scripts into the measurement list. We observe
about 60-70 measurements of bash scripts and source files

in our experiments booting Redhat 9.0 Linux and running a
Gnome Desktop system. Instrumenting other programs (Perl,
Java) is straightforward, but we anticipate the need for more
support from application programmers.

5.2 Taking Measurements

This section describes the implementation of the kernel level
measure call used at the measurement points to initiate the
measurement of a file or a memory area (in case of kernel
modules). Themeasure call takes one argument, namely, a
pointer to the file structure containing the file to be measured.
From the file structure one can look up the corresponding in-
ode and data blocks, and take a SHA1 over the data blocks.

There are three places from which ameasure call is is-
sued: (1) the implementation of the write/store routine to the
the pseudo file system/sys/security/measure used
by user level applications, (2) thefile_mmap security LSM
hook measuring files that are being memory-mapped as ex-
ecutable code, and (3) theload_module routine measur-
ing kernel module code in memory before it is relocated.
The file_mmap hook receives the file pointer as argu-
ment, and the write routine of the sysfs entry receives the
file descriptor, from which the file pointer is retrieved using
the fget routine. We ignorefile_mmap calls where the
PROT EXEC bit is not set in the properties parameter, as
those files are not mapped executable.

The consistency between file-measurements and what is
actually loaded depends on: (1) accurate identification of the
inode loaded and (2) detection of any subsequent writes to
the file described by the inode. Both cases are handled by the
kernel in the case of memory-mapped executables. Protec-
tive locks that the kernel holds at measurement time ensure
that the file cannot be written to by others as long as it is
mapped executable. This lock is held by the mapping func-
tion at the time of measurement. Modules are measured when
they are already in kernel memory, thus they are not suscep-
tible to such inconsistencies. For files measured from user
space, we assume that the measuring application keeps the
file descriptor –used to initiate the measurement– open until
it is done reading the contents or to issue a new measure-
ment call when the file is re-opened. This ensures that the
file measured is the file actually read. Second, there could
be a race between themeasure and read user level calls
and anotherwrite call that modifies the data. We call this
case aTime-of-Measure-Time-of-Use(ToM-ToU) race con-
dition and describe in Section 5.3 how we handle this case.
However, remote NFS files cannot be measured dependably
unless the file’s complete contents are cached and protected
on the local system. We do not implement such caching at
present.

A naive measurement implementation would be to take a
fingerprint for everymeasure call. This approach would,
however, incur significant performance overhead (see Sec-

tion 6.2) for executable files and libraries that are loaded quite
often.

Instead, we use caching to reduce performance overhead.
The idea is to keep a cache of measurements that have already
been performed, and take a new measurement only if the file
has not been seen before (cache-miss) or the file might have
changed since last measurement. For the latter case, we only
record a new file measurement if the file has actually changed.
Recording identical measurements each time an application
runs would have severe impact on the management (storage,
retrieval, validation) of the list. Kernel modules are always
measured in memory at load-time but their measurement is
added only if it is not yet in the measurement list.

We store all measurements in a singly-linked, ordered list.
The order of measurements is essential to detect any modifi-
cation to the measurement list. If the measurements are not
checked in order, then the aggregate hash will not match the
TPM aggregate that results from the TPMextend operations.
Additionally, we gather meta information related to the mea-
sured file –such as the file name, user ID, group ID or security
labels of the loading entity, or the file system type–, which
might be useful for evaluating the impact of loading this file
or matching it with local security policies. At this time, our
implementation gathers this additional data informally in the
measurement list, but does not include it in the measurement.

For efficiency reasons, we overlay the linked list with two
hash tables, one keyed with the inode number and device
number of the measured file, the second keyed with the result-
ing fingerprint (SHA1 value) of the measured file. Thus, each
measurement entry can be reached by traversing the measure-
ment list, by its inode (for file measurements only), or by its
fingerprint. Themeasure call uses the inode corresponding
to the file descriptor of the target file to quickly look up the
file in the hash table and see if it has been measured before.

Each measurement entry contains a dirty flag bit, indicating
whether the file isCLEAN(not modified), orDIRTY (possibly
modified). We describe the semantics of measurement below.

