
USENIX Association

Proceedings of the
11th USENIX Security

Symposium

San Francisco, California, USA
August 5-9, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

UsingCQUAL for StaticAnalysis of AuthorizationHook
Placement

XiaolanZhang Antony Edwards TrentJaeger
IBM T. J. Watson Research Center

Hawthorne, NY10532USA
Email:

�
cxzhang,jaegert � @us.ibm.com

May 13,2002

Abstract

TheLinux SecurityModules(LSM) framework is a set
of authorizationhooks for implementing flexible access
control in theLinux kernel.While mucheffort hasbeen
devoted to defining the module interfaces,little atten-
tion hasbeenpaid to verifying the correctnessof hook
placement. This paper presentsa novel approachto the
verification of LSM authorizationhook placement using
CQUAL, a type-basedstaticanalysistool. With a sim-
ple CQUAL latticeconfigurationandsomeGCC-based
analyses,we are able to verify complete mediationof
operationson key kernel datastructures.Our resultsre-
vealsomepotential securityvulnerabilitiesof thecurrent
LSM framework,oneof whichwedemonstrateto beex-
ploitable. Our experiencesdemonstratethat combina-
tionsof conceptuallysimpletoolscanbeusedtoperform
fairly complex analyses.

1 Intr oduction

Linux SecurityModules (LSM) is a framework for im-
plementing flexible accesscontrol in the Linux ker-
nel [3]. LSM consistsof a setof generic authorization
hooks thatareinsertedinto thekernelsource thatenable
kernelmodulesto enforcesystemaccesscontrol policy
for thekernel.Thus,theLinux kernelis not hard-coded
with a singleaccesscontrol policy. Module writerscan
definedifferentaccesscontrol policies,andthecommu-
nity canchoosethe policies that aremosteffective for
theirgoals.

Thecodesegmentin Figure1 showsanexampleof how
LSM hooks are insertedin the kernel. The function
sys_lseek() implements the systemcall lseek.

/* Code from fs/read write.c */

sys lseek(unsigned int fd, ...)�
struct file * file;

...

file = fget(fd);

retval = security ops->file ops

->llseek(file);

if (retval)
�

/* failed check, exit */

goto bad;�
/* passed check, perform operation */

retval = llseek(file, ...);

...�

Figure1: An exampleof LSM hook.

The security hook, security_ops->file_ops-
>llseek(file), is insertedbefore the actualwork
(call to functionllseek()) takesplace.

System administrators can provide an implemen-
tation of the corresponding hook functions (e.g.
security_ops->file_ops->llseek()) by se-
lecting a kernel module that implements their desired
policy. Examplesof LSM modules under development
includeSubDomain[4], Security-enhancedLinux [13],
andOpenWALL.

While mucheffort hasbeendevoted to placing hooks
in the kernel, this hasbeena manualprocess,so it is
subjectto errors. Eventhough theLSM developersare
highly-skilled kernelprogrammers, errors areunavoid-
ablewhendealing with complicatedsoftware.Thusfar,
little work hasbeendoneto verify thatthehooks indeed
provide complete mediation over accessto security-

sensitive kernelobjects andenforce the desiredautho-
rizationrequirements.Suchverificationwouldhelpgain
acceptance for the LSM approachand enablemainte-
nanceof the authorization hooks asthe kernelevolves.
The verification task for LSM is not a simpleonebe-
causeLSM authorizationhooksareembeddedwithin the
kernelsource,ratherthanatawell-definedinterfacelike
thesystemcall boundary. While this improvesbothper-
formanceandsecurity, it makesit impractical to verify
thehookplacements manually[6].

As a first step,we began the developmentof runtime
analysis tools for verifying LSM authorization hook
placement [6]. Thesetoolsareeasyto run,have helped
usidentify therequirementsof averificationsystem,and
have enabledus to find somehook placement errors.
However, runtime analysisis limited by thecoverageof
its benchmarksandrequiressomemanual investigation
of resultsto verify errors. Giventhe recent spateof ef-
forts in staticanalysistools[7, 11, 14], we werecurious
whetherany of thesetools could be appliedeffectively
to authorization hookverification. Givena brief evalua-
tion of tools,we choseto useCQUAL [9], a type-based
staticanalysistool. It waschosenmainlybecauseit was
conceptually simple (type-basedand flow-insensitive),
available to use without significant modification, and
wassupportedby formal foundations.

This paperpresentsa novel approachto theverification
of LSM authorization hook placement usingCQUAL.
We have found that with a simpleCQUAL lattice and
someadditional analysesusingGCCwecanverify com-
pletemediationof operationson key kernel datastruc-
tures. Completemediationmeansthat an LSM autho-
rization occurs before any controlled operation is exe-
cuted.Further, we have found thatusingtheauthoriza-
tion requirementsfound by our runtimeanalysistools,
we canbuild a manageablelattice thatenablesverifica-
tion of completeauthorization. Completeauthorization
meansthateachcontrolled operation is completely me-
diatedby hooks thatenforceits required authorizations.
Ourresultsreveal somepotential securityvulnerabilities
of thecurrentLSM framework,oneof whichwedemon-
strateto be exploitable. The findings anda code patch
werepostedto theLSM mailing list [5], andthefix was
incorporatedin laterkernelreleases.Theresultantcon-
tribution is that through the useof a small number of
conceptually simpletools,we canperforma fairly com-
plex analysis.

Therestof thepaperis organizedasfollows. Section2
definestheverificationproblem. Section3 describesour
approachin detail. Section4 presentsthepotentialvul-
nerabilities discoveredthroughour staticanalysis.Sec-

tion 5 discusseseffectivenessof our approachandpos-
sibleextensionsto CQUAL. Section6 describesrelated
work, andSection7 concludesthepaper.

2 Problem

We aim to enable two kindsof verification: (1) verifica-
tion of completemediation and(2) verificationof com-
pleteauthorization.

2.1 CompleteMediation

For complete mediation,we mustverify thateachcon-
trolled operation in the Linux kernel is mediatedby
someLSM authorizationhook. A controlled operation
consistsof an object to which we want to control ac-
cess,thecontrolledobject, andanoperation thatweexe-
cuteuponthatobject.An LSM authorizationhookcon-
sistsof a hook function identifier (i.e., the policy-level
operation for which authorization is checked, suchas
security_ops->file_ops->permission) and
a setof argumentsto theLSM module’s hook function.
At leastone of theseargumentsrefersto a controlled
object for which accessis permittedby successfulau-
thorization (sometimes theseobjectsarereferred to in-
directly).

Thefirst problemis to find thecontrolled objectsin the
Linux kernel. In general, therearea large number of
kernelobjectsto which accessmustbecontrolled in or-
derto ensurethesystembehavesproperly. Basedon the
background work donefor theruntimeanalysistool [6],
we have foundthateffectivemediationof accessto ker-
nel objectsis provided through user-level abstractions
identifiedby particular controlled datatypesandglobal
variables. Operations on theseobjects definea media-
tion interfaceto the kernel objects at large. Of course,
theremay be a bug that enablescircumventionof this
interface,but this is a separateverificationproblem be-
yondthescopeof thispaper.

