USENIX Association

Proceedings of the
11" USENIX Security
Symposium

San Francisco, California, USA
August 5-9, 2002

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Using CQUAL for StaticAnalysis of AuthorizationHook
Placemat

XiaolanZhang Antony Edwards TrentJaeer
IBM T. J. Watsan Reseach Center
Hawthorne NY 10532USA
Email: {cxzhangaegert} @us.ibmcom

May 13,2002

Abstract

TheLinux SecurityModues (LSM) framework is a set
of authaization hodks for implemerting flexible access
contrd in theLinux kernel.While mucheffort hasbeen
devoted to defining the modue interfaces,little atten-
tion hasbeenpaid to verifying the correctressof hodk
placemen This pager presentsa novel apprachto the
verification of LSM authaizationhodk placemenusing
CQUAL, atype-tasedstaticanalysistool. With a sim-
ple CQUAL lattice configurationandsomeGCC-based
analyseswe are able to verify conplete mediationof
operaionson key kerrel datastructures Our resultsre-
vealsomepoteriial securityvulnerabilitiesof thecurrent
LSM framework, oneof whichwe demanstrateto beex-
ploitable. Our experiencesdemastratethat combira-
tionsof cone@ptuallysimpletoolscanbeusedo perform
fairly compex analyses.

1 Intr oduction

Linux SecurityModues (LSM) is a framework for im-

plemerting flexible accesscontrd in the Linux ker-

nel [3]. LSM consistsof a setof geneic authagization
hoolksthatareinsertednto thekernelsoure thatenable
kernelmodulesto enforce systemaccessortrol policy

for thekernel. Thus,the Linux kernelis not hardcodel

with a singleaccessontrd policy. Modue writerscan
definedifferentaccesgortrol policies,andthecommu

nity canchoosethe policiesthat are mosteffective for

theirgoals.

Thecodesggmentin Figurel shavs anexanple of how
LSM hooks are insertedin the kerrel. The function
sys_I| seek() implementsthe systemcall | seek.

/* Code fromfs/readwite.c */
sys_|seek(unsigned int fd, ...)

{

struct file * file;

file = fget(fd);

retval = security_ops->file_ops
->l 1 seek(file);

if (retval) {

/* failed check, exit */

got o bad;
}
/* passed check, perform operation */
retval = Ilseek(file, ...);

Figurel: An exanple of LSM hod.

The security hok, security_ops->fil e_ops-
>| | seek(file), is insertedbefae the actualwork
(calltofunctionl! | seek()) takesplace.

System administratos can provide an implemen

tation of the correspnding hook functiors (e.g.
security_ops->file_ops->l1seek()) by se-
lecting a kerrel modue that implenents their desired
policy. Examplesof LSM modues under development
includeSubDomain4], SecurityenhawedLinux [13],

andOperwWALL.

While much effort hasbeendevoted to placing hodks
in the kernel, this hasbeena manualprocessso it is
subjectto errors. Eventhough the LSM developersare
highly-skilled kernelprogammes, erross are unavoid-
ablewhendealirg with complicded software. Thusfar,
little work hasbeendoneto verify thatthe hooks indeel
provide comgete mediation over accessto security

sensitve kernelobjeds and enforce the desiredauthe
rizationrequilements Suchverificationwould helpgain
acceptaoe for the LSM appoachand enablemainte-
nanceof the authaization hodks asthe kernelevolves.
The verification task for LSM is not a simple one be-
cause.SM authoizationhooks areembediedwithin the
kernelsourceratherthanatawell-definedinterfacelike
the systemcall boundary While thisimprovesbothper
formanceandsecurity it makesit imprectical to verify
thehookplacemets manually[6].

As a first step, we began the developmentof runtime
analysistools for verifying LSM authoization hodk

placemen[6]. Thesetoolsareeasyto run, have helpal

usidentify therequirenentsof aveiification systemand
have enabledus to find somehod placement erras.

However, rurtime analysisis limited by the coverageof

its benchnarksandrequires somemanual investigation
of resultsto verify erros. Giventherecen spateof ef-

fortsin staticanalysistools[7, 11, 14], we werecurious
whetherary of thesetools could be appliedeffectively

to authorizéion hookverification Givena brief evalua-

tion of tools,we choseto useCQUAL [9], atype-kased
staticanalysigool. It waschosemmainly becaseit was
concepually simple (type-basedand flow-insensitie),
available to use without significantmodification, and
wassuppated by formal foundations.

This paperpresentsa novel appoachto the verification
of LSM authaization hook placemet using CQUAL.

We have found that with a simple CQUAL lattice and
someadditioral analysesusingGCCwe canverify com-
plete mediationof opemationson key kerne datastruc-
tures. Completemediationmeansthat an LSM authe
rization occus before ary contiolled opeation is exe-

cuted. Further we have found thatusingthe authoria-
tion requilementsfound by our runtime analysistools,
we canbuild a managablelattice thatenablesveiifica-
tion of compete authoization. Completeauthorization
meanghateachcortrolled operatim is compgetely me-
diatedby hods thatenforceits requred authaizations.
Ourresultsreveal somepoteriial securityvulnerabilities
of thecurrentLSM framework, oneof whichwe demon

strateto be exploitalde. Thefindings anda coce patch
werepostedo the LSM mailing list [5], andthefix was
incorporatedin laterkernelreleasesTheresultantcon-
tribution is that throudh the use of a small nurber of
concepually simpletools,we canperformafairly com-
plex analysis.

Therestof the paperis organizedasfollows. Section2
definegheveiification problem Section3 describe®ur
apprachin detail. Section4 presentghe potentialvul-
neralilities discoveredthroughour staticanalysis.Sec-

tion 5 discusseeffectivenessof our apgoachandpos-
sible extersionsto CQUAL. Section6 describeselated
work, andSection7 conclwesthe paper

2 Problem

We aimto enalbe two kinds of vetification: (1) verifica-
tion of completemediation and(2) verificationof com-
pleteauthoization.

2.1 Complete Mediation

For complée mediation,we mustverify thateachcon-
trolled operatim in the Linux kernelis mediatedby
someLSM authaizationhodk. A controlled operation
consistsof an objed to which we want to contrd ac-
cessthecontmwlled object andanoperatio thatwe exe-
cuteuponthatobject. An LSM authoizationhookcon-
sistsof a hod function identifier (i.e., the policy-level
operdion for which authaization is checled, suchas
security_ops->fil e_ops->pernission)and
a setof agumentsto the LSM module’s hod function.
At leastone of theseargumentsrefersto a contrdled
objectfor which accesss permittedby successfubu-
thorization (sometims theseobjectsarereferedto in-
directly).