Measuring new files: If the file is not found in the inode-
keyed hash table, then we measure the file by computing a
SHA1 hash over its complete content. At this point, we use
the computed fingerprint to check whether it is present in the
hash table keyed by the SHA1 hash value of existing mea-
surements. If the measured fingerprint is not found, then we
create a new measurement entry, and add it to the list and ad-
just the hash table structures. We finally extend the relevant
Platform Configuration Register in the protected TPM hard-
ware by the SHA1 hash before returning from the call and
allowing the loading of the executable content. If the finger-
print was already measured before, then we return from the
system call without extending the TPM or the measurement
list. This can happen if executable files are copied and thus
yield the same fingerprint. In this case, we assume for our
purpose that both executables are equivalent.

Remeasuring files:If the file is found in the inode-keyed

hash table, then it was measured before. If the dirty flag of the
found measurement entry isCLEAN(clean-hit), then nothing
needs to be done, and the system call returns. If the dirty flag
bit is DIRTY (dirty-hit), then we compute the SHA1 value
of the file. If the measured fingerprint is identical to the one
stored in the measurement list, then we re-set the dirty flag.
We do not extend the PCR or record this measurement as it is
known already.

If the measured fingerprint differs from the one stored in
the found measurement entry for the inode, then we look up
the new fingerprint in the hash table using the SHA1 value as
the key. If the SHA1 value exists, then the same file contents
were measured before (copy of the current file). We return
without recording the measurement, as above. If the SHA1
value does not exist in the hash table, then the current file has
changed. A new measurement entry is created and added to
the table, and the PCR is extended before the measure call
returns.

Dirty flagging: We set the dirty flag bit toDIRTY when-
ever the target file (a) was opened with write, create, truncate,
or append permission, (b) was located on a file system we
can’t control access to (e.g., NFS), or (c) belongs to a file
system which was unmounted. This seems a bit conservative,
since an open for write (or unmounting a file) does not nec-
essarily result in modifications to the file. The SHA1-keyed
hash table enables us to clear the dirty flag if a file did not
change after an open with write permission. If we control
access to the file, then we clear the dirty flag in such cases.
Experiments show that on a non-development system using
local file systems, the percentage of dirty-hits on the cache is
far less than 1%.

Measuring kernel modules: We issue ameasure calls
whenever a kernel module is being prepared for integration
into the kernel. We calculate the SHA1 value of the memory
area where the not-yet relocated kernel module resides in the
load_module kernel function and thus we yield a single
representative measurement for each kernel module indepen-
dently of its final memory location. Then, we check whether
this SHA1 fingerprint is already in the measurement list using
the SHA1-keyed hash table over all existing measurements.
If it is known, then we return form themeasure call. If
not, then we extract the module name from its ELF headers,
which are located at the beginning of the memory area, add
the measurement as a new measurement to the measurement
list, and finally extend the TPM register to reflect the updated
measurement list. Kernel modules must always be measured
because we do not have any information easily available to
indicate a dirty flag state. However, there are usually only a
few kernel modules loaded. Alternatively, the user level ap-
plications insmod and modprobe can measure the files when
loading kernel modules into memory. In this case, their mea-
surement follows the file measurement procedures described
before.

5.3 Measurement Bypass-Protection

Whenever we encounter a situation in which our measure-
ment architecture cannot provide correct measurements or is
potentially being bypassed, we invalidate the TPM aggregate
by extending it with random values without extending the
measurement list and deleting the random value to protect
it from later use. Thus, from this time on, validations of the
aggregate will fail against the measurement list. We do not in-
terfere with the system (non-intrusive) but we disable such a
system from successful attestation until it reboots. In our ex-
periments, none of these mechanisms was triggered through-
out normal system usage but only by malicious or very un-
usual behavior.

Although we assume there are no hardware attacks against
the TPM, we design the system such that a compromised
system cannot change the measurement list undetected be-
cause it cannot manipulate the TPM successfully to cover
such attacks in software. Thus, supporting our architecture
with TPM hardware is useful and necessary even in the (as-
sumed) absence of physical attacks in order to discover cheat-
ing systems. However, anybody withroot identitycould try to
change the system through less known interfaces in a way that
circumvents our measurement hooks and thus breaks the mea-
surements’ validity. Therefore, we implemented some fail-
safe mechanisms that catch such efforts and invalidate (pes-
simistically) the TPM aggregate. We discuss some of them
below.

