
USENIX Association

Proceedings of the
11th USENIX Security

Symposium

San Francisco, California, USA
August 5-9, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



SSLACC: A Clustered SSL Accelerator

Eric Rescorla Adam Cain Brian Korver
RTFM, Inc. Nokia, Inc. Xythos Software
ekr@rtfm.com acain@cips.nokia.com briank@xythos.com

Abstract

We describe a clustered SSL accelerator. Although cur-
rent SSL acceleration solutions [1, 2] often employ mul-
tiple nodes in parallel (or in series [3]) for improved
performance and resistance to single failures, the fail-
ure of any node results in all client connections to that
node being torn down. Our implementation goes
beyond this to provide robustness against node failures
at the connection level—any proper subset of the nodes
in the cluster can fail and no effect (other than possibly
performance degradation) will be observed. This result
is accomplished by a novel combination of tight control
of TCP [4] behavior and state-sharing between cluster
members. Unlike many high availability clustering sys-
tems, ours uses commodity hardware.

1 Introduction

Secure Sockets Layer (SSL) [5, 6] and its successor
Transport Layer Security (TLS) [7] are the dominant
approaches to web security. Both protocols provide a
secure channel over which ordinary web (HTTP) [8]
traffic can be transmitted. HTTP over SSL (HTTPS) [9]
is widely used to protect confidential information in
transit between the client and server.

However, SSL is dramatically more CPU intensive
than ordinary TCP communication [10, 11, 12, 13] and
the addition of SSL to unsecure web servers can create
unacceptable performance consequences on the web
server. The dominant performance cost is the RSA
operation in the SSL handshake. One common
approach to reducing this cost is to offload the RSA
operations to a cryptographic coprocessor which is
installed on the server machine.

Another approach has been to create standalone
cryptographic accelerators. These accelerators are net-
work devices that sit between the client and server.
They accept HTTPS connections, decrypt them, and
make HTTP connections to the backend web server.
One key advantage of standalone accelerators is that
scaling can be relatively simple: more than one box can
be purchased, allowing the traffic to be load-balanced
across the accelerators.

In conventional configurations, having multiple
standalone accelerators provides improved performance

and a form of high availability. If a giv en accelerator
fails, other accelerators may be available to handle the
load. However, these configurations only offer high
availability in a bulk sense: every connection that is ter-
minated on a node that fails is lost.

This paper describes the design and implementa-
tion of a clustered SSL accelerator which we have
named SSLACC. The state of each SSL connection is
shared across the entire cluster. When any node fails,
the remaining nodes are able to take over all connec-
tions that terminated on that node with no interruption
in service. We refer to this feature as active session
failover.

2 SSL Accelerators

Essentially, an SSL accelerator is a proxy. It accepts
SSL connections on the chosen port(s) and then for-
wards the decrypted traffic to the corresponding port(s)
on the web server. The protocol being carried on top of
SSL is generally HTTP, but could actually be any-
thing—in practice, most accelerators do not examine
the plaintext before forwarding it.

Conventionally the accelerator is placed in an
inline configuration between the web client and web
server. Connections are accepted on the red/exterior
interface and the corresponding cleartext connections
are made on the black/interior interface, as shown in
Figure 1. Typically the accelerator behaves like a
bridge, except for the connections that it is supposed to
decrypt. It can also be configured as a router in which
case the topology of the server’s network will need to
be modified to place the accelerator in the client-server
route. In either case the accelerator impersonates the
client to the server and the server to the client, so the
client believes it’s directly connected to the server and
vice-versa. It is also possible to configure an accelerator
in a "one-armed" configuration in which both client and
server talk to the same interface on the device.

2.1 Multiple Accelerators

In large installations, it is common practice to use mul-
tiple accelerators in parallel or series. This provides two
primary benefits. First, it allows the administrator to
add acceleration capacity as needed without replacing



to Internet Accelerator
HTTP/SSL

Server
HTTP

red/exterior

network

black/interior

network

Figure 1 An inline accelerator

infrastructure components. Since HTTPS service is
eminently scalable, one can simply add another box to
the array and allow it to handle its share of the connec-
tions. The second benefit is reliability. Such arrays can
be configured so that failures of a single unit are auto-
matically detected and new connections are automati-
cally allocated to the remaining nodes. However, when
such unit failures occur, active connections are lost and
the user sees an error.

When an error occurs in an HTTP transaction the
user can simply resubmit the request. Although this is
technically possible with HTTPS as well, the circum-
stances surrounding HTTPS transactions make HTTPS
failures a more serious human factors problem. The
most common use of HTTPS is for form submission of
sensitive information, such as payment authorization. If
an error occurs during such a transaction, the user
doesn’t know whether the transaction went through
before the failure occurred, and thus may be unwilling
to re-submit the transaction for fear of being billed
twice. SSLACC addresses this problem by providing
active session failover. When a node fails, all its state
and connections are automatically assumed by an oper-
ational node. The transaction completes and the user is
unaware that an error occurred at all.

3 AlchemyOS
Our implementation of SSL clustering was performed
on top of AlchemyOS [14], a FreeBSD-based kernel
specifically designed for clustering on commodity hard-
ware. The original use of AlchemyOS was as a clus-
tered VPN gateway. In AlchemyOS, unlike many clus-
tering systems [15], each cluster member operates inde-
pendently rather than being a clone slaved to another
member, as in NCAPS [16]. Additionally, the only
communication between cluster nodes is via the net-
work—there is no shared memory bus. AlchemyOS
provides support for cluster maintenance, member
join/loss detection (via periodic keepalives), and clus-
terable TCP connections.

An AlchemyOS cluster is simply an appropriately
configured set of machines on the same network. All

machines have their external interfaces on one wire and
their internal interfaces on another wire. Each machine
thus has a pair of IP addresses, one internal and one
external. The cluster itself also has internal and external
virtual IP and Ethernet MAC addresses.

Communication between the cluster members takes
place via UDP packets on port 4320. These packets
may be unicast, multicast, or broadcast, depending on
the situation. Intra-cluster communication is protected
via a Message Authentication Code (MAC) and
optional encryption. For added security, state updates
are performed only on the internal interface, which is
assumed to be on the physically secure (black) network.
Cluster keepalives, however, are transmitted on both
interfaces in order to detect connectivity failures. Each
cluster has one distinguished node called the master.
The master’s primary task is to assign workload to indi-
vidual cluster members.

The SSL accelerator engine is implemented as an
application on top of the AlchemyOS kernel. For mini-
mal memory consumption, any giv en node runs only
one instance of the application with a single thread of
control, using callbacks to service I/O and crypto-
graphic hardware. This architecture avoids having to
consume stack space for each active connection.

Although AlchemyOS provides services that allow
applications to cluster state, the applications are solely
responsible for the contents of the clustering messages
and sending them at the appropriate times. For instance,
to move operation of a TCP connection to another
member, the clustered application must first take a
snapshot of the socket state, communicate that state to
the other members of the cluster, and finally reinstanti-
ate the state on the new cluster member. That state must
be sufficient to allow the new cluster member to resume
operation without service interruption.

3.1 Cluster State

It’s most helpful to think in terms of two kinds of state:
working resources and mirrored state. If a member is
handling a given TCP connection it will necessarily
have various working resources allocated to it, such as
sockets, memory buffers, etc. However, since any other
member must be prepared to take over for that member
at any time, each of the other members must possess
mirrored state—passive state sufficient to recreate the
working resources if the mirror needs to take over.