We identify the following datatypesascontrolled data
types: files, inodes, superblocks, tasks,modules, net-
work devices,sockets,skbuffs, IPCmessages,IPC mes-
sagequeue, semaphores, and sharedmemory. There-
fore,operations on objects of thesedatatypesanduser-
level globalscomposeour setof controlled operations.
In this paper, we focuson theverificationof controlled
operations on controlled data types only. Now we

Controlled Operation

Security Check

Controlled Object

Controlled Object

Controlled Object

Figure2: Thecompletemediationproblem.

candefineourcompletemediation verificationproblem:
verify thatanLSMauthorizationhookis executedonan
objectof a controlled data typebefore it is usedin any
controlledoperation. For example, becausethevariable
file in Figure1’s function sys_lseek is of a con-
trolleddatatype,any operationsonthisvariablemustbe
precededby a securitycheckonfile. Figure2 shows
theproblem graphically.

In order to solve the complete mediation verification
problem,thereareafew important subproblemstosolve.
First,we mustbeableto associatetheauthorizedobject
with thoseusedin controlled operations. In a runtime
analysis,this is easilydoneby usingtheidentifiersof the
actualobjects usedin thesecuritychecks andcontrolled
operations. In a staticanalysis,we only know about the
variablesandtheoperationsperformeduponthem.Sim-
ply following thevariable’s paths is insufficient because
thevariablemaybereassignedto a new objectafterthe
check.

Next, we needto identify all the possiblepathsto the
controlled operation. While the kernelsourcecantake
basicallyarbitrary paths,in practicetypical C function
call semanticsareused.Thus,weassumethateachcon-
trolled operationbelongs to a function andcanonly be
accessedby executing thatfunction.

Thus, all inter-procedural paths are definedby a call
graph, but we mustalsoidentify which intra-procedural
paths require analysis. Note that the only intra-
procedural pathsthat requireanalysisare thosewhere
authorization is performedor thosewherethe variable
is (re-)assigned.Thesearetheonly operationsthatcan
change theauthorizationstatusof avariable.Sincevari-
ablesto controlledobjectsaretypically assignedin the
functionswheretheiruseis authorizedandarerarelyre-
assigned,this often limits our intra-procedural analysis

to thefunctionscontaining thesecuritychecks.Further,
securitychecks should beunconditional with respectto
thescopefor which thecheckapplies,sosuchanalyses
shouldbestraightforward.

Thus,we envision thatthecompletemediation problem
will be solved by following this sequenceof stepsfor
eachcontrolledobjectvariable:

1. Determinethefunctionin whichthisvariableis ini-
tialized(initializing function).

2. Identify its controlled operations and their func-
tions(controlling functions).

3. Determinethefunctionin whichthisvariableis au-
thorized(authorizing function).

4. Verify thatall controlled operationsin anauthoriz-
ing function areperformedafterthesecuritycheck.

5. Verify thatthereis nore-assignmentof thevariable
afterthesecuritycheck.

6. Determinethe inter-procedural pathsbetweenthe
initializing functionandthecontrolling functions.

7. Verify that all inter-procedural pathsfrom an ini-
tializing function to a controlling function contain
a securitycheck.

If a re-assignment is foundin step#5, thentheverifica-
tion is restartedfromthelocationof thenew assignment.

2.2 CompleteAuthorizat ion

Givena solutionto completemediation, theproblem of
verifying completeauthorization is straightforward,but
findingtherequirementsis difficult. Eachcontrolledop-
erationrequiresprior mediationfor a setof authoriza-
tion requirements.Theverification problem is to ensure
that thoserequirementshave beensatisfiedfor all paths
to thatcontrolled operation. In this case,multiple secu-
rity checksmay be required (andthus,multiple autho-
rizing functions),but theoverall mechanismis basically
the same. We needto ensurethat the set of authoriz-
ing functionsthatprovide thenecessarysecuritychecks
mustoccurbetweentheinitializing functionandthecon-
trolling function.

Collectionof theauthorizationrequirementsfor thecon-
trolledoperationsis themorecomplex task.Ourruntime

analysistool [6] enablesdeterminationof theauthoriza-
tion requirementsof controlledoperations,soratherthan
developing a new analysistool, we useour runtime re-
sultsto find theauthorizationrequirements.

2.3 Summary

Whenwefirstexaminedthisproblem,it appearedthatan
extensive staticanalysistool with inter-procedural data-
flow analysiscapability wasneeded. Suchtools either
arenotavailableto thepublic, donotworkonLinux ker-
nel (due to scalability issuesor C codingstyle issues),
or are too complicatedto customize for our problem.
A closerlook at the nature of the verification problem,
however, reveals thata less-powerful staticanalysistool
mightbesufficient. For verificationpurposes,wedonot
careabout theexactvalueof thecontrolled object. We
only careabout its authorizationstate(i.e.,authorizedor
non-authorized)andthat its variable is not re-assigned.
Somelimited sourceanalysis maybe necessaryto ver-
ify thattheexpectedconditionsapply, but thisshouldbe
quitesimplein mostcases.

3 Approach

3.1 CQUAL Background

CQUAL is a type-basedstatic analysistool that as-
sistsprogrammersin searching for bugsin C programs.
CQUAL supports user-definedtypequalifiers which are
usedin the sameway asthe standardC type qualifiers
suchasconst.

Thefollowingcodesegmentshowsanexampleof auser-
definedtypequalifier:unchecked. We usethis quali-
fier to denoteacontrolled object thathasnotbeenautho-
rized. This declarationstatesthatthefile object (filp)
hasnotbeenchecked.

struct file * $unchecked filp;

Typically, programmers specifya type qualifier lattice
which definesthesub-typerelationshipsbetweenquali-
fiersandannotatetheprogramwith theappropriatetype
qualifiers. A lattice is a partially ordered set in which
all nonempty finite subsetshavea leastupperbound and
a greatestlower bound. For example, Figure3 shows a

partial order {
$checked < $unchecked

}

Figure3: A latticeof typequalifiers.

latticewith two elements,checked andunchecked,
andthe subtyperelation � asthepartial order. Hereit
meanschecked is a subtype of unchecked.

