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ABSTRACT

Computers are notoriously insecure, in part because ap-
plication security policies do not map well onto tradi-
tional protection mechanisms such as Unix user accounts
or hardware page tables. Recent work has shown that ap-
plication policies can be expressed in terms of informa-
tion flow restrictions and enforced in an OS kernel, pro-
viding a strong assurance of security. This paper shows
that enforcement of these policies can be pushed largely
into the processor itself, by using tagged memory sup-
port, which can provide stronger security guarantees by
enforcing application security even if the OS kernel is
compromised.

We present the Loki tagged memory architecture,
along with a novel operating system structure that takes
advantage of tagged memory to enforce application se-
curity policies in hardware. We built a full-system proto-
type of Loki by modifying a synthesizable SPARC core,
mapping it to an FPGA board, and porting HiStar, a
Unix-like operating system, to run on it. One result is
that Loki allows HiStar, an OS already designed to have
a small trusted kernel, to further reduce the amount of
trusted code by a factor of two, and to enforce security
despite kernel compromises. Using various workloads,
we also demonstrate that HiStar running on Loki incurs
a low performance overhead.

1 INTRODUCTION

A significant part of the computer security problem stems
from the fact that security of large-scale applications usu-
ally depends on millions of lines of code behaving cor-
rectly, rendering security guarantees all but impossible.
One way to improve security is to separate the enforce-
ment of security policies into a small, trusted compo-
nent, typically called the trusted computing base [19],
which can then ensure security even if the other compo-
nents are compromised. This usually means enforcing
security policies at a lower level in the system, such as
in the operating system or in hardware. Unfortunately,
enforcing application security policies at a lower level
is made difficult by the semantic gap between different
layers of abstraction in a system. Since the interface tra-
ditionally provided by the OS kernel or by hardware is
not expressive enough to capture the high-level seman-
tics of application security policies, applications resort

to building their own ad-hoc security mechanisms. Such
mechanisms are often poorly designed and implemented,
leading to an endless stream of compromises [22].

As an example, consider a web application such as
Facebook or MySpace, where the web server stores per-
sonal profile information for millions of users. The ap-
plication’s security policy requires that one user’s profile
can be sent only to web browsers belonging to the friends
of that user. Traditional low-level protection mecha-
nisms, such as Unix’s user accounts or hardware’s page
tables, are of little help in enforcing this policy, since
they were designed with other policies in mind. In partic-
ular, Unix accounts can be used by a system administra-
tor to manage different users on a single machine; Unix
processes can be used to provide isolation; and page ta-
bles can help in protecting the kernel from application
code. However, enforcing or even expressing our exam-
ple website’s high-level application security policy using
these mechanisms is at best difficult and error-prone [17].
Instead, such policies are usually enforced throughout
the application code, effectively making the entire ap-
plication part of the trusted computing base.

A promising technique for bridging this semantic gap
between security mechanisms at different abstraction
layers is to think of security in terms of what can hap-
pen to data, instead of specifying the individual opera-
tions that can be invoked at any particular layer (such
as system calls). For instance, recent work on operating
systems [10, 18, 35, 36] has shown that many applica-
tion security policies can be expressed as restrictions on
the movement of data in a system, and that these security
policies can then be enforced using an information flow
control mechanism in the OS kernel.

This paper shows that hardware support for tagged
memory allows enforcing data security policies at an
even lower level—directly in the processor—thereby
providing application security guarantees even if the ker-
nel is compromised. To support this claim, we designed
Loki, a hardware architecture that provides a word-level
memory tagging mechanism, and ported the HiStar op-
erating system [35] (which was designed to enforce ap-
plication security policies in a small trusted kernel) to
run on Loki. Loki’s tagged memory simplifies security
enforcement by associating security policies with data at
the lowest level in the system—in physical memory. The
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colluding non-secret process on the same machine by al-
locating many physical memory pages and freeing only
the odd- or even-numbered pages depending on the bit
value. Operating systems like HiStar solve such prob-
lems by virtualizing resource names (e.g. using kernel
object IDs) and making sure that these virtual names are
never reused. However, the additional kernel complexity
can lead to bugs far worse than the covert channels the
added code was trying to fix. Moreover, implementing
equivalent functionality in hardware would not be inher-
ently any simpler than the OS kernel code it would be
replacing, and would not necessarily improve security.