A primary concern is to keep cluster updates as
small as possible. Updates are transmitted over the
same wire as the network traffic we’re processing and
therefore the simple strategy of multicasting the client
data to every node in the cluster would reduce the



available network bandwidth by at least half, in addition
to introducing latency. Instead we need to carefully
send only the minimal amount of state to allow the
other member to reproduce the original state upon
failover.

3.2 Work Assignment

Each cluster member listens on the cluster IP address,
thus each node sees every packet addressed to the clus-
ter. Howev er, AlchemyOS’s load balancing scheme
involves dividing the requisite packet handling among
the different nodes in the cluster. AlchemyOS’s IP stack
automatically arranges to discard any packet which
actually belongs to another member.

When a packet arrives destined for the cluster the
stack automatically computes a hash function on the
{source address, source port, destination address, desti-
nation port} 4-tuple. The function maps each packet
into one of a small number (we use 1024) of buck ets. If
the resulting bucket is assigned to this member then the
packet is handled. Otherwise it is discarded. Note that
since only the address pair is used to compute the
bucket, all packets corresponding to a given TCP con-
nection fall into the same bucket.

The cluster master is responsible for ensuring that
each bucket is assigned to some cluster member. This
means assigning buckets when they first become active,
moving buckets to rebalance cluster load and reassign-
ing buckets owned by a dead member.

4 A Clustered TCP Relay

The goal of this project was to produce a clustered SSL
accelerator providing active session failover. As often
happens, new communications security features require
modifications to the underlying communications stack.
Currently available commodity-hardware clustering
technologies such as Windows 2000 Clustering Tech-
nologies (Wolfpack) [17] and MOSIX [18] don’t sup-
port active failover of TCP connections for any applica-
tion protocol. Therefore, in order to build a clustered
SSL relay we first had to figure out how to build a clus-
tered TCP system. To illustrate these techniques we first
present a somewhat simplified TCP relay. Such a relay
is isomorphic to our SSL relay except that it simply
copies the data between client and server without trans-
forming it in any way. Once the basics of active session
failover are clearly understood we can describe the real
work of SSLACC, clustering SSL.

This work has a number of similar features to
Fault-Tolerant TCP (FT-TCP) [19], which was devel-

oped independently at roughly the same time as
SSLACC. However, there are a number of significant
differences stemming from SSLACC’s implementation
as a relay as opposed to a server (as in FT-TCP). This
difference allows us to exploit the inherent fault-toler-
ance of TCP to minimize clustering overhead in several
ways that are not practical for FT-TCP. Moreover, FT-
TCP requires that the application itself (as opposed to
the TCP stack) be idempotent. When a failure occurs,
FT-TCP restarts the application from scratch and
replays all data from the client. Since SSL is typically
used for e-commerce transactions, which of course have
side effects, FT-TCP’s strategy would frequently result
in multiple orders and billing. Theoretically, it would be
possible to make the Web server idempotent, but this
would require rewriting all the back-end applications,
which isn’t feasible.

Additionally, SSL itself is hard to make idempo-
tent: the server generates random numbers for each con-
nection, so even a perfect replay of the client’s data will
generate different data from the server. An FT-TCP-like
layer replaying the client data to the SSL server will
result in the SSL implementations on client and server
having different Ser verRandom values and thus cause
handshake failures. To avoid requiring idempotence,
SSLACC employs application-level clustering of the
SSL traffic, which also requires a generally different
TCP clustering strategy from FT-TCP. In the interest of
clarity, we provide a complete description of SSLACC’s
TCP clustering strategy here.

4.1 The Zeroth Law of Clustering

The most basic rule that a fully reliable clustered sys-
tem must follow is that any peer with which it is com-
municating must not be able to tell if a failover occurs.
Whenever a node takes over a connection from another
node, it must generate traffic which could plausibly
have been generated by the original handler. Thus, we
have the Zeroth Law of Clustering: all cluster nodes
must generate the same data for any given connection.
Note that the Zeroth Law does not require that timing
and TCP framing be the same, since such variability
occurs during normal network behavior. During
failovers it’s quite common to see delays as well as
shrinking windows and reframing. In fact, it’s precisely
such effects that lead to the Zeroth Law: a peer might
receive part of a data record from one node and part
from another. The record contents must be identical or
decryption will fail. The requirement to obey the Zeroth
Law is sometimes referred to as the output commit
problem [20].



4.2 Ser ver Accept

Figure 2 shows the TCP handshake and our first race
condition. If a relay were to crash after sending the
SYN/ACK, the backup relay would respond to the
client’s ACK with an RST, as shown in Figure 2. This is
the behavior observed with redundant accelerators that
lack active session failover.

Client Relay

SYN

SYN/ACK

relay fails

Backup Relay

ACK

RST

Figure 2 Failover during client connect

The naive solution to this problem is to cluster the
receipt of the initial SYN, as is done in FT-TCP. How-
ev er, this requires creating state on each cluster node
upon receipt of any SYN, thus magnifying the effect of
SYN-flood [21] denial of service attacks. Instead we
use a fingered ACK technique: bits 3-20 of the TCP
sequence number are replaced with a MAC of the
address-port 4-tuple and a secret shared among the
nodes. The client ACK echos back this sequence num-
ber, so when the client ACK segment comes in after a
failover we can check if the fingerprint matches the
ACK value in the packet and if so create the socket in
ESTABLISHED state. This interaction is shown in Fig-
ure 3. Dashed lines indicate messages sent between the
mirror and either client or server after a failure.

Client Relay

SYN

Fingered SYN/ACK

Relay fails

Mirror

Fingered ACK

ACK

Figure 3 Failover with a fingered ACK

4.3 Client Connect

Once the connection from the client has been accepted,
the relay must connect to the server. In order to mini-
mize state sharing between cluster members, both the
client and server sides of a given connection must be
handled by the same relay. Specifically, if the client and
server sides of a connection were handled by different
relays, it would be necessary for those nodes to forward
all content to each other.

If we complete the three-way handshake before
checkpointing the socket, then if the relay crashes
before clustering the update the connection will be left
dangling on the server. Thus, we must cluster the state
before transmitting the ACK to the server. The correct
behavior is shown in Figure 4.

Relay Server

SYN

SYN/ACK

Mirror

Update

Update ACK

ACK

Figure 4 Clustered connect

There are two interesting locations where crashes might
occur. (1) the crash occurs before the cluster update is
received (2) the crash occurs after the cluster update has
been received. Note that the case where it has been
transmitted but not received is the same as the one
where it hasn’t been transmitted yet.

(1) In the case where the crash occurs before the
update is received, the mirror will have no knowledge
of the socket when it comes online. If it tries to initiate
a new connection with the server the server will
respond with an RST because the TCP initial sequence
number (ISN) will be different. In order to fix this prob-
lem the mirror must use the same ISN as the relay did.
To arrange this we use the same ISN as the client used.
Thus, when the first packet of data from the client
arrives with its fingered ACK, the accept() cycle
will start over again cleanly as described above. (Note
that we can derive the ISN from the sequence number
of the first packet from the client. TCP slow start guar-
antees us that the window will only allow one outstand-
ing packet at this point.) Figure 5 shows the sequence of
ev ents.