Thefirst problemis to find the contrdled objectsin the
Linux kernel. In geneal, thereare a large numter of
kernelobjectsto which accessnustbe contolled in or-
derto ensurehe systembehaesproperly. Basedonthe
backgourd work donefor theruntimeanalysigool [6],
we have foundthateffective mediationof accesgo ker-
nel objectsis provided through userlevel abstractions
identifiedby particuar cortrolled datatypesandglobal
variabes. Operatims on theseobjeds definea media-
tion interfaceto the kerrel objeds at large. Of couse,
theremay be a bug that enablescircumention of this
interface,but this is a separateverificationprodem be-
yondthe scopeof this paper

We identify the following datatypesascontmlled data
types files, inodes, superlocks, tasks, modues, net-
work devices,soclets,skhuffs, IPC messagesPC mes-
sagequeue semaphres, and sharedmemoy. Thele-
fore, operatios on objeds of thesedatatypesanduser
level globalscommseour setof contrdled operatims.
In this paper we focuson the verificationof contrdled
operdions on controlled data types only. Now we

Controlled Object

[Security Check }

Controlled Object Controlled Object

[Controlled Operation }

Figure2: Thecompletemediationprodem.

candefineour comgetemediatio veiification prodem:
verify thatan LSMauthaization hookis executeconan
objectof a contwlled datatypebefor it is usedin any
contwlled opertion. For exampe, becausehe variabe
fil e in Figurel’s fundion sys_| seek is of a con-
trolled datatype,ary opeaationsonthisvariablemustbe
prece@dby a securitycheckonf i | e. Figure2 shavs
theprodem graghically.

In order to solve the compete medation verification
prodem,thereareafew importart subprdlemsto solve.
First, we mustbe ableto associatehe authoized object
with thoseusedin contrdled opeations. In a runtime
analysisthisis easilydoneby usingtheidentifiers of the
actualobjeds usedin the securitychecls andcontrdled
operdions. In a staticanalysiswe only know abait the
variadesandtheoperdionsperfameduponthem. Sim-
ply following thevariabe’s patts is insufiiciert because
thevariablemaybereassignedo a nev objectafterthe
check.

Next, we needto identify all the possiblepathsto the
contrdled opeation. While the kernelsourcecantake
basicallyarbitray paths,in practicetypical C function
call semanticareused.Thus,we assumehateachcon-
trolled opeation belorgs to a function andcanonly be
accessebly execuing thatfunction.

Thus, all inter-procedual patts are definedby a call
graph but we mustalsoidentify which intra-procedual
paths requre analysis. Note that the only intra-
procelural pathsthat requireanalysisare thosewhere
authaization is performedor thosewherethe variable
is (re)assigned.Thesearethe only opeationsthatcan
chang theauthoriationstatusof avariable.Sincevari-
ablesto controlledobjectsaretypically assignedn the
functionswheretheir useis authaizedandarerarelyre-
assignedthis oftenlimits our intra-procedwal analysis

to thefunctions containirg the securitychecks.Further
securitychecls shoud be uncorditional with respecto
the scopefor which the checkapplies,so suchanalyses
shouldbestraightfoward.

Thus,we ervision thatthe completemedation prodem
will be solved by following this sequencef stepsfor
eachcontolled objectvarialde:

1. Determinghefunctionin whichthis vaiableis ini-
tialized (initializing fundion).

2. ldentify its contiolled operatios and their func-
tions(contmlling functiors).

3. Determinghefunctionin whichthis variableis au-
thorized(authorizing functior).

4. Verify thatall contrdled opeationsin anauthoiz-
ing function areperfomedafterthesecuritycheck

5. Verify thatthereis nore-assignrantof thevarialde
afterthesecuritycheck

6. Determinethe inter-procedual pathsbetweenthe
initializing function andthe contrdling functions.

7. Verify that all inter-procedurd pathsfrom an ini-
tializing function to a contolling function cortain
asecuritycheck.

If are-assignmat is foundin step#5, thenthe verifica-
tionis restartedrom thelocationof thenew assignmen

2.2 Complete Authorization

Givena solutionto comgete mediation the prodem of
verifying conpleteauthoizationis straighforward, but
findingtherequrementss difficult. Eachcortrolled op-
erationrequiles prior mediationfor a setof authoria-
tion requrements.Theveiification prodem s to ensure
thatthoserequirementshave beensatisfiedfor all paths
to thatcontrdled operaion. In this case multiple secu-
rity checksmay be requiral (andthus, multiple authe
rizing functions),but the overall mectanismis basically
the same. We needto ensurethat the setof authoiz-
ing functionsthat provide the necessargecuritychecks
mustoccurbetweertheinitializing functionandthecon-
trolling function.

Collectionof theauthaizationrequrementsor thecon-
trolled opeationsis themorecompgex task.Ourrurtime

analysistool [6] enablegleternination of theauthoria-
tion requirenentsof cortrolled operatims,soratherthan
developing a new analysistool, we useour runtime re-
sultsto find the authorizationrequirenents.

2.3 Summary

Whenwefirst examiredthis problem,it appeaedthatan

extensie staticanalysistool with inter-procedual data-
flow analysiscapalility wasneeded Suchtools either
arenotavailableto the pulic, donotwork onLinux ker

nel (due to scalabilityissuesor C codingstyle issues),
or are too complicatedto custonize for our problem.

A closerlook at the natue of the verification problem,

however, reveds thata less-paoverful staticanalysistool

mightbesuficient. For verificationpurpcses,we donot

careabou the exactvalueof the contrdled objed. We

only careabou its authoizationstate(i.e., auttorizedor

non-authoized) andthatits varialde is not re-assigned
Somelimited sourceanalysis may be necessaryo ver-

ify thattheexpectedcondtions apply but this shouldbe

quitesimplein mostcases.

3 Approach

3.1 CQUAL Background

CQUAL is a type-tlasedstatic analysistool that as-
sistsprogammersn searchig for bugsin C programs.
CQUAL suppats userdefinedtypequdifiers which are
usedin the sameway asthe standardC type qualifiers
suchasconst .

Thefollowing codesggment shovsanexanpleof auser
definedtypequalifier: unchecked. We usethis quali-
fierto dende acontrdled object thathasnotbeenauthe
rized. This declaationstateshatthefile objed (fi | p)
hasnotbeenchecled.

struct file * $unchecked fil p;

Typically, progammes specify a type qualifier lattice
which definesthe sub-typerelatiorshipsbetweemuali-
fiersandanrotatethe progamwith theappopriatetype
qualifiers. A lattice is a partially ordeed setin which
all nonenpty finite subset$have aleastupperbourd and
a greatestower bound. For exanple, Figure3 shavs a

partial order {
$checked < $unchecked

}
Figure3: A lattice of typequalifiers.

lattice with two elementschecked andunchecked,
andthe subtyperelation< asthe partial order Hereit
meanshecked is asubtype of unchecked.