CQUAL hasafew built-in inferencerulesthatextend the
subtype relationto qualifiedtypes.For example,oneof
therulesstatesthat if Q1 < Q2 (meaning qualifierQ1
is a subtype of qualifier Q2) thentypeQ1 T is a sub-
type of Q2 T for any given typeT. ReplacingQ1 and
Q2 with checked andunchecked respectively, we
have thatchecked T is asubtypeof unchecked T.
From an object-orientedprogramming point of view,
this meansthat a checked type can be usedwher-
ever an unchecked type is expected, but using an
unchecked type wherea checked type is expected
results in a type violation. The following code seg-
mentshows a violation of the typehierarchy. Function
func_a expectsachecked file pointer asits parame-
ter, but theparameterpassedis of typeunchecked file
pointer.

void func_a(struct file * $checked filp);

void func_b(void)
{

struct file * $unchecked filp;
...
func_a(filp);
...

}

Using the extended inferencerules,CQUAL performs
qualifier inferenceto detectviolations against the type
relationsdefinedby the lattice. For a moredetailedde-
scriptionof CQUAL, pleaserefer to the original paper
onCQUAL [9].

3.2 Approach

CQUAL is employedto perform thecentral taskof stat-
ically verifying thatall inter-procedural pathsfrom any
initializing function to any controlling function, contain
an authorizationof thecontrolled object(steps6 and7
from Section2). This is achievedusingthe latticecon-
figuration shown in Figure3. Figure4 shows a graph-

U UU U

C

C: $checked
U: $unchecked

CC

C <- U
Security Check

Figure4: DetectingSecurityViolationsvia TypeInfer-
encing.

ical depiction of our approach. All controlled objects
are initialized with anunchecked qualifier. The pa-
rametersto controlling functions that areusedin con-
trolled operationsarespecifiedas requiring checked
qualifiedobjects(asfunc_a was above). Authoriza-
tionschange thequalifiedtypeof theobject they autho-
rizetochecked. Usingthesequalifiers,CQUAL’stype
inferenceandanalysiswill report atypeviolationif there
is any pathfrom an initializing function (where theob-
ject isunchecked) toacontrolling function(wherethe
objectmustbechecked) thatdoesnot containanau-
thorization (a castfrom unchecked to checked).

Therearethreerequirementsfor thissolution(equivalent
to steps1, 2, and3, in theprevioussection):

1. All controlled objects must be initialized to
unchecked.

2. All functionparametersthatareusedin acontrolled
operation mustbemarkedaschecked.

3. Authorizations must upgrade the authorized ob-
ject’s qualifiedtypeto checked.

If thenumberof controlled objectsandcontrolling func-
tionswassmall,we couldmanuallyannotatethesource
(aswasdoneby Wagneret. al. to detectformat string
vulnerabilitiesusingCQUAL [14]). Unfortunately, both
arefar too numerousfor manual specificationto befea-
sible.Therefore,we usea modified version of GCCand
a setof PERLscriptsto automatethis process.

In the following subsections we detail our approachto
eachof thesevenstepsoutlinedin theprevioussection.

3.2.1 Step 1: Initializing Controlled Objects to
Unchecked

We locatethe origin (i.e., declaration) of all controlled
objectsand qualify them as unchecked. Thereare
threedifferentkindsof variablesthata function canac-
cess:global variables, local variables, andparameters.
Currentlywedonotconsiderglobalvariables,whichac-
count for lessthan2%of controlled objects.

All locally declared variables of a controlledtype are
qualified as unchecked. A special caseof this is
when reference to a structuremember of a controlled
data type is passedas a parameter to a function (e.g.
f(dentry->d_inode), where field d_inode
is of controlled type). It should also be qualified as
unchecked, becauseit is equivalent to declaring a
local variable, initializing it to be a reference to the
structuremember, andthenpassingthe variableto the
function. To qualify suchcases,we explicitly castthe
parameter to unchecked at the function call (e.g.
f((struct inode * $unchecked)dentry-
> d_inode)).

The taskof marking local variables of controlled types
is automatedusing two tools: one for controlled local
variables andone for the passingof structuremember
referencesto functions. First, we modified GCCto out-
put thelocation(file andline number) of any local vari-
abledeclaration with a controlled type. To achieve this,
we insertedcodethat traversesthe abstractsyntaxtree
(AST) for eachfunction as it is compiled. The code
scanstheAST for localdeclarations(VAR_DECL nodes)
andprints thelocationdetailsif thetype(TREE_TYPE)
of the declaration is a controlledtype (independent of
thelevel of indirection). In thecaseof structuremember
references,our GCC codescansthe AST for function
calls (CALL_EXPR nodes).If any parameteris a refer-
enceto structuremember(COMPONENT_REF node, see
Section3.2.2for morediscussion),andthe type of the
referencedfield is oneof thecontrolledtypes,thenGCC
prints out detailedlocationandtype informationabout
theparameter. Next, this informationis input to aPERL
scriptthatinsertsappropriateannotationsinto thesource
code.

For parametersin function declarations, we leave their
types unqualified. CQUAL then automatically infers
their typeduring the analysisprocess.Therearea few
exceptions to this rule, where we manually annotate
function prototypes(in two headerfiles) that we know
expect checked typeparameters.

COMPONENT_REF

[VPC]_DECL

FIELD_DECLINDIRECT_REF

Figure5: DetectingControlledOperationsin theAST

3.2.2 Step2: Annotating Checked Parameters

Controlledoperations occur whenever a memberof a
controlled type is read or written (all controlled data
typesarestructures).Controlledoperations mustonly
be performedon checked objects. With current ver-
sion of CQUAL, we cannot specify type requirements
for variables at individual statementlevel, instead,we
specify type requirementson any function parameters
that areusedin controlled operationswithin that func-
tion. This analysisverifies completemediationin the
inter-procedural case(i.e., wherethe controlling func-
tion is different from the authorizing function) but, it
cannot verify completemediation for controlled oper-
ationswithin anauthorizing function. Our approachto
intra-procedural analysis is describedin step4 below.

To automatethe annotation process, we again added
codeto GCC to output the detailsof controlled oper-
ations,and then input this information into a seriesof
PERLscripts.Thesescriptsaggregatethecontrolledop-
erationsto the function parameters, andaddchecked
qualifiersto thoseparameterdeclarations. Thetype in-
ference engine then propagatesthis up the call graph,
raising an error if an unchecked local variable is
passedto achecked parameter.

Figure5 shows thesubgraphstructure thatour analysis
searchesfor in the AST. Accessto structuremembers
is representedin theAST by COMPONENT_REF nodes.
Thesenodeshave two children, the first is an expres-
sionwhichspecifiesthevariable beingaccessed,andthe
secondis a FIELD_DECL nodewhich specifieswhich
field is beingaccessed.Theexpressionthatspecifiesthe
variable beingaccessedis a chainof INDIRECT_REF
andADDR_EXPR nodescorrespondingto theC derefer-
ence(*) andaddress(&) operators, respectively. At the

endof this chainis eithera VAR_DECL corresponding
to a local variable,a PARM_DECL corresponding to a
parameter, or aCOMPONENT_REF if weareaccessinga
member of astructureembeddedin another structure.