Client Relay

SYN

Fingered SYN/ACK

Server

SYN

SYN/ACK

Relay fails

Mirror

Fingered ACK

SYN

SYN/ACK

ACK

Figure 5 Server connect with fingered ACK

(2) If the crash occurs after the update is received then
the mirror will come online with the appropriate mir-
rored state. It will resurrect the sockets connected to the
client and the server. When the server retransmits its
SYN/ACK the relay will transmit the ACK immedi-
ately. Since the state update has already occurred there
is no need to do it again before transmitting the ACK to
the server.

4.4 The First Law of Clustering

This example illustrates the first law of clustering: Clus-
ter then commit. The relay must always cluster a state
before it commits to it by sending network traffic. In the
case of the relay connecting to the server, the relay
needs to cluster the new ACKed state before commit-
ting to it by transmitting the ACK to the server. Con-
sider what happens if we transmit the ACK first, as
shown in Figure 6. If a failure then occurs before the
new state is clustered the node which takes over will not
know about the new socket. Any attempt by the server
to transmit data on the newly established connection
will produce an RST by the mirror.

4.5 Port number selection

Most TCP stacks select port numbers for active opens
using a counter. This will not do for our environment.
Because bucket assignment depends on the port num-
ber, this technique would often result in the relay-server
connection falling into a different bucket from the
client-relay connection. This would require us to

somehow handle client→server transmission on a sepa-
rate node from server→client transmission, which
would be extraordinarily difficult because it would
require splitting the TCP stack. Instead, we arrange for
the relay-server connection to use a port carefully cho-
sen to ensure that both connections fall into the same
bucket.

Relay Server

SYN

SYN/ACK

ACK

Data

Relay fails

Mirror

Data

RST

Figure 6 Failure when committing before clustering

4.6 ACK Handling

Note that withholding the ACK until the cluster update
has been received requires modifications to the TCP
stack. Ordinarily the ACK pointer is incremented as
soon as data is received. In order to suppress ACKs we
need to separate the ACK pointer from the rcv_nxt
value (representing both the sequence number of next
byte to be read and the ACK pointer). We add a new
element in the protocol control block (PCB),
rcv_appack. This value can be controlled by an API
call. However, simply making this modification alone
creates pathological behavior. When an ordinary TCP
stack receives an in-order packet it generates an ACK
(possibly delayed up to 200 ms by the delayed ACK
timer). However, if we hav en’t incremented the ACK
pointer value then generating an ACK may cause the
sender to go into congestion control mode (upon receipt
of 3 duplicate ACKs). In order to avoid this we need to
not just tinker with the ACK pointer but actually sup-
press naked ACKs until the application allows them.
This strategy resembles a combination of FT-TCP’s
Lazy and Eager ACK strategies.

Handling ACKs from the peer can also be tricky.
Imagine that a relay transmits a given data segment and
then crashes. The peer will transmit an ACK for that
segment. If the failover happens at the wrong time the
mirror will receive the ACK. There are two potential
problems here. First, the ACK might arrive before the



socket is reinstantiated on the relay. Under normal cir-
cumstances the mirror would generate an RST when
receiving an ACK for an unknown connection but this
would terminate the connection. Therefore, this sort of
RST needs to be suppressed for twice the maximum seg-
ment lifetime (2MSL) after a failover (or until all the
relevant sockets have been restored).

The second problem is the receipt of a forward
ACK—an ACK which is in advance of the snd_nxt
value (containing the sequence number of the next byte
to be written) on the restored mirror. Ordinarily, such
ACKs are protocol errors and are ignored but that can
create problems here. This can happen if a relay trans-
mits data and then crashes. Consider the case where the
ACK is for two segments. The restored mirror’s win-
dow may only allow one segment to be transmitted. In
that case the system will deadlock. The mirror will
retransmit the segment and then ignore the forward
ACK sent by the peer. The correct behavior in this situ-
ation is to discard application writes until snd_nxt
equals the new ACK value sent by the peer.

4.7 Contents of State Updates
AlchemyOS provides a TCP_MOVABLE_STATE argu-
ment to getsockopt() which permits the program-
mer to get a pickled version of the current TCP connec-
tion state. The resulting state can be transmitted across
the wire to another node where setsockopt() is
used to impose it on another socket. This procedure is
all that is required to move a quiescent socket (one
where no data or ACKs are outstanding) from node to
node. However because of the First Law, we will often
want to checkpoint sockets in non-quiescent states—
indeed the state we’re about to enter. In such cases the
getsockopt() will return the old state, which then
must be modified to contain the new state.

In various cases (which we’ll see later in this
paper) the application needs to manually control all four
sequence numbers. Thus, we can specify any giv en
update (containing both client-side and server-side con-
nection states) by the 4-tuple (client_rcv_nxt,
client_snd_nxt, server_rcv_nxt, server_snd_nxt). We
label the initial values for each member of the tuple—
and hence the initial sequence numbers as:
(ISNcr, ISNrc, ISN sr, ISNrs). As a notational convenience,
we refer to the state at the beginning of any giv en trans-
action as (Scr,Src,S sr,Srs) or simply S.

4.8 Data transmission

Once the connections have been established and clus-
tered, we’re ready to transfer data. Since the TCP relay
is inherently symmetrical we only need to cover the

case where data is being written in one direction. With-
out loss of generality we’ll illustrate client to server
data transmission.

Client Server

Data

ACK

Figure 7 Normal client to server write

We can cluster this communication with a single cluster
checkpoint after the server ACKs the data. Once the
update has been ACKed the relay sends the ACK to the
client, as shown in Figure 8. If the data is d bytes long
the new state will be S + (d , 0, 0, d). Knowing when to
send the update requires the ability to determine when
data has been ACKed by the peer. AlchemyOS provides
a callback for this purpose. Note that this cluster check-
point contains only sequence numbers, not data.
Because we are implementing a relay, once the data has
been acknowledged by the server we can simply discard
it. The mirror never sees the application protocol data.
This differs from FT-TCP where all the data transmitted
by the client must be transmitted over the network and
retained by the external data store.

Client Relay

Data d

(1)

Server

Data d

(2)

ACK d

(3)

Mirror

State S +(d,0,0,d)

(4)
ACK

(5)
ACK d

Figure 8 Clustered client to server write

Let’s examine what happens if the relay fails at various
points in this interaction. There are five points where
the relay may fail (numbered in italics in Figure 8).



1. Right after the relay has received the client data

2. Right after the server has received the client data
but before the server has sent the ACK

3. Right after the relay has received the server ACK

4. Right after the relay has sent a cluster update to the
mirrors but before this update has been ACKed

5. Right after the relay has received the ACK for the
cluster update but before the relay has sent the
ACK to the client

We’ll take each of these cases in sequence:

(1) This case is indistinguishable from the situation in
which the packet was lost on the wire. When the mirror
comes online it is still in state S. The client retransmits
the data and the mirror handles it as if it were being sent
for the first time, as shown in Figure 9.

Client Relay

Data d

Relay fails

Mirror

Retransmit d

Server

Data d

ACK d

ACK d

Figure 9 Failure after first data write

(2,3) From the client’s perspective, cases (2) and (3)
behave identically. We show case (2) in Figure 10.
Since we still haven’t hit the cluster checkpoint the
client-relay interaction is the same as before; the client
retransmits and the relay writes the data to the server.
To the server, this merely looks like a retransmit, which
might happen under normal circumstances if the
server’s ACK were lost. Case (3) is identical except that
there is an ACK from the server.