CQUAL hasafew built-in inferen@rulesthatexterd the
subtyye relationto qualifiedtypes. For exanmple, oneof
therulesstateghatif QL < Q2 (meaniry qualifier QL
is a subtype of qudifier Q2) thentype QL T is a sub-
typeof @ T for ary giventype T. ReplacingQl and
@ with checked andunchecked respectidy, we
havethatchecked T isasubtypeof unchecked T.
From an objectoriented progamming point of view,
this meansthat a checked type can be usedwher
ever an unchecked type is expected, but using an
unchecked typewherea checked typeis expecteal
resultsin a type violation. The following code seg-
mentshaws a violation of the type hierarcly. Functin
f unc_a expectsachecked file poirter asits parane-
ter, butthe paraméer passeds of typeunchecked file
pointer

void func_a(struct file * $checked filp);

void func_b(void)

{

struct file * $unchecked fil p;
func_a(filp);

}

Using the extended inferencerules, CQUAL perfams
qualifier inferenceto detectviolations agairst the type
relationsdefinedby the lattice. For a moredetailedde-
scriptionof CQUAL, pleasereferto the origind paper
on CQUAL [9].

3.2 Approach

CQUAL is emploredto perfam the centrad taskof stat-
ically verifying thatall inter-procedual pathsfrom ary
initializing function to ary contolling function cortain
an authaization of the contrdled object(steps6 and7
from Section2). This is achiezed usingthe lattice con-
figuration showvn in Figure 3. Figure4 shows a graph

Security

C: $checked
U: $unchecked

Figure4: DetectingSecurityViolationsvia Type Infer-
encing

ical depction of our apprach. All cortrolled objects
areinitialized with anunchecked qualifier The pa-
rametersto contrdling functions that are usedin con-
trolled opeationsare specifiedas requiing checked

qualified objects(asf unc_a was abore). Authoriza-
tionschang the qualifiedtype of the objed they autho

rizetochecked. Usingthesequalifiers, CQUAL'stype
infererceandanalysiswill repat atypeviolationif there
is ary pathfrom aninitializing function (whele the ob-
jectisunchecked) to acontmwlling function (wherethe
objectmustbe checked) that doesnot containan au-
thorization (a castfrom unchecked to checked).

Therearethreerequrementdor thissolution(eguvalent
to stepsl, 2, and3, in the previous section):

1. All controlled objects must be initialized to
unchecked.

2. All functionparaneterghatareusedn acontrdled
operdion mustbemarledaschecked.

3. Authorizations must upgade the authoized ob-
ject’s qualifiedtypeto checked.

If thenumker of contrdled objectsandcontmolling func-

tionswassmall,we couldmanuallyanndatethe source
(aswasdoneby Wagneret. al. to detectformat string
vulnerabilitiesusingCQUAL [14]). Unfortunately both
arefartoo numerousfor manual specificatiorto be fea-
sible. Therefae, we usea modfied version of GCCand
asetof PERL scriptsto automatehis process.

In the following subsectios we detail our apprachto
eachof the sevenstepsoutlinedin the previoussection.

3.2.1 Step 1: |Initializing Controlled Objects to
Unchecked

We locatethe origin (i.e., declaratioh of all contrdled
objectsand qualify themasunchecked. Thereare
threedifferentkinds of variabdlesthata function canac-
cess: glohal variabes, local variabes, and paraméers.
Currentlywe donotconsideglobalvariades,whichac-
court for lessthan2% of contrdled objects.

All locally declaed variables of a controlledtype are
qualified as unchecked. A specialcaseof this is
when reference to a structuremembe of a contrdled
datatype is passedas a paraméer to a fundion (e.g.
f(dentry->d_i node), where field d_i node
is of contrdled type). It shouldalso be qualified as
unchecked, becausdt is equivaent to declamg a
local varialde, initializing it to be a refererce to the
structurememler, andthen passingthe variableto the
function. To qualify suchcaseswe explicitly castthe
paraneter to unchecked at the function call (e.g.
f((struct inode * $unchecked)dentry-

> d_i node)).

The task of marking local variabes of contolled types
is automated using two tools: onefor contolled local

variabes and one for the passingof structurememier

referertesto fundions. First, we modfied GCCto out-

putthelocation(file andline numker) of ary local vari-

abledeclaratio with a contwolled type. To achieve this,

we insertedcodethat traversesthe abstractsyntaxtree
(AST) for eachfunction asit is compiled The code
scangheAST for localdeclaratios (VAR _DECL nocks)
andprints thelocationdetailsif thetype (TREE_TYPE)

of the declaratim is a controlledtype (independat of

thelevel of indirectian). In the caseof structurememker

refererces, our GCC codescansthe AST for function

calls (CALL_EXPR nodes).If ary paraneteris a refer

enceto structue memter (COMPONENT _REF node see
Section3.2.2for morediscussion)andthe type of the
referercedfield is oneof the contolled types,thenGCC
prints out detailedlocationandtype informationabaut

theparaneter Next, thisinformationis inputto a PERL
scriptthatinsertsappopriateanndationsinto thesource
code.

For paranetersin function declaratios, we leave their
types unaualified. CQUAL then autonatically infers
their type during the analysisprocess.Therearea few
excefions to this rule, where we manudly anndate
function protaypes(in two headeffiles) that we know
expect checked typeparametes.

“/_/

COMPONENT_REF

/\

INDIRECT_REHR FIELD_DECL

[VPC]_DECL

Figure5: DetectingControlledOperatimsin the AST

3.2.2 Step2: Annotating Checked Parameters

Controlled operatios occu whenerer a memberof a
contrdled type is reador written (all cortrolled data
typesare structures). Controlledoperatims mustonly
be periormedon checked objects. With current ver

sion of CQUAL, we canna specify type requrements
for variables at individual statementevel, instead,we
specify type requrementson ary function paraneters
thatareusedin contrdled opeationswithin that func-

tion. This analysisverifies completemediationin the
inter-procedual case(i.e., wherethe contrdling func-

tion is differert from the authaizing function) but, it

canna verify completemediatia for contolled oper

ationswithin an authaizing function. Our apprachto

intra-procedual analysisis describedn step4 below.

To automatethe anndation process, we again addel
codeto GCC to outpu the detailsof contrdled oper
ations,andtheninpu this information into a seriesof
PERLscripts.Thesescriptsaggrejatethe controlledop-
erationsto the function parametes, andaddchecked
gualifiersto thoseparametedeclaréions. Thetypein-
feren@ engne then propajatesthis up the call graph
raising an error if an unchecked local variable is
passedo achecked parameter

Figure5 shaws the subgaphstructue thatour analysis
searchedor in the AST. Accessto structurememtlers
is representeth the AST by COVPONENT _ REF noces.
Thesenodeshave two children the first is an expres-
sionwhich specifieghevarialle beingaccessedndthe
seconds a FlI ELD_DECL nodewhich specifieswhich
field is beingaccessedlheexpressionthatspecifiegshe
variable beingaccesseds a chainof | NDI RECT _REF
andADDR_EXPR nodescorrespadingto the C derefe-
ence(*) andaddress(&) operates, respectiely. At the

endof this chainis eithera VAR _DECL correspndirg
to a local variable,a PARM DECL correspondimg to a
paraneter or a COMPONENT_REF if we areaccessin@
membe of a structureembeldedin anotter structue.