Our analysissearchesfor COMPONENT_REF nodes in
the AST. Whenoneis found, it determinesthe type of
the structurebeingaccessed(the left subgraph in Fig-
ure 5). If this is a controlled type, then the expres-
sionsis accessinga member of a controlledtype, and
the location information (file, function, and line num-
ber) is reported. We also output whetherthis opera-
tion is on a local variable (VAR_DECL) or a parameter
(PARM_DECL).

This information is then input to a series of PERL
scripts. Thesescripts scanthe GCC output for con-
trolled operationson parameters (i.e., thosethatcontain
PARM_DECL nodes). Using the location information
providedbyGCC,they find thefunctiondeclaration,and
annotatetheparameterwith thechecked qualifier.

3.2.3 Step3: Authorizations

In theory, once an authorization is performed on a
controlled object, its qualified type is changed from
unchecked to checked. However, the current ver-
sionof CQUAL weuseis flow-insensitive, i.e.,thequal-
ifier typeof a variable remainsthe samethroughout its
scope(e.g.,the scopeof a local variableis its defining
block, typically the function). To get around this lim-
itation, following an authorization, we declarea new,
checked qualifiedvariablewith thesamebasetypeas
theobjectauthorized.All usesof theoriginalcontrolled
variable following theauthorizationarereplacedby the
new variable. This processis automatedusinga PERL
scriptthatreplacesusesof theoriginal variable via sim-
plepatternmatching.

The simpleapproachof replacing all usesof the vari-
ableon source lines following the authorization makes
two assumptionsabout thefunction’scontrol-flow graph
that must be verified. Firstly, that thereare no back-
edgesfrom below the authorization to above it. This
ensuresthat the authorization is not inside a loop and
that therearenogoto statementsbelow theauthoriza-
tion thatjumpto above theauthorization.Secondly, that
thereis nocontrol-flow pathfromaboveto below theau-
thorization thatdoes not execute theauthorization.This
ensuresthattheauthorizationis not insidea conditional
or switchstatement.

Theseassumptions areverifiedby addingcodeto GCC
to build thefunction’s control-flow graphfrom its regis-
ter transferlanguage(RTL) description. Oncethegraph
is created,the two propertiesdescribed above areveri-
fied. While the vastmajority of authorizationspossess
theseproperties,exceptions do exist. Fortunately, the
number of exceptions is small enough that they canbe
handled manually.

3.2.4 Step 4: Verifying Controlled Operations
Within Authorizing Functions

The analysis so far verifies mediation in the inter-
proceduralcase,but, it doesnot verify intra-procedural
mediation. Intra-proceduralanalysisis requiredtoverify
thatcontrolledoperationswithin anauthorizing function
occuraftertheauthorization.

Our approachin step3 makesthis analysissimple. In
step3 we replaced all usesof thecontrolled object(���)
following theauthorizationwith anew variable(���	�). An
intra-procedural control-flow analysisverifiedthevalid-
ity of this replacement. The intra-procedural analysis
reduces to finding all controlled operationswithin the
function thatoperateon local variables (parametersare
handled by the inter-procedural analysis). If the local
variable is an introducedvariable(���
�) thenit is medi-
ated,otherwisea warningis generated.

3.2.5 Step 5: Verifying Assignments to Checked
Objects

As describedin Section2, completemediationrequires
verification that a variable is not re-assignedbetween
an authorization anda controlled operation. From the
CQUAL perspective, theright hand side(RHS)of anas-
signment takesoneof four forms:

1. An unchecked object.

2. A checked object.

3. A structure member (e.g.dentry->d_inode).

4. An explicit type cast (e.g. (struct in-
ode*)0xc2000000). Sinceexplicit castsin the
Linux sourceobviously don’t include our quali-
fiers,CQUAL treatsthemasunqualified.

CQUAL correctly handlesthefirst two cases,astheob-
jects are qualified. If the left handside (LHS) of the

assignmentis checked thenCQUAL will raisea type
violation for thefirst caseandallow thesecondcase.

In thethird case,however, thestructurememberhasno
type qualifiers to causetype violations. With no other
information,CQUAL will therefore infer that the RHS
hasthe samequalifiedtype as the LHS, andreport no
errors. As an example of how this canproducefalse-
negatives,considerthecodefragmentbelow.

void func a(struct inode * $checked

inode);

void func b(struct inode * $checked

inode)�
...

inode = dentry->d inode;

...

func a(inode);�

Thevariableinode in func_b hasalready passedse-
curity checksinceit hasachecked qualifier. However,
it is assigneda valuedentry->d_inode, before be-
ing passedto func_a which expectsa checked in-
ode.Clearlywe would like CQUAL to raisea typevio-
lation, sincedentry->d_inode is not anauthorized
variable. However, according to CQUAL inferencerule,
CQUAL will infer thatdentry->inode ischecked
andallow thefunction call.

The solution is to treat dentry->d_inode as
an unauthorized local variable by typecastingit to
unchecked. At presentwe have not implemented the
interimsolutionandsothis source of false-negatives re-
mainsin our results.

The fourth casefails to report type violations for the
samereason.Explicit castsin theLinux kernel donotin-
cludeour typequalifiers,therefore,CQUAL inferstheir
type. To addressthis problem, we wrotea PERLscript
that scansthe sourcefor explicit casts,and insertsthe
unchecked qualifier. Any assignmentof suchanex-
pressionto achecked variableor parameterwill result
in a typeviolation.

3.2.6 Steps6 and 7: Determining and Verifying All
Inter -procedural CodePaths

CQUAL performs interprocedural inferencingto verify
thatbetweenaninitializing function andthecontrolling

function, thereexists a securitycheck. The controlled
objectvariable hasanunchecked qualifier whenit’s
definedin the initializing function. Whenthe initializ-
ing function callsotherfunctionspassingthecontrolled
variable as a parameter, the unchecked qualifier is
propagateddown the calling chain, until the authoriz-
ing functionis reached,atwhichpoint,anew checked
variable is definedand usedafter the security check
(Step4 in Section2). When the authorizing function
calls other functions passedthe new checked vari-
able,thechecked qualifier is againpropagatedalong
the calling chain,until it reaches the controlling func-
tion. If acontrolling function is reachedwithoutpassing
through an authorizing function, then an error will be
raised,becausethe variable will have anunchecked
type and the controlling function expectsa checked
type.

3.3 CompleteAuthorizat ion

Verificationof complete authorization is basicallycar-
ried out in the sameway as complete mediation, with
slight modificationto the lattice structurebasedon the
authorizationrequirementinformation.Ratherthanhav-
ing a genericchecked type qualifier for all security
checks,we assigna typequalifierfor eachuniquesecu-
rity check. A controlled operation that requires multi-
ple securitychecks will thenhave a type qualifier that
is a subclassof thecorrespondingtypequalifiersof the
checksrequired. For instance,if a systemcontains two
securitychecks,denotedby �
� and ��� respectively, as-
sumingthatthecontrolling function f(file) requires
bothsecuritychecksto be performedon thefile ob-
ject, thenthetypequalifierlatticeshouldbe:

partial order {
$checkedForC1C2 < $checkedForC1
$checkedForC1C2 < $checkedForC2
$checkedForC1 < $unchecked
$checkedForC2 < $unchecked

}

Figure6 shows thegraphic representation of thelattice.
Functionf shouldexpect the parameterto be of type
checkedForC1C2.