(4,5) Finally, consider what happens if the relay fails
after clustering the state. This can happen before the
relay receives the update ACK (4) or after (5). The
effect is the same. The simplest possibility, as shown in
Figure 11 is that the client retransmits the data. How-
ev er, this time the mirror’s TCP state already has its
ACK pointer at Scr + d and so it drops the client data on
the floor and sends an immediate ACK for Scr + d bytes.
Although this interaction works fine, it forces us to wait
for the 500 ms TCP retransmit timer. In order to reduce
latency a better approach is for the mirror to send a sin-
gle ACK when it takes over the connection.

Client Relay

Data

Server

Data

Relay fails

Mirror

Retransmit

Data

ACK

ACK

Figure 10 Failure after first write to server

Client Relay

Data d

Server

Data d

ACK d

Mirror

Update S + (d,0,0,d)

Update ACK

Relay fails

Retransmit d

ACK d

Figure 11 Failure after cluster update

There is a common error that people make—indeed that
we made—when they attempt to cluster this interaction.
In an effort to reduce the latency introduced by the clus-
ter update, it initially seems reasonable to interleave the
cluster update and the data write, as shown in Figure
12.

Client Relay

Data d

Server

Data d

Mirror

State S + (d,0,0,d)

Update ACK

ACK d
ACK d

Figure 12 An incorrectly clustered client to server write



The problem with this interaction becomes apparent if
you consider the possibility that the relay’s transmission
to the server gets dropped for some reason. If the relay
fails after the cluster update has succeeded then the
relay will have state S + (d , 0, 0, d) but the server will
have state S. At the best this will create deadlock and at
the worst an ACK storm when the server sends dupli-
cate ACKs to correct the relay’s sequence number.

There are a number of subtle points worth consid-
ering before we leave the issue of data transmission. (1)
TCP ACKs from the server are not 1 to 1 with reads
from the client. Thus, it’s necessary to keep track of the
amount of data being ACKed, not just the fact that an
ACK occurred, in order to know how much data to
ACK to the client. (2) It’s tempting to treat each ACK
as if it is relative to the current ACK pointer state and
therefore cluster the current ACK pointer plus the
ACKed data. However, since the ACK pointer in the
TCP state can only be incremented after an update is
ACKed there is a race condition here as well. Consider
the sequence of events shown in Figure 13 and
described below.

ServerRelay

(1) ACK (d)
S

Mirror

(2) Update ACK (S+d) S

(3) ACK (e)
S

(4) Update 1: ACK (S+e)
S

(5) Update 1 ACKed
S + d

(6) Update 2 ACKed

Relay ACK ptr

S + d + e

Figure 13 An ACK race condition

1. Receive Data ACK 1 from server for d bytes.

2. Cluster update 1 for S + d bytes

3. Receive Data ACK 2 from server for e bytes.

4. Cluster update 2 for S + e bytes

5. Receive ACK for update 1. Increment ACK pointer
by d to S + d .

6. Receive ACK for update 2. Increment ACK pointer
by e to S + d + e.

Once the updates are ACKed the actual ACK pointer
will have been incremented by d + e bytes but the mir-
rors will have incremented it only by e bytes, because
the second cluster update was sent without taking into
account the first write of d bytes. This happened
because the first update had not yet been ACKed before

the second update was transmitted. If the ACK for
Update 1 were received before Data ACK 1, then the
result would be correct. In order to avoid this race con-
dition it is best to work in absolute sequence numbers
and maintain the value of the last clustered sequence
number as well as the current sequence number. Thus,
in step 4 we would cluster the update for S + d + e
bytes.

Another subtle aspect of clustering application data
pertains to partial ACKs from the server. Consider what
happens if the client transmits x bytes and the server
ACKs y < x bytes. When the relay clusters the ACK,
rcv_nxtcr > rcv_appackcr with the difference being
x − y. If a failover occurs after this update, the client
will retransmit starting from rcv_appackcr . Since we do
not cluster buffered data, the mirror needs to be able to
read this transmission. Accordingly, when we perform
cluster updates we set rcv_nxt = rcv_appack in the
update, allowing the mirror to process the retransmitted
data.

RELAY_WAIT

DATA_RCVD DATA_ACKED UPD_ACKED

sen
d: d

ata

recv: ACK

send: ACK

recv: data recv: update ACK

send: cluster update

MIRROR_WAIT

Relay

Mirror

UPDATE_RCVD

recv: update

cluster update

update ACKed

Figure 14 Data transmission state machine

Although we have presented the sequence of events in a
linear fashion, it’s important to remember that in prac-
tice, data transmission, cluster updates and ACK han-
dling happen in parallel, and the relay needs to be able
to handle all three kinds of events at once. Figure 14
shows the state machines for the active relay and the
mirror. The top half of the figure shows the relay state
machine and the bottom half the mirror state machine.
Solid lines indicate state transitions and their associated
messages and italics indicate messages between relay
and mirror. The basic state transition path for the active



relay is from RELAY_WAIT through DATA_RCVD
when the relay reads data and sends it to the peer; then
DATA_ACKED when that transmission is ACKed and
the ACK is clustered; then through UPDATE_ACKED
when the update itself is ACKed and the relay finally
ACKs the original data transmission to the client.

Each node only has one state in which it waits for
network data (RELAY_WAIT on the relay and MIR-
ROR_WAIT on the mirror). In every other state, the
node simply transmits data and then returns to the read
state. This allows the relay to process events of one type
while waiting for events of another type, thus creating
implicit wait states that are not shown in Figure 14. For
instance, the relay might simultaneously be waiting for
an ACK for one data packet and an ACK for a cluster
update. This parallelism allows TCP to operate cor-
rectly in the face of clustering by continuing to allow
data to flow even when previous segments are un-
ACKed. Note, however, that the requirement to cluster
update data ACKs before they are propagated to the
sender gives rise to a new form of deadlock: if a mirror
stops responding to cluster updates, the sender will
ev entually fill the entire TCP window and stop transmit-
ting. This fact makes ACKing cluster updates a critical
operating system function. A node which fails entirely
does not bring down the cluster but one which appears
to be functioning but does not ACK updates will dead-
lock every connection in the cluster.

4.9 The Second Law of Clustering

We now hav e our basic technique for reducing cluster
update size. Rather than cluster the data itself we force
the client to buffer it for us by withholding the ACK
until the data has been acknowledged by the server.
Failovers therefore result in TCP retransmits. In
essence, device failures look like intermittent network
lossage of the kind that TCP is already designed to be
robust in the face of. Thus, it’s safe to transmit the data
to the server without clustering it, since the client will
retransmit in the case of failure. This illustrates the Sec-
ond Law of Clustering: It’s safe to transmit unclustered
data as long as you can reproduce it.

4.10 Closure

Consider the sequence of events required to close a con-
nection. For reference, we show the ordinary TCP close
sequence in Figure 15. Note that although TCP allows a
half-close where one side sends the FIN and the other
side transmits data, SSL forbids half-close and so we

decided to omit it from our TCP clustering implementa-
tion.