Our analysissearchegor COVPONENT _REF nocesin
the AST. Whenoneis found, it determiresthe type of
the structurebeing accessedthe left subgrgh in Fig-
ure 5). If this is a contrdled type, then the expres-
sionsis accessingg memker of a controlledtype, and
the location information (file, function, and line num
ber) is repoted. We also output whetherthis opea-
tion is on alocal vaiiable (VAR _DECL) or a paraméer
(PARM DECL).

This information is then input to a seriesof PERL
scripts. Thesescripts scanthe GCC outpu for con-
trolled operadions on parametes (i.e., thosethat cortain
PARM DECL nockes). Using the location information
providedby GCC,they find thefundion declaratio, and
anndatethe parametewith thechecked qualifier.

3.2.3 Step3: Authorizations

In theay, ona an authoriation is performed on a
contrdled object, its qualified type is charged from
unchecked to checked. However, the current ver-
sionof CQUAL we useis flow-insensitve, i.e.,thequal-
ifier type of a variale remainsthe samethrowghott its
scope(e.g.,the scopeof a local variableis its definirg
block, typically the function). To getarouwnd this lim-
itation, following an authoization, we declarea new,
checked qualifiedvariablewith the samebasetypeas
the objectauthaized. All usesof theoriginal contrdled
variable following the authoization arereplacedby the
new variable. This processis automatedisinga PERL
scriptthatreplacesisesof the original varialle via sim-
ple patternmatchng.

The simple appoachof replaéng all usesof the vari-
ableon soure lines following the authaization makes
two assumptiosabou thefunction’s contrd-flow graph
that must be verified Firstly, that thereare no back
edgesfrom belov the authoization to above it. This
ensureghat the authoization is not inside a loop and
thatthereareno got o statementdelov the authoria-
tion thatjumpto above the authaization. Secondy, that
thereis no contiol-flow pathfrom above to below theau-
thorization thatdoes not execute the authoization. This
ensureshattheauthoizationis notinsidea conditioral
or switchstatement.

Theseassumptios areverified by addingcodeto GCC
to build thefunction’s contrd-flow graphfrom its regis-
tertransfedanguae (RTL) descriptio. Oncethegragh
is createdthe two propertiesdescrited above are veii-
fied. While the vastmajority of authoizationspossess
theseproperties,exceptins do exist. Fortunately the
numter of excepionsis small enoudp thatthey canbe
handed manually.

3.2.4 Step 4: Verifying Controlled Operations
Within Authorizing Functions

The analysis so far verifies mediation in the inter
procalural case but, it doesnot verify intra-piocedual
mediation Intra-procediralanalysiss requredto verify
thatcontrolledoperaionswithin anauthoizing function
occuraftertheauthoization.

Our appoachin step3 makesthis analysissimple. In
step3 we replace all usesof the contrdled object(co)
following theauthoizationwith anew variable(co’). An
intra-procedual cortrol-flow analysisverifiedthevalid-
ity of this replacenent. The intra-procedual analysis
redues to finding all contrdled opeationswithin the
function that operateon local variales (paranetersare
handed by the inter-procedurd analysis). If the local
variable is anintroducedvariable(co’) thenit is medi-
ated,othewiseawarningis geneated.

3.2.5 Step 5: Verifying Assignmentsto Checked
Objects

As describedn Section2, comgete mediationrequres
verification that a variableis not re-assignedetween
an authorizéion and a contolled operatim. From the
CQUAL perspectie, theright hard side(RHS)of anas-
signmenm takesoneof four forms:

. Anunchecked object.
. A checked object.

. A structue membe (e.g.dent ry- >d_i node).

A W N P

. An explicit type cast (e.g. (struct in-
ode*) 0xc2000000) . Sinceexplicit castsin the
Linux sourceohlviously don't include our quali-
fiers, CQUAL treatsthemasunqualified.

CQUAL correctly handesthefirst two casesastheob-
jects are qualified. If the left handside (LHS) of the

assignmenis checked thenCQUAL will raiseatype
violation for thefirst caseandallow thesecondcase.

In thethird case however, the structurememberhasno

type qualifiers to causetype violations. With no other

information, CQUAL will therefae infer thatthe RHS

hasthe samequalifiedtype asthe LHS, andrepot no

errois. As an exanple of how this can producefalse-

negatives,considetthe codefragmentbelow.

voi d func_a(struct inode * $checked
i node) ;

voi d func_b(struct inode * $checked

i node)

{
i node = dentry->d. node;

func_a(i node);

}

Thevariablei node in f unc_b hasalread passede-
curity checksinceit hasachecked qualifier However,
it is assignedavaluedent ry- >d_i node, befae be-
ing passedo f unc_a which expectsa checked in-
ode. Clearlywe would like CQUAL to raiseatypevio-
lation, sincedent r y- >d_i node is notanauthaized
variabe. However, accordng to CQUAL inferen@rule,
CQUAL will inferthatdent ry->i node ischecked
andallow thefunction call.

The solution is to treat dentry->d_inode as
an unautlorized local variade by typecastingit to
unchecked. At presentwve have notimplemertedthe
interim solutionandsothis soure of false-ngatives re-
mainsin our results.

The fourth casefails to repat type violations for the
sameeasonExplicit castdn theLinux kerrel donotin-
cludeourtype qualifiers,therebre, CQUAL inferstheir
type. To addessthis prodem, we wrote a PERL script
that scansthe sourcefor explicit casts,andinsertsthe
unchecked qualifier Any assignmenbf suchan ex-
pressiorto achecked variableor paraméerwill result
in atypeviolation.

3.2.6 Steps6 and 7: Determining and Verifying All
Inter -procedural CodePaths

CQUAL perfamsinterpiocedual inferencingto verify
thatbetweeraninitializing function andthe contiolling

function, thereexists a securitycheck. The contrdled
objectvariabe hasanunchecked qualifierwhenit's
definedin the initializing function Whenthe initializ-
ing function calls otherfunctions passinghe contrdled
variable as a paraneter the unchecked qualifier is
propagateddown the calling chain, until the authoiz-
ing functionis reachedatwhich point,anewv checked
variabe is definedand used after the security check
(Step4 in Section2). Whenthe authaizing function
calls other functions passedthe new checked vari-
able,the checked qualifieris againpropagatedalorg
the calling chain, until it reackesthe contrdling func-
tion. If acontrdling functionis reachedvithoutpassing
throwgh an authoizing function thenan error will be
raised,becausehe varialle will have anunchecked
type andthe contrdling function expectsa checked

type.

3.3 Complete Authorization

Verification of comgete authorizéion is basicallycar

ried out in the sameway as comgete mediatia, with

slight modificationto the lattice structurebasedon the
authaizationrequiranentinformation.Ratherthanhav-

ing a genericchecked type qualifier for all security
checkswe assigna type qualifierfor eachuniquesecu-
rity check. A cortrolled operatia that requres multi-

ple securitychecls will thenhave a type qudifier that
is a subclas®of the correspading type qualifiersof the
checksrequred. For instancejf a systemcontairs two
securitychecksdendedby C'1 andC2 respectiely, as-
sumingthatthe contolling functionf (fi | e) reqgures
both securitychecksto be perfamedon thefi | e ob-
ject, thenthetype qualifierlattice shouldbe:

partial order {
$checkedFor C1C2 < $checkedFor C1
$checkedFor C1C2 < $checkedFor C2
$checkedFor C1 < $unchecked
$checkedFor C2 < $unchecked

}

Figure6 shavs the graphic representatioof thelattice.
Functionf shouldexped the parameteto be of type
checkedFor C1C2.