Figure7 gives anexample of a controlled operationre-
quiring multipleauthorizationsidentifiedby theruntime
analysistool [6]. Threesecuritychecks arenecessary
for the controlled operationunlink() on a directory
inode, namely, permissionto traversetheinode,permis-
sion to write the inode, and permission to unlink file

checkedForC2

unchecked

checkedForC1

checkedForC1C2

Figure6: A four-node typequalifierlattice.

in the directory. In the function prototypedefinitionof
unlink(), we specify the authorization requirement
checkedforExecWriteDirunlink. After these-
curity checks,a new variableCdir that possessesthe
right authorization requirementsreplacesthe old vari-
abledir, andis passedto thecontrolling function.

4 Results

We rantheexperimentson Linux version2.4.9 with the
September 4th,2001LSM patch.We usedGCCversion
3.0.2andCQUAL version0.9for ourstaticanalysis.

We analyzed four subsystemsof Linux: thefile system
(including ext2 physical file system),virtual memory
management,networking, andIPC.Theanalysisgener-
ated524 typeerrors (CQUAL inferenceconflicts). Be-
low we give a detailedanalysisof the type errors and
discusstechniquesin coping with falsepositives.

4.1 Type Err or Categorization

We categorize the unique type errorsinto threegroups
thatwe examine below.

4.1.1 Category 1: InconsistentCheckingand Usage
of Controlled Object Variables

In this category, the variable that is checked is not the
variable that is usedsubsequently. There is, however,
somesortof mapping betweenthecheckedvariable and
the usedvariable (e.g. the usedvariable is a field of
the checked variable). Therefore, it is easyto obtain
the checkedvariablefrom the passedvariable andvice
versa.

/* inserted by our tool */
struct inode *

$checkedForExecWriteDirunlink Cdir;

/* code from include/linux/fs.h */
struct inode_operations {

...
int (*unlink) (struct inode *
$checkedForExecWriteDirunlink,
struct dentry *);

...
}

/* code from fs/namei.c */
int vfs_unlink(struct inode *dir,

struct dentry *dentry)
{

...
/* check for EXEC and WRITE */
may_delete(dir, dentry, 0);
...
/* check for UNLINK */
security_ops->inode_ops
->unlink(dir, dentry);

...
/* controlled operation */
dir->i_op->unlink(Cdir, dentry);
...

}

Figure7: An example of controlled operation requiring
multiple authorizations. Note that error checking codeis
removedto make thecodeeasierto follow.

Thesetypeerrors aresubjectto TOCTTOU [2] attacks,
becausethemapping betweenthecheckedvariableand
theusedvariable mightchangeduring thecourseof exe-
cution.Whetherthevulnerability is exploitable depends
onwhethertheusercanmanipulatethemapping without
specialprivilege. At leastoneof thetypeerrors thatwe
found is exploitable,aswedemonstratebelow.

Figure8 shows the codepaththat contains the typeer-
ror. The codesequence shows Linux implementation
of file locking via the fcntl systemcall. In func-
tion sys_fcntl(), the variable filp, which is a
pointer to the file structureand is retrieved via the
file descriptor fd, is checkedby thesecurity_ops-
>file_ops->fcntl(filp,...) hook. However,
after the check, the file descriptorfd, insteadof the
checked variable filp, is passedto the intermediate
function do_fcntl(fd,...) and eventually to the
worker function fcntl_getlk(fd,...) , wherethe
filp is retrieved again with thegivenfd.

This double retrieval of the file pointer createsa
race condition and can be exploited as follows. A
user can have the security_ops->file_ops-
>fcntl(filp) authorization performedon a differ-
ent file to the one that is eventually locked. Figure9
shows theexploit.

Notethatalthoughstep(7) is written asa wholesystem
call, thereis actuallyonly oneline of C (anassignment)
in step(7) thatneedsto comebetween(6) and(8). Since
step(6) doesaget_user, theattacker cancausetheir
own programto pagefault which enablesstep(7) to be
performedbefore (8).

Also notethat non-LSM Linux is not vulnerablesince
the validation in fcntl_setlk is done after the sec-
ondlookup. LSM is vulnerablebecausetheonly autho-
rization that protectsthe operationis performedbefore
thesecondlookup.

As an example of how dangerousthis canbe, login
and su (PAM’ d versions) both try to lock the file
/var/run/utmp (world readable). insmod locks
any modules it loads.

A patchthat fixesthis problem waspostedto theLSM
mailing list [5].

Theremainingtypeerrors in thiscategory involvekernel
datastructuresthat cannot be easilymodifiedby users
via systemcalls. As a result,it is unclearwhetherthese
type errorscan lead to exploits. However, it certainly
complicates the code unnecessarilyand increasesthe

/* from fs/fcntl.c */
long sys_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg)

{
struct file * filp;
...
filp = fget(fd);
...

err = security ops->file ops
->fcntl(filp, cmd, arg);

...
err = do fcntl(fd, cmd, arg, filp);

...
}

static long
do_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg,
struct file * filp) {

...
switch(cmd){
...
case F_SETLK:

err = fcntl setlk(fd, ...);

...
}
...

}

/* from fs/locks.c */
fcntl_getlk(fd, ...) {

struct file * filp;
...

filp = fget(fd);

/* operate on filp */
...

}

Figure8: Codepathfrom Linux 2.4.9containing anex-
ploitabletypeerror.

THREAD-A:
(1) fd1 = open("myfile", O_RDWR);
(2) fd2 = open("target_file", O_RDONLY);
(3) fcntl(fd1, F_SETLK, F_WRLOCK);

KERNEL-A (do_fcntl):
(4) filp = fget(fd1);
(5) security_ops->file_ops

->fcntl (fd1);
(6) fcntl_setlk(fd1,cmd)

THREAD-B:
/* this closes fd1, dups fd2,
* and assigns it to fd1.
*/

(7) dup2(fd2, fd1);

KERNEL-A (fcntl_setlk)
/* this filp is for the target
* file due to (7).
*/

(8) filp = fget (fd1)
(9) lock file

Figure 9: An exampleexploit.

chanceof raceconditions whenthe datastructuresare
not properly synchronized, which may result in poten-
tial exploits.

Here we present a type error of this kind. Many se-
curity checksthat intendto protectthe inodestructure
areperformedon the dentry datastructure. For exam-
ple,thefollowingcodedoesthepermissioncheckonthe
dentry structure,but does the“setattribute” operation
on theinode structure.