What hardware support for tagged memory can ad-
dress, however, is the the tension between stronger se-
curity and increased complexity seen in an OS kernel. In
particular, this paper introduces a new, intermediate level
of security provided by hardware, which can enforce a
subset of the kernel’s security guarantees, as illustrated
by our hybrid threat model in Figure 2. In the simplest
case, we are concerned with two security levels, high and
low, and the goal is ensuring that data from the high level
cannot influence data in the low level. There are multiple
interpretations of high and low. For instance, high might
represent secret user data, in which case low would be
world-readable, as in [2]. Alternatively, low could repre-
sent integrity-protected system configuration files, which
should not be affected by high user inputs, as in [3].

The hybrid model provides different enforcement of
our security goal under different assumptions. In partic-
ular, the weaker discretionary access control model, en-
forced by the tagging hardware and the security monitor,
disallows both high processes from modifying low data
and low processes from reading high data. However, if
a malicious pair of high and low processes collude, they
can exploit covert channels to subvert our security goal,
as shown by the dashed arrow in Figure 2. The stronger
mandatory access control model aims to prevent such
covert communication, by providing a carefully designed
kernel interface, like the one in HiStar, in a more com-
plex OS kernel. The resulting hybrid model can enforce
security largely in hardware in the case of only one ma-
licious or compromised process, and relies on the more
complex OS kernel when there are multiple malicious
processes that are colluding.

The rest of this section will first describe LoStar from
the point of view of different applications, illustrating the
security guarantees provided by different parts of the op-
erating system. We will then provide an overview of the
Loki hardware architecture, and discuss how the LoStar
operating system uses Loki’s hardware mechanisms.

2.1 Application perspective
One example of an application in LoStar is the Unix en-
vironment itself. HiStar implements Unix in a user-space
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Figure 2: A comparison of the discretionary access control and
mandatory access control threat models. Rectangles represent data,
such as files, and rounded rectangles represent processes. Arrows indi-
cate permitted information flow to or from a process. A dashed arrow
indicates information flow permitted by the discretionary model but
prohibited by the mandatory model.

library, which in turn uses HiStar’s kernel labels to im-
plement its protection, such as the isolation of a process’s
address space, file descriptor sharing, and file system ac-
cess control. As a result, unmodified Unix applications
running on LoStar do not need to explicitly specify labels
for any of their objects. The Unix library automatically
specifies labels that mimic the security policies an appli-
cation would expect on a traditional Unix system. How-
ever, even the Unix library is not aware of the translation
between labels and tags being done by the kernel and
the security monitor. Instead, the kernel automatically
passes the label for each kernel object to the underlying
security monitor.

LoStar’s security monitor, in turn, translates these la-
bels into tags on the physical memory containing the re-
spective data. As a result, Loki’s tagged memory mech-
anism can directly enforce Unix’s discretionary security
policies without trusting the kernel. For example, a page
of memory representing a file descriptor is tagged in a
way that makes it accessible only to the processes that
have been granted access to that file descriptor. Similarly,
the private memory of a process’s address space can be
tagged to ensure that only threads within that particular
process can access that memory. Finally, Unix user IDs
are also mapped to labels, which are then translated into
tags and enforced using the same hardware mechanism.

An example of an application that relies on both dis-
cretionary and mandatory access control is the HiStar
web server [36]. Unlike other Unix applications, which
rely on the Unix library to automatically specify all la-
bels for them, the web server explicitly specifies a dif-
ferent label for each user’s data, to ensure that user data
remains private even when handled by malicious web ap-
plications. In this case, if an attacker cannot compromise
the kernel, user data privacy is enforced even when users
invoke malicious web applications on their data. On the
other hand, if an attacker can compromise the kernel, ma-
licious web applications can leak private data from one
user to another, but only for users that invoke the mali-
cious code. Users that don’t invoke the malicious code
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will still be secure, as the security monitor will not allow
malicious kernel code to access arbitrary user data.

2.2 Hardware overview
The design of the Loki hardware architecture was driven
by three main requirements. First, hardware should pro-
vide a large number of non-hierarchical protection do-
mains, to be able to express application security policies
that involve a large number of disjoint principals. Sec-
ond, the hardware protection mechanism should protect
low-level physical resources, such as physical memory
or peripheral devices, in order to push enforcement of
security policies to the lowest possible level. Finally,
practical considerations require a fine-grained protection
mechanism that can specify different permissions for dif-
ferent words of memory, in order to accommodate pro-
gramming techniques like the use of contiguous data
structures in C where different data structure members
could have different security properties.

To address these requirements, Loki logically asso-
ciates an opaque 32-bit tag with every 32-bit word of
physical memory. Tag values correspond to a security
policy on the data stored in locations with that particular
tag. Protection domains in Loki are specified in terms of
tags, and can be thought of as a mapping between tags
and permission bits (read, write, and execute). Loki pro-
vides a software-filled permissions cache in the proces-
sor, holding permission bits for some set of tags accessed
by the current protection domain, which is checked by
the processor on every instruction fetch, load, and store.