Time-of-measurement Time-of-use race conditions:File
contents could theoretically be changed between the time
they are measured and the time they are actually loaded.
Linux does protect memory-mapped files, but not files that
are normally loaded (e.g., script files, configuration files).
Therefore, we have implemented a countermeasure count
in the inode of a measured file that keeps track of the num-
ber of open file descriptors pointing to this inode on which
a measure call was induced. We increase the counter be-
fore calling the measure call (in the sysfs write implemen-
tation of the/sys/security/measure node) and de-
crease the counter when a file descriptor that was measured
is closed (using thefile_free_security LSM hook).
We add a check into theinode_permission LSM hook
that catches requests for write or append permission on files
whose related inode has ameasure count> 0. In this case,
we invalidate the TPM aggregate because the measurements
might not reflect the file contents that were actually loaded,
but we choose not to interfere with the request. We assume
any such behavior is malicious.

Bypassing user-level measurements.To ensure that
measure requests issued by applications actually result in
measurements in the kernel, we must ensure that the
/sys/security/measure node is actually the one that
issues measurements on write. The only way to circumvent
this without leaving a suspicious fingerprint in the measure-

ment list is to prevent the system from mounting the sysfs file
system in the first place or to unmount it after it is mounted
by using unsuspicious programs (commands). We prevent the
first by ensuring that the sysfs is mounted before init is started
(in the kernel startup) and the second by keeping the sysfs in
a busy state (lock it) so it can’t be unmounted by root.

Bypassing dirty flagging.Processes running as root could
try to circumvent dirty-flagging and thus change file con-
tent between measurement and loading or try to change –
otherwise non-vulnerable and thus trusted– applications or
the kernel in memory by accessing the special storage con-
trol interfaces (e.g. /dev/hda) or the memory interface
/dev/kmem . We catch such special cases and invalidate the
TPM aggregate as described above. This is necessary to pre-
vent the kernel from being changed without this change being
measured. Such suspicious cases are rarely necessary or ob-
served in normal systems.

Unmounting file systems.We dirty-flag any measurement
that belongs to a file system that is being unmounted because
we don’t have control over changes on this file system any
longer. Hot-pluggable hard-drives could be changed and re-
inserted with changed files. For this purpose, we keep the su-
perblock pointer of a file in the file’s measurement structure.
Walking through the whole measurement list to dirty-flag en-
tries related to the mount point imposes overhead, but this
happens rarely (e.g., on shutdown) on most correctly setup
and configured systems and the measurement lists are usually
not very large (<<1000 entries).

Run-time Errors among the measurement functions.In
case of any error throughout the recording of measurements,
e.g., caused by out-of-memory errors when allocating a new
measurement structure or other unexpected events preventing
us from measuring correctly, we invalidate the TPM aggre-
gate.

In summary, the measurement functions use the pseudo
file system sysfs, the kernel LSM hookfile_mmap , and
an insertedmeasure call in theload_module kernel rou-
tine to instrument the system with measurement points. We
use the LSM hooksinode_permission , sb_umount ,
inode_free_security , andfile_free_security
to implement the dirty flagging and to protect against ToM-
ToU race conditions (usually malicious). We use LSM secu-
rity substructures in thefile andinode kernel structures to
store state information, such asdirty flagandmeasure count.

5.4 Validating Measurements

Our architecture uses the TPM’s protected storage to protect
the integrity of the measurement list. Once a measurement is
taken, it cannot be changed or deleted without causing the ag-
gregate hash of the measurement list to differ from the TPM
aggregate. However, the challenging party must also ensure
that the attesting system has the measurement architecture
correctly in place so that all necessary measurements are ac-

tually initiated and carried out. As our architectural compo-
nents are measured as well when they are executed, challeng-
ing parties can determine whether the architecture is in place
by inspecting these measurements.

The major portion of the measurement architecture is in
the static kernel. Thus, the challenging party trusts only such
kernels that implement the kernel part of our measurement ar-
chitecture. Other kernels will be unacceptable to challenging
parties because they can skip important measurements.

If instrumentedinsmod and modprobeprograms measure
kernel modules before they are loaded into the kernel, then
only kernel module loaders instrumented with themeasure
call are acceptable. If a fingerprint of any other program with
insmod functionality is seen, then it must not be trusted and
thus the validation fails. This does not apply in our case be-
cause we measure kernel modules in the kernel. If we require
shell programs to measure script and source files before they
are loaded or executed, then discovering a fingerprint of a
shell that is not instrumented with measure calls must not be
trusted. Known fingerprintsof any other part of the system
can be trusted according to known vulnerabilities of corre-
sponding executables as described in Section 4.4.Unknown
fingerprintscould result from changed user level programs
that are assumed to measure their input (e.g., bash), or unac-
ceptable input files and cannot be trusted as their correspond-
ing program’s functionality is potentially malicious and might
violate security assumptions.