/* from fs/attr.c */
...
security_ops->inode_ops

->setattr(dentry, attr);
...
inode = dentry->d_inode;
inode_setattr(inode, attr);
...

It is alsoquitecommon in Linux to checkon thefile
datastructureandoperateon theinode datastructure.

/* from mm/filemap.c */
struct page * filemap_nopage(

struct vm_area_struct * area, ...)
{

struct file * $unchecked file
= area->vm_file;

...
page_cache_read(file, ...);
...

}

static inline int page_cache_read(
struct file * file, ...)

{
struct inode * $unchecked inode =
file->f_dentry->d_inode;

struct address_space *mapping =
inode->i_mapping;

...
mapping->a_ops->readpage(file, page);
...

}

Figure10: An example of unauthorizedaccess.

4.1.2 Category 2: Controlled Objects Modified
Without Security Checks

This category includesfunctions thatmodify controlled
objectswithout any security checks. The code seg-
ment in Figure 10 shows an example of such cases.
The function filemap_nopage() is calledwhena
pagefault occurs within an m’mappedregion. Since
thereis no checkon thefile objectwithin the func-
tion, its type is unchecked. It is then passedto
function page_cache_read(), which in turn calls
mapping->a_ops->readpage(), whichexpectsa
checkedfile object.Thiscodepathshows thatoncea
file is mappedinto a processaddressspace,theprocess
canaccessthefile evenaftersecurityattributesof thefile
havechanged.

Sincethereis anLSM authorizationhookto verify read
accessto a file on eachread call, this is inconsistent
with the current hooks. A discussionwith the LSM
community revealed that enforcementon eachread
is optional andwill only be usedfor files that arenot
m’mapped.This hooks, aswell astheonefor checking
accessonwrite have beendocumentedto clarify this
inconsistency.

In othercases,for example functioniput(), it seems
thatchecks arenot necessary, asthefunction is usedfor
referencecounting. In othercases,suchasinitialization

function clean_inode() for theinode datastruc-
ture,thereis no needfor securityprotection, asmodifi-
cationof the datastructureis restrictedto zeroingand
initialization of the contents. We call thesefunctions
“safe” functions and consider type errors induced by
thesefunctions asfalsepositives.

4.1.3 Category 3: Kernel-Initiat ed Operations By-
passingSecurity Checks

This category includes operations that are initiated in-
sidethekernel,insteadof going through systemcall in-
terfaces.As such,they donotgothrough thenormalse-
curity checksthatsystemcallsgothrough. As thekernel
developershave addedsomelimitationson thekernel’s
useof thesecommands,it is clearthatthey aresecurity-
sensitive.

Oneexample is thedo_coredump() function, which
createsa corefile containing in-memory imageof the
runningprocess,whencertainsignalsarecaughtthatend
the process.A checkis done whenthe corefile is cre-
ated,however, subsequent seeksandwritesto thefile are
performedwithout securitychecks. This deviatesfrom
theusercase,whereevery lseek() or write() sys-
temcall requiresa check.

Another example is the kswap daemon. The kswapd
daemon callsprune_icache(), which tries to sync
theinodesthataretobereleased.Theinodesarereached
via a globalvariable super_blocks, which contains
headsfor various inodelists.

4.2 Type Err or Rates

CQUAL type errors can be examined in two ways:
sourcetype errorsandpathtype errors. A source type
error is a variable that is usedin sucha way thata type
error is generated. That is, the variable is usedin an
unchecked statein at leastonefunction that expects
the variable to be checked. A path type error is a
unique call path that leadsto a type error. Figure 11
shows an example path type error. Note that for each
sourcetypeerrortheremaybemultiplepathtypeerrors.

Table1 showsboththesourceandpathtypeerror counts
for Linux kernelsubsystems.For sourcetypeerrors,we
alsodisplaythesourcetypeerror rate, definedto bethe
percentageof controlled variables that are involved in
typeerrors.

Subsystems PathTypeError Counts SourceTypeErrorCounts SourceTypeErrorRate(%)

File System 73 57 10%
MemoryManagement 18 17 9%
Networking 431 308 22%
IPC 2 2 3%

Table1: Pathandsourcetypeerrors.

Table1 shows two interestingfacts: (1) over 500 path
typeerrors arepresentin thekerneland(2) mostof the
typeerrorsoccur on onepath. Fortunately for theLSM
community, mostthe typeerrorsidentifiedby theanal-
ysisarefalsepositives. However, examining this many
typeerrors to find a few exploitableerrors is not practi-
cal. Therefore, we needsecondary analysesto remove
obviousfalsepositives.Second, sincemosttypeserrors
associateonesourcewith oneerror path,so it may be
thatsomeof thesinksof theanalysis(i.e., thefunctions
with controlled operations)maynotreallyrequireautho-
rization.

4.3 ReducingFalsePositives

Giventhatthetoolsgeneratedabout 500typeerrors,one
may conclude that the falsepositive rateis unmanage-
able,but we do not find this to be the case. A signifi-
cantnumber of theerrors arein functions in which it is
easyto verify thatno securitycompromisesarepresent,
suchas thosecausedby “safe” functions describedin
Section 4.1.2. “Safe” functions are falselymarked as
controlling functions becausethey modify field mem-
bersof controlled datastructures. However, sincethe
modification is for thepurposeof referencecounting or
initialization, themodification doesnot requiresecurity
authorizations.

To identify whatthesefunctionsare,we (slightly) mod-
ified CQUAL to print the inferencing paththat leadsto
a typeerror. Figure11 shows anexample errorpathin-
volving a “safe” functioniput(). iput() decreases
theusagecountfor thegiveninodeandreleasesit if the
usagecount hits zero.

We thenreport the list of controlling functions that are
the sinks of the error paths. Becausehot controlling
functions often contribute to multiple type errors, the
number of controlling functions aremuchsmallerthan
thenumber of typeerrors. Wethenmanually gothrough
thelist andidentify “safe” functions,whichareremoved

inode.ii:8383 $unchecked <= inode_p
inode.ii:8387 inode_p <= iput_arg0
inode.ii:8831 iput_arg0 <= $checked

Figure 11: An example error path endingin function
iput. Each line representsan inferenceaccording to the
CQUAL rules,e.g. thefirst line meansthat inode p is a super
classof theuncheckedqualifier type. Thefirst columnshows
thesourcefile andline number wheretheinferenceoccurs.

from the list of controlling functions. Appendix A lists
the“safe” functionsweidentified.TheCQUAL analysis
processis thenrestarted.