Client Server

FIN

ACK

FIN

ACK

Figure 15 TCP close

The closure sequence has to accomplish two things:

1. Destroy the relay state on the mirrors

2. Close the connections on the relay

The simplest sequence that will accomplish this result is
shown in Figure 16 (with the client and server FINs
omitted for clarity). The relay sends an update indicat-
ing that it’s about to close. Once that update has been
ACKed the relay calls shutdown() on both sockets.
Once the FINs have been ACKed the relay calls
close(). This approach works reasonably well but is
not ideal. One small problem is that if the relay han-
dling the connection leaves the cluster or the bucket is
reassigned before a peer FIN is received, the socket can
get stuck in FIN_WAIT_2 until the FIN_WAIT_2
timer expires. To prevent this we turn on TCP
keepalives with a timer of 1 minute before we call
close(). When the keepalive timer fires and no
response is received the socket is automatically dis-
carded.

Relay Mirror

Destroy

Mirror destroys mirrored state

ACK

Client

FIN

Server

FIN

ACK
ACK

Relay calls close

Figure 16 A clustered close



Another problem is that a failover after shutdown()
has been called but before the TCP closure handshake
has been completed results in RSTs when a peer sends
its ACKs; since the mirrored state has been removed
from the mirror, the mirror has no knowledge of the
connection and simply sends an RST. Fixing this prob-
lem requires more cluster updates to indicate the initia-
tion of the close and to indicate the success of the close.
We judged that the performance consequences were not
worth the modest improvement in TCP friendliness for
what we considered an unlikely condition.

5 A Clustered SSL Relay

Clustering SSL encompasses roughly the same set of
tasks as clustering TCP but is complicated by a number
of factors:

• We first need to perform the SSL handshake. The
handshake inv olves interaction with the client only
but it all needs to be clustered.

• SSL data is structured in a record format whereas
the data we were pushing over TCP is essentially
freeform. This creates difficulty both sending and
receiving.

• We need to cluster cryptographic keying material
both on a global and a per-connection basis.

• The SSL session cache must be shared across the
entire cluster.

• SSL has its own closure sequence on top of TCP.

5.1 Clustering the SSL Handshake

We assume that the reader is familiar with the SSL
handshake. For reference, Figure 17 shows the basic
SSL handshake, using static RSA.

Client Relay

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Figure 17 The SSL handshake

As Figure 17 shows, the first message we process is the
ClientHello. The most obvious approach is to cluster the
contents of the ClientHello and then ACK it to the
client. This has two drawbacks: (1) Efficiency. We don’t
need to cluster the entire ClientHello, which contains all
the ciphersuites that the client is willing to speak. We
only need to cluster the ciphersuite that we’ve in fact
chosen. (2) We’d hav e to introduce a second checkpoint
for the Ser verHello: the Ser verHello contains a random
value generated by the server. If the relay fails after
sending the Ser verHello then the mirror must be able to
reproduce the Ser verHello, including generating the
same random numbers. One way to deal with this
would be to synchronize the random number generators
on all nodes but this is a difficult task. A better
approach is to cluster a "pre-Ser verHello" state. This
state contains:

• client and server random values

• chosen cipher suite

Additionally, every handshake update contains

• the new TCP state

• the current value of the SSL handshake hashes

• the handshake state to enter upon failover. For the
case where we have just read the ClientHello, this is
"send Ser verHello"

If a failover occurs when the mirror has received the
pre-Ser verHello update, it will generate a new Ser ver-
Hello using the clustered random value and containing
an ACK for the ClientHello.

In order to reduce the latency inherent in this oper-
ation we transmit the state update before we generate
the messages (thus parallelizing the clustering latency
and message generation). However, we can’t actually
transmit the messages until the update is ACKed
because this would violate the First Law—we need to
make sure that the random data in the Ser verHello is
clustered before we commit to it by transmitting the
Ser verHello to the client. We simply queue the mes-
sages and empty the queue when we receive the ACK.
This isn’t that important an optimization under normal
circumstances since generating the messages is much
faster than the cluster update round trip time so the RTT
dominates the interaction. However, if we’re using
ephemeral RSA (which is only used in the increasingly
uncommon export case) the time to generate the
Ser verKeyExchange is significant and therefore we get
substantial parallelization.

Figure 18 shows the interaction in the case of static
RSA. Because of TCP delayed ACKs the ACK of the
ClientHello will typically appear on the first data seg-
ment (and of course on every subsequent data segment)
rather than bare on the wire. Note that the number of



TCP segments used to transmit the records depends on
the amount of buffering and whether the Nagle [22]
algorithm is on, but this is irrelevant to the clustering
logic.

Client Relay

ClientHello

Mirror

Cluster pre-ServerHello

Update ACK

ServerHello, ACK ClientHello

Certificate

ServerHelloDone

Figure 18 Clustering the ClientHello

Once the client receives the Ser verHelloDone it sends
the ClientKeyExchange followed by the ChangeCipher-
Spec and Finished. Optimally we’d like to wait for the
Finished and ACK all three messages together. Unfortu-
nately this creates problems if the client writes each
message to the network separately. In that case the write
of the ChangeCipherSpec will be blocked by the Nagle
Algorithm until the ClientKeyExchange is ACKed. If all
three messages fit into one TCP segment then the next
two messages will be sent when the retransmit timer
fires in 500 ms. If the messages don’t fit, the transaction
may be deadlocked while the client sits in congestion
control mode waiting for the server’s ACK.

This forces us into an approach where we individu-
ally ACK each message. The First Law requires that we
first cluster them. Thus, the logic becomes that shown
in Figure 19.

Client Relay

ClientKeyExchange

Mirror

Update ClientKeyExchange

ACK

ACK

ChangeCipherSpec
Update ChangeCipherSpec

ACK

ACK

Finished

Update Finished

ACK

ACK

Figure 19 Clustered ClientKeyExchange, etc.

The first update contains the encrypted PreMaster
secret. This reduces latency by allowing the relay to
decrypt the PreMaster secret while waiting for the clus-
ter update to complete. The second update contains the
master secret and the pending cipher states in both
directions. The third update contains the new read
cipher state after having read the Finished message.

This logic creates quite a bit of cluster traffic and
it’s fairly likely that the client will send all three mes-
sages in one segment. One could detect the case where
all three messages are present and if so issue one cluster
update instead of three but we have not benchmarked
this optimization.

Finally, the relay sends its own ChangeCipherSpec
and Finished messages. When the server’s Finished
message is ACKed the handshake is over and the relay
clusters the entry into the data state. This message also
contains the new write cipher state after having written
the Finished. Once that update is ACKed the relay
enters the data state, as shown in Figure 20.

RelayClient

ChangeCipherSpec, Finished

ACK

Mirror

Update data state

ACK

Relay enters data state.

Figure 20 Clustered Finished

5.2 Resumed Handshakes

SSL includes a session resumption feature that allows
the client and server to skip the RSA key exchange step.
This is less important in the face of RSA acceleration
on the server side but is still of considerable value.
However, with a clustered system there is no guarantee
that the same relay will handle the client when it recon-
nects again. Thus, we need to cluster the session cache.

Clustering the session cache is actually quite sim-
ple. When a mirror receives the cluster update indicat-
ing the end of the handshake it inserts the session infor-
mation (derived from the cluster updates received thus
far) into the local session cache. As is common prac-
tice, this is implemented as a hash table. When a client
requests resumption, the relay handling that connection
(including one which was a mirror for the original con-
nection) can just consult its own hash table.



Clustering the session resumption handshake fol-
lows essentially the same pattern as the ordinary hand-
shake. The most notable difference is that the steps for
clustering the transmission and receipt of Finished are
switched, as shown in Figure 21. Note that the last two
cluster updates could be collapsed into one but this is
not done in the current implementation.