6 Results

6.1 Experiments

To test our system’s ability to detect possible attacks, we
construct a small experiment usinglrk5 , a popular Linux
rootkit. We start with a perfectly good target system and take
measurements of this system. Then, we launch a rootkit at-
tack against the target system and take measurements again
after the attack. Figure 4(a) shows a (partial) list of mea-
surements for the good system, and Figure 4(b) shows the
corresponding list of the same system that is compromised
by a rootkit. The italicized entries show that after the attack,
the signature of thesyslogd program is different, indicat-
ing that the rootkit had replaced the originalsyslogd with
a Trojan version. This example illustrates how such attacks
can be discovered reliably using our system.

6.2 Performance Evaluation

We examine the performance of measure calls in-
voked through: (i) the kernelfile_mmap LSM hook,
(ii) the kernel load_module function , and (iii)
user space applications writing measure requests into
/sys/security/measure .

#000: D6DC07881A7EFD58EB8E9184CCA723AF4212D3DB boot_aggregate
#001: CD554B285123353BDA1794D9ABA48D69B2F74D73 linuxrc
#002: 9F860256709F1CD35037563DCDF798054F878705 nash
#003: 84ABD2960414CA4A448E0D2C9364B4E1725BDA4F init
#004: 194D956F288B36FB46E46A124E59D466DE7C73B6 ld-2.3.2.so
#005: 7DF33561E2A467A87CDD4BB8F68880517D3CAECB libc-2.3.2.so
...

#110: F969BD9D27C2CC16BC668374A9FBA9D35B3E1AA2 syslogd

...

(a)

...
#110: F969BD9D27C2CC16BC668374A9FBA9D35B3E1AA2 syslogd
...

#525: 4CA3918834E48694187F5A4DAB4EECD540AA8EA2 syslogd

...

(b)

Figure 4: Detecting a Rootkit Attack.

We first examine the overhead of thefile_mmap LSM
security hook, which measures all executable content and dy-
namic libraries. This is by far the most frequently called
and most performance-sensitive measure hook. To deter-
mine the latencies of thefile_mmap LSM measurement
hook, we measure the latencies of themmapsystem call from
user level, which calls thisfile_mmap LSM hook. Our la-
tency measurement (including both mapping and unmapping)
considers three different cases, namelyno_SHA1, SHA1,
and SHA1+extend . no_SHA1 represents the case when
file_mmap finds the target in the cache as clean. In the very
rarely observedSHA1case, the target file is remeasured and
the SHA1 fingerprint is recalculated. However, the TPM is
not extended because the fingerprint is found to be already in
the cache.SHA1+extend represents the case when a brand
new file is measured and the resulting fingerprint needs to
be extended into the TPM chip. This happens more often at
system start or after system updates, for example. Since the
goal is to measure the latency, we use a test file size of 2
bytes. Implementation of the micro-benchmarks is based on
the HBench framework [16]. Table 1 shows the results.

mmap type mmap latency (stdev) file mmap LSM

no SHA1 1.73µs (0.0) 0.08µs
SHA1 4.21µs (0.0) 2.56µs
SHA1+extend 5430µs (1.3) 5430µs

reference 1.65µs (0.0) n/a

Table 1: Latency of the filemmap LSM hook (file size 2
bytes).

For reference purposes, we include the running time of an

mmapsystem call without invoking thefile_mmap LSM
measurement hook. It is clear from the table that the over-
head for thefile_mmap LSM hook in the case of a clean
cache hit (no_SHA1) is minimal - it takes 0.08 (1.73 - 1.65)
µs to run. It does little more than reading the dirty-flag infor-
mation from the inode of the file to be mapped. Fortunately,
our experiences indicate that this is the majority case, even
for servers that tend to run for a long time, accounting for
more than 99.9% of allmeasure calls.