It is painful to manuallyidentify “safe” functions. But
two reasonsmake it a manageabletask. First, thereare
only a few suchfunctions,eventhough they accounted
for asignificantportionof thetypeerrors(Table2). Sec-
ondly, thesefunctionsarerelatively stableacrosskernel
releases.Sowith a high probability this taskonly needs
to bedoneonceandthe resultscanbe reusedin future
kernelreleases.After the“safe” functionsareidentified,
we only needto verify that they do not changein new
kernel releases,or that the changesdo not affect their
intended functionality.

Table2 shows the reduction in termsof both pathand
sourcetype errorsafter removing the “safe” functions
for the four kernelsubsystemswe tested.This reduces
thenumber of typeerrors by around75%for bothpath
andsource typeerrors.

While this is a significant improvement, other means
for removing falsepositives arebeingexamined. First,
theremaybea significantnumber of other“safe” func-
tions. Second,thereareseveral caseswherea variable
is assignedfrom another variable that is checked. In
the file system,often the dentry is authorized, then
theinode is assignedfrom thedentry->d_inode.
Unfortunately, CQUAL cannotyet reasonthat a field
extractedfrom a checked structure is alsochecked
(seeSection5.2).Third, wehavenotyet fully examined
kernel-initiatedpathsthatleadto typeerrors.

PathTypeErrors SourceTypeErrors
With “Safe” Without “Safe” % With “Safe” Without “Safe” %

Subsystems Functions Functions Reduction Functions Functions Reduction

File System 73 37 49% 57 31 45%
MemoryManagement 18 14 22% 17 13 24%
Networking 431 73 83% 308 55 82%
IPC 2 2 0% 2 2 0%

Table2: Error reductionaftereliminating“safe” functions.

5 Discussion

Hereweexaminetheeffectivenessof ourapproachanda
possibleextensionto CQUAL thatmayimprove its util-
ity.

5.1 Effectivenessof Our Approach

Given the extensive natureof static analysis,we are
somewhat surprisedthatwehaveonly found acouple of
exploitableCQUAL typeerrors in ouranalysis.Someof
theanalysesarefairly new, sowe mayfind moreerrors,
but this is a bit of a surprise.

We areencouragedby oneof the exploits that we did
find. The Category 1 TOCTTOU exploit is one that
would be difficult to find via runtime analysis. Typi-
cally, theassociationbetweenthefile descriptor andthe
file would not change, sobenchmarksconsistingof be-
nign programswould not uncover this error. With static
analysis,theinconsistency wasclear.

Another aspectof the effectivenessof our approach is
its easeof use,sincemostof theanalysisprocessis au-
tomated. It is straightforward to apply the processto a
modifiedkernel or new releasesof thekernel.We tested
this by running the tool against Linux version 2.4.18.
After the kernel source tree is downloaded, anda few
smallchangesareappliedto theMakefileandtwosource
files (seeSection3.2.1), therestof theprocessrequires
little manual effort (except for identifying false posi-
tives). Thetime it takesto completetheprocessis also
quite reasonable. As a matterof fact, mostof the time
is spenton kernelbuilds - our modifiedversionof GCC
collectsinformationoncontrolledtypeswhilecompiling
thesourcecode.

Herewe presentthe times for the major steps. These
numbersareonly intended for a ballpark measureof the
effort neededto perform analysis,sothey should not be

interpretedasrepresentingtheoptimizedperformanceof
the tools. The test platform was a 667 MHz Pentium
III machine with 128MB of memory. It took about 30
minutesto do thethreecleankernelbuildsusingourex-
tendedGCC to generatethe annotation information. It
shouldbepossibletoperform all thisanalysisin oneker-
nel build, however. Most of that time is contributedby
theGCCbackend thatgeneratesmachinecode(whereas
ourGCCanalysiscodeonlyworksontheAST tree).We
comparednormalkernel build time with thebuild time
thathasour GCCanalysiscodeenabled, andthediffer-
enceis negligible. Annotationof thesource by thePerl
scriptstook about1 minute,And finally, it took about
10 minutes for CQUAL to perform the analysis. With
theadditional analysisoverheadof a 15minutesor less,
we expect that an optimizedprocesscanbe donesuf-
ficiently quickly for thesetools to be useful for kernel
programmers.

5.2 PossibleCQUAL Extension

A possibleextension to CQUAL wouldenableusto cor-
rectly verify mediation betweenthe controlledopera-
tionsandall security-sensitive operations.TheCQUAL
teamhasaninterimsolutionandarelooking into a gen-
eralsolution[8]. We describetheproblemhere.

Currently, structuresin CQUAL aretreatedasa collec-
tion of fields,sothereis norelationshipbetweenastruc-
ture and its memberfields. For example, in the code
below, var->bar wouldnothavetypechecked even
though var does. Sincestructuresareusedextensively
in the kernel, we believe it would greatlyenhance the
tool if CQUAL supports user-defined rulesfor inferring
thetypesof memberfieldsfrom thetypesof structures.

struct foo {
int bar;

};

$checked struct foo *var;

For instance,for case3 in Section3.2.5, we would
want the inodethat is extractedfrom a checked den-
try to be checked as well. In the casethat a den-
try is unchecked, the inode of the dentry is implicitly
uncheckedaswell.

In addition, with current version of CQUAL, all in-
stancesof a structuretypesharethesamequalifer type.
For example,if bar is qualifiedasachecked type,all
instancesof foo wouldhaveachecked field for bar.
Whatwewantis to assignqualifier typesto memberson
a per-instancebasis.

For verifying that thecontrolled operationsmediatethe
security-sensitive operations, we would also want any
structurefield accessedthrough a checked type to be
checked aswell. This would enableus to propagate
authorizationsthrough the structurecompletely. Then,
we couldfind any members of a security-sensitive data
typethatis notaccessedthrougha controlleddatatype.

Notethatthisapproachis notalwaysapplicabledepend-
ing on the semanticsof the qualifications. This would
notbeappropriatefor thetypeof qualifiers usedbyWag-
neret. al. [14].

6 RelatedWork

Weareunawareof any otherresearchwork onstaticver-
ification of LSM. However, a numberof staticanalysis
tools that weresuccessfullyapplied to the securitydo-
main.Here,we comparetheirwork to ours.

Wagneret. al. [14] usedCQUAL to identify format
string vulnerabilities. Their work motivatedus to ap-
ply CQUAL to the morecomplicatedproblem of LSM
verification. Themaindifferencebetweenour usageof
CQUAL andtheirsliesin theannotationprocess.In their
work, thetargetcodefor annotationsis well-defined and
hasa limited number of occurrences.Therefore,thean-
notationsaredoneby hand.In ourcase,thescopeof an-
notatedcodeis muchlarger, andthuswe employ GCC
to automaticallydetectthecodeto beannotated. We au-
tomatetheprocessof marking aswell.

Engler et al enables extensionof GCC, called xgcc,
to do source analyses,which they refer to as meta-
compilation [7, 1]. A rule language, called metal, is
usedto expressthe necessaryanalysisannotationsin a
higher-level language. Sincethe rules matchmultiple
statements,the amount of annotation effort is reduced.