A naive implementation of word-level tags could re-
sult in a 100% memory overhead for tag storage. To
avoid this problem, Loki implements a multi-granular
tagging scheme, which allows tagging an entire page of
memory with a single 32-bit tag value. This optimiza-
tion turns out to be quite effective, and will be described
in more detail later in the paper.

Tag values and permission cache entries can only
be updated in Loki while in a special processor privi-
lege mode called monitor mode, which can be logically
thought of as more privileged than the traditional super-
visor processor mode. Hardware invokes tag handling
code running in monitor mode on any tag permission
check failure or permission cache miss by raising a tag
exception. To avoid including page table handling code
in the trusted computing base, the processor’s MMU is
disabled while executing in monitor mode.

2.3 OS overview
Kernel code in Loki continues to execute at the supervi-
sor privilege level, with access to all existing privileged
supervisor instructions. This includes access to tradition-
ally privileged state, such as control registers, the MMU,
page tables, and so on. However, kernel code does not

have direct access to instructions that modify tags or per-
mission cache entries. Instead, it invokes the security
monitor to manage the tags and the permission cache,
subject to security checks that we will describe later.

The kernel requires word-level tags for two main rea-
sons. First, existing C data structures often combine data
with different security requirements in contiguous mem-
ory. For example, the security label field in a kernel ob-
ject should not be writable by kernel code, but the rest
of the object’s data can be made writable, subject to the
policy specified by the security label. Word-level tagging
avoids the need to split up such data structures into mul-
tiple parts according to security requirements. Second,
word-level tags reduce the overhead of placing a small
amount of data, such as a 32-bit pointer or a 64-bit ob-
ject ID, in a unique protection domain.

Although Loki enforces memory access control, it
does not guarantee liveness. All of the kernel protection
domains in LoStar participate in a cooperative schedul-
ing protocol, explicitly yielding the CPU to the next pro-
tection domain when appropriate. Buggy or malicious
kernel code can perform a denial of service attack by
refusing to yield, yielding only to other colluding ma-
licious kernels, halting the processor, misconfiguring in-
terrupts, or entering an infinite loop. Liveness guarantees
can be enforced at the cost of a larger trusted monitor,
which would need to manage timer interrupts, perform
preemptive scheduling, and prevent processor state cor-
ruption.

3 OPERATING SYSTEM DESIGN

To illustrate how Loki can be used to minimize the
amount of trusted code, we modified HiStar, an operat-
ing system designed to minimize the amount of trusted
code, to take advantage of tags to enforce its security
guarantees in a smaller TCB. The rest of this section
first motivates our choice of the HiStar operating system,
then provides a brief overview of HiStar, and finally de-
scribes the modifications required to port HiStar to Loki
in detail.

3.1 OS choice rationale
Enforcing application security policies at a low level re-
quires addressing two main problems. First, applications
must be able to express their security policies to the un-
derlying system in a uniform manner, so that their poli-
cies can then be enforced, and second, application-level
names, like filenames, must be securely bound to low-
level protection domains, like memory tag values.

Traditional Unix-like operating systems are not a par-
ticularly good fit for addressing these two problems.
Unix provides a large number of protection mechanisms,
from process isolation to file descriptor sharing to user
IDs, which have poorly defined semantics [5] and are
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cumbersome to use in practice for building secure appli-
cations [17]. At the same time, mapping Unix filenames
to the underlying object (inode) and its protection do-
main involves many layers of translation in kernel code.
All of this kernel code must be fully trusted, since any
mis-translation can subvert the intent of a privileged ap-
plication by causing it to access an arbitrary file or de-
vice.

HiStar was an appealing choice for this work because
it addressed both of these problems. First, HiStar used a
single kernel mechanism—information flow control—to
implement all protection in the system, from emulating
Unix security to expressing application security policies.
This meant that extending the enforcement of this single
mechanism into hardware would automatically enforce
all higher-level security policies implemented using Hi-
Star’s protection mechanism. Second, as we will discuss
later on, HiStar reduces all naming to a single flat object
ID space managed by the kernel. This means that a se-
cure binding between names and protection domains can
be implemented by just providing this simple namespace
in the trusted security monitor.

3.2 HiStar overview
HiStar’s information flow control mechanism revolves
around three key concepts. The first is the notion of a
category—an opaque 61-bit ID managed by the kernel—
which represents a particular kind of data in a system,
and can restrict how that data can be accessed or mod-
ified. For example, a separate category is allocated for
every process, to ensure that only threads in that process
can access that process’s address space. A separate cat-
egory is also allocated for each file descriptor to control
what processes are allowed to access it. Finally, Unix
user accounts are also represented with categories that
mirror the user’s UID.