Client Relay

ClientHello

Mirror

Update pre-ServerHello

ACK

ServerHello, ACK

ChangeCipherSpec

Finished
ACK

Update Finished ACKed

ACK

Update data state

ACK

Relay enters data state.

Figure 21 Clustering the resumed handshake

5.3 Connect to Server

After the client connects, two processes occur in paral-
lel: the SSL handshake and the connect to the server.
Either process may finish before the other. Only once
both are completed do we enter the data state and pre-
pare to read data from the client. However, because we
need to checkpoint the SSL handshake state, some
checkpoints may occur before the server connection has
completed. This possibility, that there might be cluster
checkpoints where only the client socket is valid, did
not exist in the simple TCP case we discussed earlier.

Luckily, dealing with this case is relatively easy.
When a failover occurs in such a state the relay simply
restarts the appropriate connect call. As in section 4.3,
we need to make our TCP ISN deterministic to avoid
getting RSTs during the connect.

Unfortunately, since the SSL handshake is happen-
ing in parallel with the connect to the server we can no
longer determine the client’s choice of ISN from client
retransmissions. The first message we receive after
failover might not be the ClientHello, in which case it
would have a sequence number that did not match the
client’s ISN. Thus we need to include the client’s ISN
in the first cluster checkpoint. This requirement means

that we cannot begin to connect to the server until after
the first cluster checkpoint of the SSL handshake. This
ensures that the mirror will have the client’s ISN if it
needs to reissue the connect() call. The relationship
of the SSL handshake to the connect handshake is
shown in Figure 22.

Client Relay

ClientHello

Mirror

Cluster pre-ServerHello

Update ACK

Server

SYNACK

SYN/ACK

Update connect

ACK

ACK

Figure 22 Parallel client and server handshakes

5.4 Cipher States
In order to encrypt or decrypt an SSL record the follow-
ing pieces of state are required:

• the sequence number

• the encryption state

• the MAC key

Of these, only the encryption state and the sequence
number vary during an SSL connection. Clustering the
sequence number is straightforward but the encryption
state is less obvious: when the cipher is DES, 3DES, or
AES, we need to cluster only the key and the current
CBC residue. With RC4 we have two options: cluster
the current key schedule or cluster the key and an offset
into the stream. The second option is more compact but
can be excessively slow if failover occurs during a long
transfer, requiring the mirror to generate and discard
megabytes of keystream.

The compromise option used by SSLACC is to
cluster the base state (the entire key schedule) every
megabyte or so and in between transmit deltas. This
actually presents an interesting implementation issue.
The natural approach would be that the deltas each con-
tain the number of bytes processed since the last base
update. However, when a number of records are ACKed
at once we only cluster the final record to reduce band-
width consumption. This presents the possibility that
one of the updates we skip might be a base update. In



this case we would advance the stream from the wrong
base update and thus be encrypting using too early a
section of keystream. To avoid this problem the deltas
actually contain the offset from the beginning of the
keystream. Thus, when we attempt to reconstitute the
keystream we start from the last base update we receive
(which also includes its position in the keystream) and
then advance the keystream to the point indicated by the
delta.

5.5 Client to Server Data Transmission

Clustering SSL client to server data transmission is
analogous to clustering TCP communication but rather
more complicated. The message diagram, shown in Fig-
ure 23, is essentially the same. The additional complica-
tion is introduced by the need to cluster the cipher state
and the need to handle one record at a time. With TCP
we could simply increment our own notion of how
many bytes to ACK each time we saw an ACK. With
SSL we can only generate updates whenever a full
record is ACKed because only at that point can the con-
nection state be simply summarized. Decrypted records
cannot be transmitted until their MACs have been
checked, which can only be done one record at a time.
Without this restriction, an active attacker could inject a
forged partial record which SSLACC would forward
without performing an integrity check. Thus, check-
pointing at any other location than a record boundary
would require clustering the plaintext as well as the
cipher state. To make things more complicated, the size
of the SSL record is generally not the same as the size
of the plaintext data. The addition of the headers,
padding, and MAC increases the size of the plaintext
data. Compression would reduce the size of the plain-
text data but is generally unimplemented. As a result,
the sizes would only match by accident and the number
of bytes to ACK to the client will be different (generally
greater) than the number of bytes that were ACKed by
the server.

Client Relay

Ciphertext

Server

Plaintext

ACK

Mirror

Cipher state, TCP state

ACK

ACK

Figure 23 Clustering client to server writes

In order to map server ACKs to record state, SSLACC
maintains a queue of the length and states for all
records for which the plaintext has been written to the
server but not yet ACKed. Whenever more data is
ACKed by the server we move the ACK pointer for-
ward in this queue the appropriate number of bytes.
When a full record has been ACKed we remove it from
the queue, cluster the new state, and ACK the client’s
data. Because multiple records might be decrypted
before any of them are ACKed, each record in the
queue has its associated cipher state attached to it at the
time it is decrypted. Thus, when a record is ACKed the
cipher state we cluster is the one attached to the record.
If multiple records are ACKed by a given server ACK
we simply cluster the state associated with the last one.

If a failover occurs, the mirror simply installs its
mirrored TCP state and the appropriate cryptographic
state and picks up from there.

Partial ACKs

SSL records can be up to 32K bytes long (the standard
fixes them at 16K but some implementations violate
this rule). This introduces a problem since it is quite
possible that a record will be too large to fit in a single
TCP segment. If the record is especially large or the
connection is still in slow start, it’s quite likely that the
effective window will be too small to carry the entire
record. This produces the possibility of deadlock. The
relay cannot ACK any data until the entire record has
been read but the client cannot transmit any more of the
record until it receives an ACK.

The only way out is for the relay to ACK the data
read so far. In order to do so it must first cluster that
data. This is one of the few cases in which we actually
cluster data rather than state, and since it’s expensive to
do, we do so only when necessary. SSLACC maintains
an estimator of the packet interarrival time (IAT). When
a partial record is read, we set a timer for 2*IAT. If that
timer fires before the rest of the record is read, we clus-
ter the partially read record and then ACK that section
of data. If a failover occurs during this period the mirror
simply picks up with reading the rest of the record. Fig-
ure 24 shows a partial ACK.

In practice, partial ACKs occur infrequently. First,
most HTTPS transactions involve a small client write
(the HTTP request) followed by a lot of data from the
server (the HTTP response). Thus, the records usually
fit in the effective window. In the case where a lot of
data is being written by the client the window will
quickly open up to be larger than a record (although not
larger than a pathological 32K record). Finally, we only
allow partial ACKs to occur when there is no unACKed
data written to the server, thus simplifying the logic



Client Relay
First part of record

partial ACK timer fires

Mirror

Cluster partial record, new TCP State
ACK

ACK

Rest of record

Server

Plaintext

ACK

New TCP state, cipher state

ACK

ACK

Figure 24 Partial ACK

considerably. The expectation is that when we ACK the
previous record the client will transmit the rest of the
record we’re currently reading.

Unfortunately, this expectation is not always ful-
filled. If the server is slow enough the client will be
driven into congestion control mode. The congestion
window will be one segment and thus we will never
receive the rest of our record. Accordingly, whenever
we ACK to the client and we have a partially read
record we set a timer for the round trip time (RTT) +
IAT. This allows the ACK to arrive at the client and the
client to send the next segment if it is going to. If it
doesn’t and the timer fires we once again perform a par-
tial ACK.