When the file is remeasured (SHA1), the mmap system call
takes about 4.21µs, an overhead of about 2.5µs against the
reference value. This case shows the overhead of setting up
the file for measurement and searching the hash table for a
matching fingerprint. Notice that this case does not measure
the overhead of the fingerprinting itself, since the file size is
only 2 bytes. Fingerprinting performance will be discussed
later. Theextend operation is clearly the most expensive,
taking about 5 milliseconds to execute. This is understand-
able, because the extend operation interacts with the TPM
chip as well as creates a new measurement list entry. As
mentioned before, these two cases together represent less than
0.1% of allmeasure calls. Thus, we are confident –and our
experiences confirm– that the performance penalty our sys-
tem imposes for measuring executable upon the user will be
negligible.

Invoking a measurement from user-level com-
prises (i) opening /sys/security/measure ,
(ii) writing the measure request, and (iii) closing
/sys/security/measure . This method applies to mea-
suring configuration files or interpreted script files (e.g., bash
scripts or source files). As with thefile_mmap LSM hook,
we distinguish also here the three casesno_SHA1, SHA1,
andSHA1+extend . The results are shown in Table 2. The

Measurements via sysfs Overhead (stdev)

no SHA1 4.32µs (0.0)
measure SHA1 7.50µs (0.0)

SHA1+extend 5430µs (1.6)

sys fsreference
open/write/close

4.32µs (0.0)

Table 2: Latency of user level measurements via sysfs (file
size 2 bytes).

user-level measurement latency is 4.32µs in theno_SHA1
case. This overhead is mostly file system related overhead
–open, write, close of/sys/security/measure as
the reference value in Table 2 indicates. The measurement-
related overhead for theno_SHA1 case simply disappears
in the context switching and file system related overhead.
Interpreting the other measurement values is straightforward.

Measuring kernel modules can be done in two ways as
described in Section 5.1: by user-level applicationsinsmod

andmodprobe, or by inducing a measurement routine before
relocating the kernel module in theload_module func-
tion called by theinit_module system call. Measuring
them viainsmodor modprobetransfers kernel module mea-
surement performance into the domain of user-level measure-
ments with the overhead as described in Table 2. The latency
of measuring kernel modules in theload_module kernel
function is almost the same as the latency of measuring exe-
cutable content in thefile_mmap LSM measurement hook.
However, because kernel modules are already in memory be-
fore they are relocated, there is no dirty flagging informa-
tion and we do not have clean hits but only the casesSHA1
or SHA1+extend . We consider kernel module loading an
infrequent and less time critical event and thus recommend
from a security standpoint (see Section 5.1) that they be mea-
sured in the kernel.

Next, we present the fingerprinting performance as a func-
tion of file sizes. We measure themmapsystem call’s running
time in theSHA1case, varying the input file sizes. This in-
cludes the reference overhead of 1.65µs for the puremmap
system call as shown in Table 1. The results are shown in Ta-
ble 3. When the file size is large, the fingerprinting overhead
can be significant. For example, measuring a 128 Kilobytes
file takes about 1.5 milliseconds. The running time increases
close to a linear fashion as the size of file increases. These la-
tencies translate to a throughput performance of about 80 MB
per second.

File Size (Bytes) Overhead (stdev)

2 4.21µs (0.0)
512 10.3µs (0.0)
1K 16.3µs (0.0)
16K 197µs (0.1)
128K 1550µs (1.1)
1M 12700µs (16)

Table 3: Performance of the SHA1 Fingerprinting Operation
as a Function of File Sizes.

Measuring in-memory kernel modules, we expect slightly
better throughput in computing the SHA1 than measuring
files –which fist have to be read from disk into memory– in
the file_mmap LSM hook as described in Table 1. How-
ever, our measurements yielded only slightly better perfor-
mance than in thefile_mmap case shown in Table 3. We
explain this with the Linux file caching effect. The measure-
ments were done many times with a hot cache on the same
file, which makes it very likely, that almost the complete file
was already residing in the file cache when the measurement
started. This also suggests that the throughput numbers in Ta-
ble 1 should be considered a optimistic for file measurements.

These experiments were run with a measurement list con-
taining about 1000 entries on an IBM Netvista M desktop

workstation, including an Intel Pentium 2.4 GHz proces-
sor and 1 GByte of RAM. All non-essential services where
stopped.