A varietyof softwarebugs,includingsecurityvulnera-
bilities, have beenfoundby this tool. While it appears
that xgcccould be usedfor the staticanalysiswe per-
form, xgccis notavailableat this time,sowe areunable
to evaluateit. A key difference maybe that metalrule
expressionswill have to beextended to referenceGCC
AST structuresratherthanthesourcedirectly.

Larochelle et. al. [11] enhancedtheirLCLint tool to de-
tect likely buffer overflows in C programs.TheLCLint
tool basesstaticanalysisonannotationsof theprograms
(or thelibraries) thatrestricttherange of valuesa refer-
encecanhave. Thestrengthof LCLint is thattheanaly-
sisis flow-sensitive,andthusmoreaccurate.Thedown-
sideof the LCLint tool is its inflexibility . The current
LCLint tool is customized to dealwith a setof prede-
fined softwarebugs. It appears that extending LCLint
for LSM verification wouldrequire asignificantamount
of effort (i.e. adding new annotation types). CQUAL,
ontheotherhand,is moreextensibleby employing user-
definedtypequalifierlattices.

Necula et. al. [12] define the CCured type system.
CCuredleveragesthe fact that most C sourceis writ-
ten in a type-safemanner to perform a varietyof static
checkson thesourceduring compilation for thingslike
buffer overflows. For thingsthatcannot becheckedstat-
ically, CCuredintroducesruntime checksinto thecode.
This enablescertainkinds of errors to becaughtregard-
lessof whether they canbefound staticallyor dynami-
cally. While weagreewith thisapproachto verification,
asyet the typesof errors that CCuredcanfind do not
includeauthorizationhookplacement.

Koved et. al. [10] presented a technique for comput-
ing the accessrights requirementsof Java applications.
Their approachusesmorepowerful programming anal-
ysistechniques:a context-sensitive interprocedural data
flow analysis is employed.Although theanalysisis per-
formed on Java code,it is conceivable that suchtech-
niques canbeappliedto ourproblemdomainaswell.

7 Conclusion

Thispaperpresentedanovel approachto theverification
of LSM authorizationhook placement usingCQUAL, a
type-basedstaticanalysis tool. With a simpleCQUAL
lattice configuration and somesimple GCC analysis,
we were able to verify complete mediation of opera-
tions on key kernel data structures. Our results re-
vealedsomepotentialsecurityvulnerabilitiesin thecur-

rentLSM framework, oneof which we demonstratedto
beexploitable. We further showedthatgivenauthoriza-
tion requirements,CQUAL couldbeusedto verify com-
pleteauthorizationaswell. Our resultsdemonstratethat
combinationsof conceptually simpletoolscanbepow-
erful enough to carryout fairly complex analyses.

Our main problem is the eliminationof falsepositives.
Static analysisgenerally errs on the conservative side,
sowe initially hada largenumberof typeerrors.How-
ever, we have identifiedtechniquesfor secondary anal-
ysesthat can eliminatemany of thosefalsepositives.
Extensions to CQUAL arenecessaryto eliminatesome
typesof falsepositives,but this is ongoing work.

8 Acknowledgments

We would like to thankJeff Fosterfrom UC Berkeley
for his timely responsesto our numerousquestionson
CQUAL andfor hissuggestionsandadvicesontheearly
draftof thispaper. Wealsothanktheanonymousreview-
ersfor their valuable comments.

References

[1] K. Ashcraft and D. Engler. Using programmer-written
compilerextensionsto catchsecurityholes. In Proceed-
ings of the IEEE Symposiumon Securityand Privacy
2002, May 2002.

[2] M. BishopandM. Dilger. Checkingfor raceconditionsin
file accesses.ComputingSystems, 9(2):131–152,1996.

[3] LSM Community. Linux SecurityModule. Availableat
http://lsm.immunix.org.

[4] Wirex Corp. Immunix securitytechnology. Availableat
http://www.immunix.com/Immunix/index.html.

[5] A Edwards. [PATCH] add lock hook to pre-
vent race, January 2002. Linux Security Modules
mailing list at http://mail.wirex.com/pipermail/linux-
security-module/2002-January/002570.html.

[6] A. Edwards,T. Jaeger, andX. Zhang. Verifying autho-
rizationhookplacement for theLinux SecurityModules
framework. TechnicalReport22254, IBM, December
2001.

[7] D. Engler, B. Chelf, A. Chou,andS. Hallem. Checking
systemrulesusingsystem-specific, programmer-written
compilerextensions.In Proceedingsof theFourth Sym-
posiumonOperationSystemDesignandImplementation
(OSDI), October2000.

[8] J.Foster. Personalcommunication,January2002.

[9] J. Foster, M. Fahndrich,andA. Aiken. A theoryof type
qualifiers. In ACM SIGPLANConference on Program-
mingLanguage DesignandImplementation(PLDI ’99),
pages192–203,May 1999.

[10] L. Koved, M. Pistoia, and A. Kershenbaum. Access
rights analysisfor java. In Proceedings of the 17th
AnnualACM Conference on Object-OrientedProgram-
ming, Systems,Languages,and Applications(OOPSLA
2002), November2002.Acceptedfor publication.

[11] D. LarochelleandD. Evans. Statically detectinglikely
buffer overflow vulnerabilities. In Proceedings of the
Tenth USENIX Security Symposium, pages 177–190,
2001.

[12] G. C. Necula, S. McPeak,and W. Weimer. CCured:
Type-saferetrofitting of legacy code. In Proceedingsof
the29thACM SymposiumonPrinciplesof Programming
Languages(POPL02), January2002.

[13] NSA. Security-Enhanced Linux (SELinux). Availableat
http://www.nsa.gov/selinux.

[14] U. Shankar, K. Talwar, J.S.Foster, andD. Wagner. De-
tectingformat stringvulnerabilities with type qualifiers.
In Proceedingsof the Tenth USENIXSecuritySympo-
sium, pages201–216,2001.

A “Safe” FunctionsList

Subsystems ”Safe” Functions SourceFiles

File System put super fs/super.c
kill super fs/super.c
cleaninode fs/inode.c
iput fs/inode.c
file operations.poll include/linux/fs.h
superoperations.writesuper include/linux/fs.h
superoperations.readinode include/linux/fs.h
superoperations.readinode2 include/linux/fs.h
superoperations.putinode include/linux/fs.h
superoperations.clearinode include/linux/fs.h
superoperations.putsuper include/linux/fs.h
block device operations.release include/linux/fs.h
file operations.release include/linux/fs.h

Memory Management shmemrecalcinode mm/shmem.c
shmemget inode mm/shmem.c
oom kill task mm/oomkill.c

Networking skb unlink include/linux/skbuff.h
skb insert include/linux/skbuff.h

skb reserve include/linux/skbuff.h