5.6 Ser ver to Client Writes

Naively, one might think that we could use the same
strategy for server to client writes. Unfortunately, this is
not the case. The problem is that TCP has no concept of
record boundary. In order to provide acceptable interac-
tive performance we must be prepared to write data to
the client as soon as we receive it, but this makes the
sizes of the SSL records somewhat arbitrary. They are
determined by some combination of the maximum read
size, buffering TCP window, and relay loading. After
failover the mirror is likely to read a different size
chunk from the server than the original relay did. If
nothing is done to ensure that the same record sizes are
used, the stream of records won’t match the original
and MAC errors will occur.

Figure 25 shows a simple example of what can go
wrong. The relay reads 4096 bytes from the server. This
represents approximately 4 segments on an Ethernet.
The relay packages this up in a single record (R1) and
then sends it to the client. At this point the relay fails.
When the mirror comes online only 1024 bytes are
available from the server and so it transmits a 1024-byte
record (R1’, which has the same sequence number as
R1). Its next read is 3072 bytes so it transmits a
3072-byte record (R2).

ServerRelay

4096 bytes

Client

R1: 4096-byte record

Relay fails

Mirror

1024 bytes (retransmit)

R1’: 1024-byte record

3072 bytes (retransmit)

R2: 3072-byte record

Figure 25 Record size problem

HDR Data MAC

R1

HDR Data MAC

R1’

HDR Data MAC

R2

HDR Data MAC MAC

Data
fragment

Figure 26 Record size misalignment

Figure 26 shows what happens when the client tries to
read the records. On top we see the data stream as writ-
ten by the original relay. At bottom we see the data
stream as written by the mirror which takes over. In the
middle is the inconsistent data stream as seen when the
client gets part of its data from the relay and part from
the mirror. In this case, we’ve assumed that the client
has read the entire first record. Thus, it will attempt to
start reading a new record but will actually start reading
in the middle of the second record from the mirror (rep-
resented by the shaded section). This will create errors.
Note that this particular error occurs because of the data
expansion introduced by SSL record framing. Even
though the same amount of plaintext data is transmitted



by both relay and mirror, the addition of headers, MACs
and padding causes the cumulative size of the SSL traf-
fic to be larger when transmitted as two records than as
one. It is this size difference that causes the misalign-
ment seen in Figure 26. Depending on the exact timing
of events, a number of other merges of the data streams
are possible but almost none of them are correct.

In order to avoid this situation we need to cluster
the record size before we transmit the record. The mir-
ror maintains a queue of the sizes of records which have
been written but not ACKed. Thus, whenever it receives
a pre-write—the size of a record about to be written—it
adds it to the list. Whenever it receives an update that a
record was ACKed it removes that record from the list.
Upon failover the mirror uses this list to determine what
size records to read. The sequence of events is shown in
Figure 27. Note that because this technique commits us
to reading certain record sizes after a restore, the relay
can get blocked reading from the server in the same
way as we saw in section 5.5. We use the same partial
ACK technique to remove such deadlocks.

ServerRelay

Plaintext

Mirror

Record size

ACK

Client

Ciphertext

ACK

Update TCP, cipher state

ACK

ACK

Figure 27 Pre-writing records

5.7 Closure

There are three conditions which might trigger closing
the connection:

• a close from the client

• a close from the server

• an error

Rather than attempt to note each of these conditions and
cluster them we adopt the simple expedient of with-
holding ACKs for the messages which generated them.
After a failover, we expect the retransmits to generate
the same condition on the mirror. Howev er, if we are
closing because of an error we do cluster that the

session is not to be resumed. When the mirror receives
that update it removes the entry from the session cache.

However, all three of these conditions are likely to
require us to transmit an SSL alert. We first disarm the
read callbacks so that no further attempts will be made
to read data. We then transmit the alert. Once the alert is
ACKed we are ready to proceed with shutting down the
socket, which we do in the same fashion as we
described for TCP clustering. If an error occurred, we
also cluster that the SSL session is not to be resumed, as
required by the SSL specification. At this point the
relay will ACK all received data along with its FIN.

5.8 Performance

Our primary focus with SSLACC has been on protocol
and implementation correctness. However, we hav e
done some simple performance tuning. We hav e bench-
marked SSLACC in two configurations: "SSLACC
200" with a 200 RSA/sec coprocessor and "SSLACC
600" with a 600 RSA/sec coprocessor (both using Rain-
bow Cryptoswift cards). Both configurations are
846/MHz Pentium IIIs with 512 MB of RAM. Figure
28 shows the performance of SSLACC 200 clusters of
sizes between one and seven (the number of machines
we had available) under a pure handshake load: SSL
handshake followed by a trivial HTTP fetch.

0
200
400
600
800

1000
1200
1400

1 2 3 4 5 6 7

conns/sec

nodes

norm

agg

proj

Figure 28 SSLACC 200 performance

The "norm" line represents the observed performance of
a SSLACC 200 cluster. The "proj" line represents the
theoretical performance of an unclustered system. Per-
formance scales linearly up to about 3-4 nodes, at
which point it starts to plateau off. The problem, at least
in part, is that the nodes are being swamped by cluster-
ing overhead. Essentially every handshake message pro-
cessed requires a checkpoint, so the number of mes-
sages scales with the number of nodes. Thus, even
though we add more processing power, an increasing



amount of CPU time is spent handling messages from
other nodes. As a result, the addition of a node doesn’t
increase the overall cluster capacity as much as desired.
This provides strong motivation for reducing the
amount of inter-cluster traffic. Some simple profiling
determined that much of this overhead was spent in
interrupt handlers for cluster message arrival. Aggregat-
ing multiple message sends into a single larger message
reduces this overhead and gives us improved scalability,
as shown by the "agg" line in Figure 28.

SSLACC 600 performance shows a similar pattern,
but with the overload appearing far earlier, as shown in
Figure 29. Note that the "norm" line shows plateaus at
almost exactly the same place for SSLACC 600, as for
SSLACC 200, indicating (as expected) that the bottle-
neck is the CPUs, not the acceleration hardware.

Other than the addition of aggregation, no signifi-
cant performance tuning has been attempted on
SSLACC, so SSLACC’s performance behavior, espe-
cially for large clusters, is poorly understood. In partic-
ular, the causes of the drop at 7 nodes for SSLACC 200
and the plateau at 3-5 and jump at 6 units for SSLACC
600 (both with aggregation turned on) are unknown. It’s
also worth noting that the performance of SSLACC 600
at 6 and 7 nodes is superior to that of SSLACC 200,
suggesting that even though the acceleration hardware
is operating at less than rated capacity in both cases, the
difference between the 200 and 600 cards is neverthe-
less affecting performance. Further performance tuning
of SSLACC handshaking is a topic for future research.

0
200
400
600
800

1000
1200
1400

1 2 3 4 5 6 7

conns/sec

nodes

norm

proj agg

Figure 29 SSLACC 600 performance

Our second major performance metric is through-
put. Our SSLACC test units are fitted with two 100
MHz Ethernet interfaces and we’re capable of saturat-
ing the network with a single unit. We don’t currently
have SSLACC units with gigabit Ethernet interfaces so
we have not yet determined the performance of multiple
units with higher loads. Since cluster traffic is carried
over the same wire as data traffic, the amount of capac-
ity consumed by cluster traffic (in particular, update

ACKs) increases as the number of nodes increases.
Thus, as we add cluster nodes, the overall throughput of
the cluster decays, even though the entire network
capacity is being used. Adding a third network interface
for cluster traffic or converting to gigabit Ethernet
would be obvious solutions to the problem of limited
network capacity, but we have not benchmarked either.