6.3 Implementation and Usability Aspects

Our kernel implementation includes LSM hooks for mea-
surement, dirty flagging, and bypass protection and com-
prises 4755 lines of code (loc) including comments. This
code resides in its ownsecurity/measure kernel direc-
tory and is thus very easy to port to new Linux kernel ver-
sions as long as the LSM interface does not change. We
need to add another 2 loc into theload_module routine
of kernel/module.c to measure loading kernel modules.
To instrument thebashshell, we insert 2 loc at the places
where source files are loaded or script files are interpreted.
These user level measure calls are based on a header file of 42
loc that translates the user level measure request macro into a
proper write on/sys/security/measure . Porting the
architecture from a 2.6.2 to a 2.6.5 Linux kernel took about 10
minutes. Moving from a non-LSM implementation in a 2.4
kernel to an LSM-based version of our integrity measurement
architecture in the 2.6 kernel reduced the complexity of our
implementation and increased its portability considerably.

We have successfully stacked our integrity measurement
architecture as an LSM module on top of SELinux, which re-
quired small modifications of SELinux to call our hooks and
to share security substructures in thefile andinode kernel
structures. These changes are minor but they are necessary
because the current Linux LSM implementation leaves most
of the stacking implementation to the modules themselves.

Our experiences show that a standard RedHat 9.0 Linux
system including the Xwindow server and the Gnome Desk-
top system accumulates about 500-600 measurement entries
after running about one week, including about 60-100 bash
script and source file measurements. Those bash measure-
ments cover all bash service startup and shutdown scripts as
well as local source scripts (e.g.,˜\.bashrc). The over-
head introduced by our measurement architecture is negligi-
ble even at boot time of the system when most measurements
are recorded and extended into the TPM. Thus we believe our
performance results are representative of a normal Linux en-
vironment.

7 Discussion

Our architecture is non-intrusive and does not prevent sys-
tems from running malicious programs. However, we modify
our approach toenforce securityas well. In this case, we
pre-load the measurement cache with a set of expected fin-
gerprints for trusted programs. The measurement call then
fingerprints the file to be measured and compares it to the
set of expected fingerprints. If the fingerprint does not match

any of them, it aborts the load and reports the illegal finger-
print. Note that the attesting system’s enforcement require-
ments may be different than those of the challenger, so the
challenger still needs to perform a validation.

Our measurement architecture is not restricted to mea-
suring executable code. Adding measurement hooks into
applications, we can includestructured input data, such
as configuration files and java classes, into our measure-
ments. Changes are simple–instrumenting applications, such
as Apache or the Java classloader, means adding a measure-
ment call before loading relevant files.

In order to establish confidence in a system,privacy is im-
pacted by our approach. The attestation protocol releases de-
tailed information of the attesting system to allow challengers
or trusted third parties to establish trust. However, the attest-
ing system has full control over the release of this informa-
tion, and can run code that it trusts not to release such in-
formation. Also, a system agent could be configured to re-
lease attestations to authenticated challengers and the operat-
ing system could only provide quotes to that agent.

Inducing frequent changes in loaded executable files can
cause the measurement list to grow beyond practical lim-
its, resulting in adenial of serviceattack. To prevent this
attack, a maximum length of the measurement list can be
configured. Any additional measurement is aggregated into
the TPM-protected PCR register, but the measurement is not
stored in the kernel. Consequently, a system that exceeds this
maximum number of measurements will not be able to suc-
cessfully convince challenging parties of its integrity because
the measurement list will not validate against the aggregate
any more.

8 Conclusions

We presented the design and implementation of a secure in-
tegrity measurement system for Linux. This system extends
the TCG trust concepts from the BIOS all the way up into the
application layer for a general operating system. We extend
the operating system with hooks to measure when the first
code is loaded into a process (file_mmap LSM hook), pro-
vide ameasure sysfs entry to request subsequent measure-
ments, and detect when changes to measured inodes occur.
This mechanism enables the measurement of dynamic load-
ers, shared libraries, and kernel modules in addition to the
executed files. Further, the approach is extensible, such that
applications can measure their specialized loads as shown for
bash . The result is that we show that many of the Microsoft
NGSCB guarantees can be obtained on today’s hardware and
today’s software and that these guarantees do not require a
new CPU mode or operating system but merely depend on
the availability of an independent trusted entity. Such a sys-
tem can already detect a variety of integrity issues, such as
the presence of rootkits or vulnerable software. Our measure-
ments show that the non-development systems can be practi-

cally measured and that the measurement overhead is reason-
able.