Figure7 gives an exanple of a contrdled operationre-
quiring multiple authorizéionsidentifiedby theruntime
analysistool [6]. Threesecuritychecls are necessary
for the cortrolled opemtionunl i nk() on adirectoy
inode namely pernissionto traversetheinode,permis-
sion to write the inode, and pernission to unlink file

unchecked

/’

checkedForC1 checkedForC2

‘\/

checkedForC1C2

Figure6: A four-nock type qualifierlattice.

in the diredory. In the fundion protaype definition of
unl i nk() , we specify the authaization requrement
checkedf or ExecWi t eDi runl i nk. After these-
curity checks,a new variableCdi r that possessethe
right authaization requrementsreplacesthe old vari-
abledi r , andis passedo the controlling function.

4 Results

We ranthe experimentson Linux version2.4.9 with the
Septembe4th,2001LSM patch.We usedGCC versin
3.0.2andCQUAL version0.9for our staticanalysis.

We analyzd four subsystemsf Linux: thefile system
(includng ext2 physical file system),virtual memoy

managment,networking, andIPC. The analysisgene-

ated524typeerrors (CQUAL infererce conflicts). Be-
low we give a detailedanalysisof the type erras and
discusgechniquesin coping with falsepositives.

4.1 TypeError Categorization

We catagarize the unique type errorsinto threegroups
thatwe examne below.

4.1.1 Categay 1: InconsistentCheckingand Usage
of Contralled Object Variables

In this catgory, the variale thatis checledis not the
variable that is usedsubseqantly. The is, however,
somesortof mappirg betweerthechecledvarialde and
the usedvarialde (e.g. the usedvariabe is a field of
the checled variablg. Thelefore, it is easyto obtain
the checled variablefrom the passedsarialie andvice
versa.

/* inserted by our tool */
struct inode *
$checkedFor ExecWiteDirunlink Cdir;

/* code frominclude/linux/fs.h */
struct inode_operations {

int (*unlink) (struct inode *
$checkedFor ExecWi t eDi runl i nk,
struct dentry *);

}

/* code fromfs/nanmei.c */
int vfs_unlink(struct inode *dir,
struct dentry *dentry)

{

/* check for EXEC and WRI TE */
may_del ete(dir, dentry, 0);

/* check for UNLINK */
security_ops->i node_ops
->unlink(dir, dentry);

/* controlled operation */
dir->i _op->unlink(Cdir, dentry);

Figure7: An exanmple of contrdled operatia requiring
multiple authaizations. Note that error checkirg codeis
removedto make the codeeasierto follow.

Thesetype errors aresubjectto TOCTTOU [2] attacks,
because¢he mappng betweenrthe checled variableand
theusedvarialle mightchangeduring the couseof exe-
cution. Whetherthe vulnerability is exploitalle depeis
onwhettertheusercanmanipulatethemappirg without
specialprivilege. At leastoneof thetypeerrois thatwe
found is exploitable,aswe demorstratebelow.

Figure8 shavs the codepaththat contairs the type er-
ror. The codesequene shavs Linux implementation
of file locking via the f cnt| systemcall. In func-
tion sys_fcntl (), the variade fil p, which is a
pointerto the f i | e structureandis retrieved via the
file descripor f d, is checledby thesecurity_ops-
>file_ops->fcntl (filp,..) hodk. However
after the check, the file descriptorf d, insteadof the
checled variabe fi | p, is passedo the intermedate
function do_fcntl (fd,...) andeventwlly to the
worker function f cnt| _get | k(fd, ...) , wherethe
fil pisretrieved again with thegivenf d.

This doube retrieval of the fi |l e pointer createsa
race condtion and can be exploited as follows. A
user can have the security_ops->fil e_ops-
>fentl (fil p) authoization perfamedon a differ-
ent file to the onethat is evertually locked Figure 9
shavs the exploit.

Notethatalthoughstep(7) is written asa whole system
call, thereis actuallyonly oneline of C (anassignmet)

in step(7) thatneedgo comebetweer(6) and(8). Since
step(6) doesaget _user, theattacler cancauseheir
own progamto pagefault which enatbes step(7) to be
perfamedbefae (8).

Also notethat nonL.SM Linux is not vulnerable since
thevalidation in f cnt | _set | k is dore afterthe sec-
ondlookup. LSM is vulnerablebecause¢he only authe
rization that pratectsthe operationis perfamedbefae
thesecondookup.

As an exampe of how dangerousthis canbe, | ogi n
and su (PAM’d versions) both try to lock the file
/var/run/utnmp (world readake). i nsnod locks
ary modulesit loads.

A patchthatfixesthis problemwas postedto the LSM
mailing list [5].

Theremainingypeerrossin this cateyory involve kernel
datastructureghat canrot be easily modified by users
via systemcalls. As aresult,it is unclearwhetherthese
type errorscanleadto exploits. However, it certainy

compicates the code unrecessarilyand increaseshe

/* fromfs/fcntl.c */

Il ong sys_fcntl (unsigned int fd,
unsi gned int cnd,
unsi gned | ong arQ)

{
struct file * filp;
filp = fget(fd);
err = security_ops->file_ops
->fentl(filp, cnd, arg);
err = dofcntl (fd, cnd, arg, filp);
}

static |l ong

do_fcntl (unsigned int fd,
unsi gned int cnd,
unsi gned | ong arg,
struct file * filp) {

switch(cnd) {
case F_SETLK:

err = fentl setl k(fd, ...);

}

/* fromfs/locks.c */
fentl _getl k(fd, ...) {
struct file * filp;

filp = fget(fd);

/* operate on filp */

Figure8: Codepathfrom Linux 2.4.9containng anex-
ploitabletypeerrot

THREAD- A:

(1) fdl1 = open("nyfile", O RDVWR);

(2) fd2 = open("target _file", O _RDONLY);
(3) fentl (fdl, F_SETLK, F_WRLOCK);

KERNEL- A (do_fcntl):

(4) filp = fget(fdl);

(5) security_ops->file_ops
->fentl (fdl);

(6) fentl_setlk(fdi, cnd)

THREAD- B:

/* this closes fdl, dups fd2,
* and assigns it to fdl.

*/

(7) dup2(fd2, fdi1);

KERNEL- A (fcntl _setl k)

/* this filpis for the target
* file due to (7).

*/

(8) filp = fget (fdl)

(9) lock file

Figure 9: An exanple exploit.

chanceof racecondtions whenthe datastructues are
not properly synchionized which may resultin poten
tial exploits.