5.9 Conclusions

SSLACC occupies a new point in the clustered acceler-
ator design space. Three of the most desirable proper-
ties in a clustered accelerator are scalability, high avail-
ability, and the ability to run on cost-effective hardware.
The current generation of SSL accelerators run on com-
modity hardware and performance scales more or less
linearly with the number of nodes. Traditional cluster-
ing solutions can achieve high availability by using spe-
cial hardware and at the expense of poor scalability.
The IP clustering design used in SSLACC provides
high availability and some scalability on commodity
hardware. Although we never expect to achieve perfect
linear scaling due to the demands of clustering, we
anticipate substantial improvements as the result of fur-
ther tuning.

The primary obstacle to using the IP clustering
approach in general is that it comes at a substantial
engineering cost. The primary engineering work on
SSLACC consumed roughly 3 man years. Much of this
time was spent in understanding the subtleties of clus-
tering TCP applications and thus could be leveraged to
reliably cluster other protocols.

A.1 Asynchronous I/O and Cryptography
SSLACC runs as a single process under AlchemyOS. In
order to simultaneously serve multiple clients and
servers, all I/O is done in non-blocking mode. Instead
of using select(), AlchemyOS offers an asyn-
chronous version of select() called
async_select(). async_select() allows the
programmer to register callbacks for the usual I/O
ev ents (read, write, exception) as well as an extra one
(writedrain— indicating that data has been ACKed by a
peer). Callbacks are fired synchronously: when an
application enters the event loop by calling Hiber-
nate() pending callbacks fire, in no particular order.

Cryptographic operations may also complete asyn-
chronously, typically if they are being handled in hard-
ware. Our cryptographic API allows the caller to pro-
vide a callback. If the operation is to be performed
asynchronously the API point returns a result code indi-
cating this. When the operation completes the callback



fires. SSLACC can then collect the output of the
operation.

Finally, cluster messages are transmitted asyn-
chronously. The programmer calls IP_Clus-
ter_Send() and provides a callback which will be
called when the message is acknowledged.

B.1 Destruction
Neither cryptographic operations nor cluster updates
can be cancelled. This creates an interesting problem.
Consider what happens if an attempt is made to destroy
a connection which has a pending operation (perhaps
due to errors or premature closure by a peer). If the con-
nection context is destroyed immediately, the callback
will be left holding a dangling pointer. Attempts to
operate on such pointers generally result in segmenta-
tion faults.

SSLACC uses a complicated system of interlocks
to prevent this case. If a request is received to destroy a
quiescent connection, that connection can simply be
destroyed immediately. If callbacks are pending then
the connection is marked for destruction but not imme-
diately destroyed. When a callback fires for such a con-
nection, it checks to see if all callbacks have fired and
the connection can be destroyed. The last callback
destroys the connection.

If the interlocks are misconfigured, we either see
panics (if we destroy too soon) or memory leaks (if we
fail to destroy when the last callback fires). The compli-
cation arises because the interlocks are woven into the
(rather complex) state transitions that a connection goes
through as it closes. Interlock issues have been a sub-
stantial debugging problem, which might potentially be
alleviated by a simpler design such as a reference count.

Acknowledgments
The authors would like to thank Jeremey Barrett, David
Kashtan, Tom Kroeger, Stacey O’Rourke and Craig
Watkins for their contributions to the development of
SSLACC. Additionally, we would like to thank Derek
Atkins, Steve Bellovin, Kevin Dick, and the anonymous
USENIX reviewers for their comments on this paper.

References

[1] SonicWall, High Availability Options for Son-
icWALL SSL Devices.
http://www.sonicwall.com/products/↵
documentation/High_Availability_SSL.pdf

[2] Schultz, K., “SSL In the Driver’s Seat,” Inter-
netWeek (November, 2000).

[3] Intel, Commerce Accelerator 1000 User Guide.

[4] Postel, J., “Transmission Control Protocol,” RFC
793 (September 1991).

[5] Hickman, K., The SSL Protocol (February 1995).
http://www.netscape.com/eng/security/↵
SSL_2.html

[6] Freier, A.O., Karlton, P., and Kocher, P.C., The SSL
Protocol Version 3.0 (November 1996).
http://home.netscape.com/eng/ssl3/↵
draft302.txt

[7] Dierks, T., and Allen, C., “The TLS Protocol Ver-
sion 1.0,” RFC 2246 (January 1999).

[8] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Mas-
inter, L., Leach, P., and Berners-Lee, T., “Hypertext
Transfer Protocol,” RFC 2616 (June 1999).

[9] Rescorla, E., “HTTP over TLS,” RFC 2818 (May
2000).

[10] Kant, K., Iyer, R., and Mohapatra, P., Architectural
Impact of Secure Socket Layer on Internet Servers.
http://www.cse.msu.edu/rgroups/isal/↵
pubs/conf/iccd00.ps

[11] Rescorla, E., SSL and TLS: Designing and Build-
ing Secure Systems, Addison-Wesley, New York, NY
(2000).

[12] Abbott, S., and Keung, S., CryptoSwift (ver.2) Per-
formance on Netscape Enterprise Server (April, 1988).
http://isglabs.rainbow.com/isglabs/↵
NS351-CSv2-NT-perf/NS351-CSv2.html

[13] Keung, S., Cryptoswift performance under SSL
with file transfer (1998).
http://isglabs.rainbow.com/isglabs/↵
SSLperformance/SSL+file%20performance.↵
html

[14] Nokia, The IP Clustering Power of Nokia VPN
(April, 2001).
http://www.nokia.com/vpn/pdf/↵
ip_clustering.pdf

[15] Nick, J.M., “S/390 cluster technology: Parallel
Sysplex,” IBM Systems Research Journal, 36, 2 (1997).

[16] Laranjeira, L., “NCAPS: Application High Avail-
ability in UNIX Computer Clusters,” Proc. 28th Intl.
Symp. on Fault Tolerant Computing, pp. 441-450 (June
1998).

[17] Microsoft, Windows 2000 Clustering Technologies.
http://www.microsoft.com/windows2000/↵
technologies/clustering/default.asp



[18] Barak, A., La’adan, O., and Shiloh, A., Scalable
Cluster Computing with MOSIX for LINUX (1999).

[19] Alvisi, L., Bressoud, T.C., El-Khashab, A.,
Marzullo, K., and Zagarodnov, D., “Wrapping Server-
Side TCP to Mask Connection Failures,” IEEE INFO-
COM 2001 (2001).

[20] Elnozahy, E., Alvisi, E., Wang, Y.M., and Johnson,
D.B., “A Survey of Rollback-Recovery Protocols in
Message Passing Systems,” CMU Technical Report
CMU-99-148 (June 1999).

[21] CERT, “TCP SYN Flooding and IP Spoofing,”
CERT Advisory CA-96.21.
ftp://info.cert.org/pub/cert_advisories/↵
CA-96.21.tcp_syn_flooding

[22] Nagle, J., “Congestion Control in IP/TCP Internet-
works,” RFC 0896 (Jan 1984).