The measurement system is extensible and we believe that
we can ultimately achieve guarantees beyond those of Mi-
crosoft NGSCB. The application of mandatory access control
policy can ensure that dynamic data cannot be modified ex-
cept by trusted sources [17]. Identification of low integrity
data flows can enable the possibility of control over whether
these flows should be allowed, whether effective restriction
can be put on them at the system-level or within applications.

We are currently in the process of making the source code
of our integrity measurement architecture implementation
publicly available as open-source and pursue efforts to inte-
grate it into the kernel as an optional LSM kernel module.

Acknowledgments

The authors would like to thank the IBM Linux Technology
Center for their continuing and invaluable support and our
colleagues from the IBM Tokyo Research Lab, particularly
Seiji Munetoh and his colleagues, for interesting discussions
and for their TPM-enhancement of the grub boot loader. Fi-
nally, we would like to thank Ronald Perez, Steve Bade, and
the anonymous referees for their useful comments.

References

[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A
Secure and Reliable Bootstrap Architecture,” inIEEE
Computer Society Conference on Security and Privacy.
IEEE, 1997, pp. 65–71.

[2] “Trusted Computing Group,”
http://www.trustedcomputinggroup.org.

[3] K. J. Biba, “Integrity considerations for secure com-
puter systems,” Tech. Rep. MTR-3153, Mitre Corpora-
tion, Mitre Corp, Bedford MA, June 1975.

[4] D. D. Clark and D. R. Wilson, “A comparison of com-
mercial and military computer security policies,” in
IEEE Symposium on Security and Privacy, 1987.

[5] S. W. Smith, “Outgoing authentication for pro-
grammable secure coprocessors,” inESORICS, 2002,
pp. 72–89.

[6] M. Bond, “Attacks on cryptoprocessor transaction sets,”
in Proceedings of the 2001 Workshop on Cryptographic
Hardware and Embedded Systems, May 2001.

[7] P. England, B. Lampson, J. Manferdelli, M. Peinado,
and B. Willman, “A Trusted Open Platform,”IEEE
Computer, vol. 36, no. 7, pp. 55–62, 2003.

[8] G. Kim and E. Spafford, “Experience with Tripwire:
Using Integrity Checkers for Intrusion Detection,” in
System Administration, Networking, and Security Con-
ference III. USENIX, 1994.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Check-
ing systems rules using system-specific, programmer-
written compiler extensions,” inProceedings of the4th

Symposium on Operating Systems Design and Imple-
mentation (OSDI 2000), October 2000.

[10] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van
Doorn, S. W. Smith, and S. Weingart, “Building the
IBM 4758 Secure Coprocessor,”IEEE Computer, vol.
34, no. 10, pp. 57–66, 2001.

[11] Trusted Computing Group, Trusted Platform Mod-
ule Main Specification, Part 1: Design Princi-
ples, Part 2: TPM Structures, Part 3: Com-
mands, October 2003, Version 1.2, Revision 62,
http://www.trustedcomputinggroup.org.

[12] H. Maruyama, F. Seliger, N. Nagaratnam, T. Ebringer,
S. Munetho, and S. Yoshihama, “Trusted Platform on
demand (TPod),” inTechnical Report, Submitted for
Publication, 2004, In submission.

[13] J. Marchesini, S. Smith, O. Wild, and R. MacDonald,
“Experimenting with TCPA/TCG Hardware, Or: How I
Learned to Stop Worrying and Love the Bear,” inTech-
nical Report TR2003-476, Dartmouth PKI Lab Dart-
mouth College, Hanover, New Hampshire, USA, De-
cember 2003.

[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh, “Terra: A Virtual Machine-Based Platform
for Trusted Computing,” inProc. 9th ACM Symposium
on Operating Systems Principles, 2003, pp. 193–206.

[15] CERT Coordinatin Center, “CERT/CC Advisories,”
http://www.cert.org/advisories.

[16] A. B. Brown and M. Seltzer, “Operating System Bench-
marking in the Wake of Lmbench: A Case Study of the
Performance of NetBSD on the Intel x86 Architecture,”
in Proceedings of the 1997 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Sys-
tems, June 1997, pp. 214–224.

[17] T. Jaeger et. al., “Leveraging information flow for in-
tegrity verification,” inSUBMITTED for publication,
2004.