Here we presen a type error of this kind. Many se-
curity checksthat intendto protectthe inode structue
are performedon the denty datastructue. For exam:
ple,thefollowing codedoesthepermissiorcheckonthe
dent ry structure put does the“setattribute” operatia
onthei node structue.

/* fromfs/attr.c */

security_ops->i node_ops
->setattr(dentry, attr);

i node = dentry->d_i node;
i node_setattr(inode, attr);

It is alsoquitecomma in Linux to checkonthefi | e
datastructureandopemteonthei node datastructure

/[* frommfilemap.c */
struct page * fil emap_nopage(
struct vmarea_struct * area, ...)
{
struct file * $unchecked file
= area->vmfile;

page_cache_read(file, ...);
}
static inline int page_cache_read(
struct file * file, ...)
{
struct inode * $unchecked i node =
file->f_dentry->d_i node;
struct address_space *mapping =
i node- >i _mappi ng;
mappi ng- >a_ops- >r eadpage(file, page);
}

Figure10: An examge of unauhorizedaccess.

4.1.2 Categay 2: Controlled Objects Modified
Without Security Checks

This catagyory includesfunctiors thatmodify contrdled

objectswithout ary security checls. The coce seg-

ment in Figure 10 shovs an exanple of such cases.
The function f i | emap_nopage() is calledwhena
pagefault occus within an m’mappedregion. Since
thereis no checkonthefi | e objectwithin the func-

tion, its type is unchecked. It is then passedto

function page_cache_r ead(), which in turn calls
mappi ng- >a_ops- >r eadpage() , whichexpectsa
checledf i | e object.Thiscodepathshavs thatoncea

file is mappednto a processaddessspacethe process
canaccesshefile evenaftersecurityattributesof thefile

have chamged.

Sincethereis anLSM authoizationhookto verify read
accesdo afile on eachr ead call, this is inconsistent
with the current hooks. A discussionwith the LSM
commuity revealed that enfacementon eachr ead
is optioral and will only be usedfor files that are not
m’mapped. This hooks, aswell asthe onefor checkirg
accesonw i t e have beendoaumentedo clarify this
incorsisteng.

In othercasesfor exanple functioni put (), it seems
thatchecls arenot necessaryasthefunction is usedfor
refererce courting. In othercasessuchasinitialization

function cl ean_i node() for thei node datastruc-
ture, thereis no needfor securityprotetion, asmodfi-
cation of the datastructureis restrictedto zeroingand
initialization of the cortents. We call thesefunctions
“safe” functions and consicer type errorsinduced by
thesefunctiors asfalsepositives.

4.1.3 Categay 3: Kernel-Initiat ed Operations By-
passingSecurity Checks

This categgory includes operdions that are initiated in-
sidethekernel,insteadof going throudh systemcall in-
terfaces As such,they donotgothroudh thenormalse-
curity checkghatsystencallsgothroudh. As thekernel
developershave addedsomelimitations on the kernels
useof thesecommands,it is clearthatthey aresecurity
sensitve.

Oneexampe is thedo_cor edunp() function which
createsa corefile contaning in-memoryimageof the
running processwhencertainsignalsarecaughthatend
the process. A checkis dore whenthe corefile is cre-
ated however, subsequeat seeksaandwritesto thefile are
perfamedwithout securitychecls. This deviatesfrom
theusercasewhereevery | seek() orwrite() sys-
temcall requresacheck

Anothe exanple is the kswap daema. The kswapd
daema calls pr une_i cache(), which triesto sync
theinodesthatareto bereleasedTheinodesarereache

via a globalvarialde super _bl ocks, which contains
headdor variows inodelists.

4.2 TypeError Rates

CQUAL type erross can be examned in two ways:
sourcetype errorsand pathtype errors. A source type
error is a variable thatis usedin sucha way thata type
error is generated That is, the variabe is usedin an
unchecked statein at leastonefunction that expects
the variableto be checked. A pathtypeerror is a
unigwe call paththat leadsto a type error Figure 11
shavs an exanple pathtype erra. Note that for each
sourcetypeerrortheremaybemultiple pathtypeerras.

Tablel shavs boththesourceandpathtypeerra counts
for Linux kernelsubsystemdror sourcetypeerras, we
alsodisplaythe sourcetypeerror rate, definedto bethe
percemage of contrdled varigbles that are involved in

typeerras.

| Subsystems

| PathTypeError Counts| SourceTypeError Counts| SourceTypeError Rate(%) ||

File System 73 57 10%
Memory Management 18 17 9%
Networking 431 308 22%
IPC 2 2 3%

Tablel: Pathandsourcetypeerrors.

Table 1 shaws two interestingfacts: (1) over 500 path
typeerras arepresenin thekerneland(2) mostof the
typeerrorsoccu on onepath. Forturately for the LSM

community, mostthe type errorsidentified by the anal-
ysis arefalsepositives. However, examining this mary
typeerrois to find a few exploitable errois is not practi-
cal. Therefae, we needsecondry analysego remoe
obviousfalsepositives. Secongsincemosttypeserrors
associatene sourcewith oneerra path,soit may be
thatsomeof the sinksof the analysig(i.e., thefunctions
with contrdled opeations)maynotreallyrequire authe

rization.

4.3 ReducingFalsePositives

Giventhatthetoolsgeneatedabaut 500typeerrois,one
may concluce that the falsepositive rateis unmarage-
able, but we do not find this to be the case. A signifi-

cantnumter of the errois arein functiors in whichit is

easyto verify thatno securitycompranisesarepresent,
suchasthosecausedby “safe” functiors describedn

Section 4.1.2 “Safe” functiors arefalsely marled as
contrdling fundions becausehey modfy field mem-
bersof cortrolled datastructues. However, sincethe
modificatio is for the purpcse of referere courting or

initialization, the modfication doesnot requiresecurity
authaizations.

To identify whatthesefundionsare,we (slightly) mod
ified CQUAL to print theinferercing paththatleadsto
atypeerror Figurell shavs anexanple errorpathin-
volving a “safe” functioni put () . i put () decreases
theusagecountfor the giveninodeandreleasedt if the
usagecoun hits zero.

We thenrepat thelist of contrdling functions thatare
the sinks of the error paths. Becausehot contiolling
functions often contibute to multiple type errors, the
numter of contrdling fundions are muchsmallerthan
thenumbe of typeerrois. We thenmanually gothrough
thelist andidentify “safe” functions,which areremoved

i node. ii: 8383 $unchecked <= i node_p
inode.ii:8387 inode_p <= iput_arg0
i node.ii:8831 iput_arg0 <= $checked

Figure 11: An exanple error path endingin function
iput. Each line representsan inference accordingto the
CQUAL rules,e.g. thefirst line meanshatinodep is a super
classof the unchecled qualifiertype. Thefirst columnshows
the sourcefile andline numbe wheretheinferenceoccurs.

from thelist of cortrolling functions. Appendx A lists
the“safe” functionsweidentified. The CQUAL analysis
processis thenrestarted

It is painfu to manuallyidentify “safe” fundions. But
two reasongnale it a managabletask. First, thereare
only a few suchfunctions,eventhoud they accountd
for asignificantportionof thetypeerrors(Table2). Sec-
ondly, thesefunctionsarerelatively stableacrasskernel
releasesSowith a high praobability this taskonly needs
to be doneonceandtheresultscanbe reusedn future
kernelreleasesAfter the“safe” functionsareidentified
we only needto verify thatthey do not changein new
kernelreleasespr that the changesdo not affect their
intendel functionality.

Table 2 shaws the rediction in termsof both pathand
sourcetype errorsafter removing the “safe” functions
for the four kernelsubsystemsve tested. This reduces
the numker of type erras by around75%for both path
andsoure typeerras.

While this is a significantimproverent, other means
for remawving falsepositives arebeingexamired. First,
theremay be a significantnumker of other“safe” func-
tions. Secondthereare severd caseswvherea variable
is assignedrom anotter variable thatis checked. In
the file system,often the dent ry is authoized, then
thei node is assignedrom thedent ry- >d_i node.
Unfortunately CQUAL cannotyet reasonthat a field
extractedfrom a checked structue is alsochecked
(seeSection5.2). Third, we have notyetfully examinel
kernelinitiated pathsthatleadto typeerras.

Path Type Errors SourceTypeErrors
With “Safe” | Without“Safe” % With “Safe” | Without“Safe” %
Subsystems Functions Functions Reduction|| Functions Functions Reduction
File System 73 37 49% 57 31 45%
Memory Managment 18 14 22% 17 13 24%
Networking 431 73 83% 308 55 82%
IPC 2 2 0% 2 2 0%

Table2: Error rediction aftereliminating“safe” functions.

5 Discussion

Herewe exanine theeffectivenesof ourappr@achanda
possibleextersionto CQUAL thatmayimproveits util-

ity.

5.1 Effectivenesof Our Approach

Given the extersive natureof static analysis,we are
somevha surprisedhatwe have only found a couge of
exploitable CQUAL typeerrorsin ouranalysis.Someof
theanalysesrefairly new, sowe mayfind moreerras,
but thisis a bit of a surpise.

We are encouagedby one of the exploits that we did
find. The Categgory 1 TOCTTOU exploit is one that
would be difficult to find via runtime analysis. Typi-
cally, theassociatiorbetweerthefile descripto andthe
file would not chang, so bencimarksconsistingof be-
nign programswould not uncover this error With static
analysistheinconsisteng wasclear

Anothe aspectof the effectivenessof our apprachis

its easeof use,sincemostof the analysisproessis au-
tomated It is straightbrwardto apply the processto a

modifiedkerrel or new release®f thekernel.We tested
this by running the tool aganst Linux version 2.4.18.

After the kerrel soure treeis downloaded anda few

smallchangsareappliedto the Makefileandtwo source
files (seeSection3.21), therestof the processrequres
little manuwal effort (excep for identifying false posi-
tives). Thetime it takesto completethe processis also
quite reasomble. As a matterof fact, mostof thetime

is spenton kernelbuilds - our modifiedversionof GCC

collectsinformationon contolled typeswhile compiling

thesourcecode

Here we presentthe times for the major steps. These
numiersareonly intendel for a ballpak measuref the
effort nee@dto perfam analysis, sothey shoud not be

interpretedasrepiesentingheoptimizedperfamanceof
the tools. The testplatform wasa 667 MHz Pentium
[l machine with 128VIB of memay. It took abou 30
minutesto dothethreecleankernelbuilds usingour ex-
tendedGCC to geneate the annotatim information. It
shouldbepossibleo perfom all thisanalysisn oneker-
nel build, however. Most of thattime is contrituted by
theGCCbaclerd thatgeneratesachinecode(whereas
ourGCCanalysiscodeonly works onthe AST tree).We
compmrednormalkerrel build time with the build time
thathasour GCC analysiscodeenablel, andthe differ-
enceis ngyligible. Annatationof the sour@ by the Perl
scriptstook about1 minute, And finally, it took abaut
10 minutesfor CQUAL to perfam the analysis. With
theadditinal analysisoverheaddf a 15 minutesor less,
we expect that an optimized processcan be done suf-
ficiently quickly for thesetools to be usefulfor kernel
progammes.

5.2 PossibleCQUAL Extension

A possibleaxtensio to CQUAL would enableusto cor
rectly verify mediation betweenthe controlled opea-
tionsandall securitysensitve opaations. The CQUAL
teamhasaninterim solutionandarelooking into agen-
eralsolution[8]. We describethe problemhere.

Currently structuresn CQUAL aretreatedasa collec-
tion of fields,sothereis norelationshipbetweera struc-
ture and its memberfields. For example,in the code
below, var - >bar wouldnothavetypechecked even
thoudh var does. Sincestructuresareusedextensiely
in the kernd, we believe it would greatly enhaice the
tool if CQUAL suppats userdefina rulesfor inferring
thetypesof membeffieldsfrom thetypesof structurs.

struct foo {
int bar;

b

$checked struct foo *var;

For instance,for case3 in Section3.2.5 we would
wanttheinodethatis extractedfrom a checked den-
try to be checked aswell. In the casethat a den-
try is undhecled, the inode of the denty is implicitly
uncreckedaswell.

In addition with current version of CQUAL, all in-
stance®f a structuretype sharethe samequdifer type.
For exanple, if bar is qualifiedasachecked type,all
instance®f f oo wouldhaveachecked field for bar .
Whatwe wantis to assignqudifier typesto memberson
aperinstancebasis.

For verifying thatthe contrdled operatisms mediatethe
securitysensitve operatims, we would also want ary
structurefield accessethrough a checked typeto be
checked aswell. Thiswould enableusto propagate
authaizationsthrouwgh the structurecompldely. Then
we couldfind ary membes of a security-sensitie data
typethatis notaccessethrough a contwolled datatype.

Notethatthis apprachis notalwaysapgicabledepend-
ing on the semanticof the qualificatians. This would
notbeappropiatefor thetypeof qudifiers usedby Wag-
neret. al. [14].

6 RelatedWork

We areunavareof ary otherresearchwvork onstaticver-
ification of LSM. However, a nunber of staticanalysis
tools that were successfullyapgied to the securitydo-
main. Here,we comparetheirwork to ours.

Wagneret. al. [14] used CQUAL to identify format
string vulnembilities. Their work motivatedus to ap-
ply CQUAL to the morecomgicated prodem of LSM
verificatin. The maindifferencebetweenour usageof
CQUAL andtheirsliesin theanrotationprocess. In their
work, thetarget codefor annotatimsis well-definel and
hasa limited numter of occurences.Theefore,thean-
notatiors aredoneby hand.In ourcasethe scopeof an-
notatedcodeis muchlarger andthuswe employ GCC
to autonatically detecthe codeto beannotatedWe au-
tomatethe proessof markng aswell.

Engler et al enalkes extensionof GCC, called xgcg
to do sour@ analyses,which they refer to as meta-
compilaion [7, 1]. A rule languag, called metal is
usedto expressthe necessangnalysisanndationsin a
highe-level langwage. Sincethe rules matchmultiple
statementsthe amoun of annotatio effort is reduced

A variety of softwarebugs,including securityvulneia-
bilities, have beenfound by this tool. While it appears
that xgcc could be usedfor the static analysiswe per
form, xgccis notavailableatthis time, sowe areunalte
to evaluateit. A key differerce may be that metalrule
expressionswill have to be extendeal to referance GCC
AST structuesratherthanthe sourcedirectly.

Laroctelle et. al. [11] enhancedtheir LCLint tool to de-
tectlikely buffer overflows in C progams. The LCLint
tool basesstaticanalysis on anndationsof theprogiams
(or thelibraries) thatrestrictthe range of valuesarefer
encecanhave. Thestrengthof LCLint is thattheanaly
sisis flow-sensitve, andthusmoreaccurate Thedown-
side of the LCLint tool is its inflexibility. The current
LCLint tool is custonized to dealwith a setof prece-
fined software bugs. It appeas that extendng LCLint
for LSM verification would require a significantamount
of effort (i.e. addng new anndation types). CQUAL,

ontheotherhand is more extersibleby emplg/ing user

definedtype qualifierlattices.

Neculaet. al. [12] define the CCuredtype system.
CCuredleveragesthe fact that most C sourceis writ-

tenin a type-safemanrer to perfam a variety of static
checkson the sourceduring compilatian for thingslike

buffer overflows. For thingsthatcanrot bechecledstat-
ically, CCuredintrodwcesruntime checksinto the code.
This enablesertainkinds of erras to be caughtregard-

lessof whetter they canbe found staticallyor dynam-

cally. While we agreewith this apprachto verification

asyet the typesof errors that CCuredcanfind do not
includeauthoizationhookplacemat.

Koved et. al. [10] presentd a technigqie for compu-

ing the accesgights requirmentsof Java applicatios.
Their appr@achusesmorepowerful programning anal-
ysistechnques:acontext-sensitve interpracedual data
flow analysisis emplg/ed. Although the analysiss per

formed on Java code, it is coneivable that suchtech-
nigues canbeappliedto our problemdomainaswell.

7 Conclusion

This pager presenteé novel appoachto theverification
of LSM authoizationhod placemat usingCQUAL, a
type-lasedstatic analysis tool. With a simple CQUAL
lattice configuration and some simple GCC analysis,
we were able to verify compgete mediation of opea-
tions on key kerrel data structures. Our resultsre-
vealedsomepotentialsecurityvulnerabilitiesin the cur

rentLSM framework, oneof whichwe demastratedo
be exploitable. We further shavedthatgivenauthoria-
tion requrements CQUAL couldbeusedto verify com-
pleteauthoizationaswell. Our resultsdemastratethat
combinationsof concepually simpletools canbe pow-
erful enoud to carryoutfairly compex analyses.

Our main prodem is the eliminationof falsepositives.
Static analysisgererally errs on the conseretive side,
sowe initially hada large nunber of type errors. How-

ever, we have identifiedtechniqesfor secondar anal-
ysesthat can eliminate mary of thosefalse positives.
Extensios to CQUAL arenecessaryo eliminatesome
typesof falsepositives, but this is ongang work.

8 Acknowledgmerts

We would like to thank Jef Fosterfrom UC Berkeley
for his timely respolsesto our numeous questionson
CQUAL andfor hissuggestionsandadvicesontheearly
draftof this pape. We alsothanktheanorymous review-
ersfor theirvaluatle commaents.

References

[1] K. AshcraftandD. Engler Using programmeiwritten
compilerextensiongo catchsecurityholes. In Proceed-
ings of the IEEE Symposiunmon Securityand Privacy
2002 May 2002.

[2] M. BishopandM. Dilger. Checkingfor racecondtionsin
file accessesComputingSystems9(2):131-52, 1996.

[3] LSM Community Linux SecurityModule. Availableat
http://Ism.immunix.og.

[4] Wirex Corp. Immunix securitytechnology. Availableat
http://wwwimmunix.com/Immunix/inde.html.

[5] A Edwards. [PATCH] add lock hook to pre-
vent race, January 2002 Linux Security Modules
mailing list at http://mail.wire<.com/pipermail/linux-
security-modie/2002-Janary/0025D.html.

[6] A. Edwards,T. Jager, and X. Zhang. Verifying autho-
rizationhook placemenfor the Linux SecurityModules
framavork. TechnicalReport22254, IBM, December
2001.

[7] D. Englet B. Chelf, A. Chou,andS. Hallem. Checking
systemrulesusing system-spdfic, programmeiwritten
compilerextensions.In Proceedingof the Fourth Sym-
posiumon Opemtion SystenDesignandImplementation
(OSDI), October2000.

[8] J.Foster Personatommunication,January2002.

[9] J.Foster M. Fahndrich,andA. Aiken. A theoryof type
qualifiers. In ACM SIGPLANConfeence on Program-
ming Language Designand Implementatior(PLDI '99),
pagesl92-203, May 1999

[10] L. Koved, M. Pistoia, and A. Kershenbum. Access
rights analysisfor java. In Proceeding of the 17th
Annual ACM Confeence on Object-OrientedProgram-
ming Systemsl.anguages, and Applications(OOPSLA
2002) November2002. Acceptedfor publication.

[11] D. LarochelleandD. Evans. Staticaly detectinglikely
buffer overflow vulnerabilities. In Proceeding of the
Tenth USENIX Security Sympsium pages 177-190,
2001.

[12] G. C. Necula, S. McPeak,and W. Weimer CCured:
Type-saferetrofitting of legag/ code. In Proceedingf
the29th ACM Symposiunen Principlesof Programming
Langugies(POPL02) Januan2002.

[13] NSA. Security-EnhanagLinux (SELinux). Availableat
http://www.nsa.ge/selinux.

[14] U. ShankarK. Talwar, J. S. Foster andD. Wagner De-
tectingformat string vulnerabilities with type qualifiers.
In Proceedingsof the Tenth USENIX Security Sympo-
sium pages 201-216,2001

A “Safe” Functions List

| Subsystems | "Safe” Functions | SourceFiles

File System __put.super fs/superc
kill _super fs/superc
cleaninode fs/inode.c
iput fs/inode.c
file_operations.plb include/linux/fs.h
superoperations.writesuper include/linux/fs.h
superoperations.reathode include/linux/fs.h
superoperations.reathode2 include/linux/fs.h
superoperations.putnode include/linux/fs.h
superoperations.cleainode include/linux/fs.h
superoperations.pusuper include/linux/fs.h
block device_operations.release include/linux/fs.h
file_operations.release include/linux/fs.h

Memary Management|| shmemrecalcinode mm/shmem.c
shmemgetinode mm/shmem.c
oomckill _task mm/oomkill.c

Networking __skb.unlink include/linux/skhuff.h
__skhinsert include/linux/skhff.h ||
skh.resene include/linux/skluff.h