The second notion is that of a label, which is a set
of categories. Every kernel object has a label associated
with it, and the contents of an object is subject to the
restrictions of every category in that object’s label.

The final notion is that of thread ownership of cate-
gories, which defines threads that have access to data la-
beled in a particular fashion. For example, every thread
typically has ownership of the category corresponding to
its process, categories for any file descriptors it has ac-
cess to, and the category of the Unix user on whose be-
half the process is executing.

HiStar reduces the amount of trusted kernel code
compared to traditional OSes by providing a simple,
low-level kernel interface, consisting of six kernel ob-
ject types: segments, address spaces, devices, threads,
gates, and containers. Kernel objects are named by
61-bit object IDs that are unique over all time, and
most application-level naming is reduced to the kernel’s

trusted object ID namespace. For example, Unix pro-
cess IDs are object IDs of the container object represent-
ing the process. Pseudo-terminal (pty) IDs correspond
to the object ID of a segment object storing that pseudo-
terminal’s control block. Even file and directory inodes
correspond to object IDs of the segments and contain-
ers used to implement them, and the kernel’s single-level
store provides persistent disk storage.

The two kernel object types of particular interest in
this paper are threads and gates. Thread objects are used
to execute user-level code, and consist of a register set
and the object ID of an address space object that defines
the virtual address space for the corresponding process.
A thread’s label reflects the data that the thread could
have potentially observed. Threads can dynamically ad-
just their label to observe secret data at runtime. By do-
ing so, a thread gives up the right to modify any objects
not also labeled with the secret data’s category, thus tran-
sitively controlling information flow. However, a thread
can only add restrictions to its label, not remove them. To
ensure that threads cannot unilaterally read all secret data
in the system by adjusting their labels, each thread has a
clearance, which is a set of categories that a thread is al-
lowed to add to its label. The thread’s clearance serves
to enforce a form of discretionary access control.

Gate objects provide a mechanism for protected con-
trol transfer, allowing a thread to switch to a particular
entry point in another address space and protection do-
main. Gates can be thought of as an IPC mechanism, ex-
cept that the client, instead of the server, provides the ini-
tial thread of execution. The gate’s privileges are stored
in the label and clearance associated with the gate.

The kernel provides a small number of operations
(system calls) that can be performed on each type of
kernel object by threads. For each operation, the ker-
nel knows how information can flow as a result of the
operation. Whenever a thread asks the kernel to perform
an operation on another object, the kernel compares the
thread’s label to the label of the other object, and decides
whether the labels allow the operation.

3.3 Minimizing trusted code
HiStar’s design already provides a significantly smaller
fully trusted kernel than a traditional Unix system, as
shown in Figure 3 (a) and (b). Code implementing tra-
ditional Unix semantics is moved to an untrusted user-
level library, while security policies, specified by either
the Unix library or the application in terms of labels, are
enforced by a much smaller kernel.

The Loki architecture allows us to further reduce Hi-
Star’s trusted code base, by enforcing a subset of HiStar’s
security guarantees with a small security monitor in a
system called LoStar, as shown in Figure 3 (c). At a high
level, the kernel in LoStar still enforces information flow
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execution, it cannot change any labels that were already
specified to the security monitor in the past.

3.4 Monitor functionality
Although most policies enforced by the LoStar security
monitor translate directly into tags on physical memory,
there are a few other guarantees that the monitor must
provide which cannot be directly expressed with mem-
ory tagging. In particular, there are certain data struc-
tures, such as object labels, reference counts, and global
hash tables, that should not be modified arbitrarily by
untrusted kernel code. Instead, the security monitor pro-
tects these data structures by making the relevant fields
read-only to application and kernel code, and providing
a system-call-like interface for modifying these fields in
a safe manner, as we will now describe.

First, the monitor protects object labels, which encode
the security policies in our system, by using Loki’s fine-
grained tags. Each kernel object includes a pointer to
a label object that describes the object’s security policy.
When a kernel object is allocated, the monitor sets the
tag value for the object’s label pointer, and for all words
comprising the label object, to a special tag value that
is readable but not writable by all kernel code. This al-
lows kernel code to make its own access control deci-
sions based on an object’s label, but prevents potentially
compromised kernel code from subverting the security
by modifying labels.

Most of the state in a HiStar system resides in ker-
nel objects, which have well-defined labels. However,
the HiStar kernel also maintains one global data struc-
ture whose integrity is crucial for controlled sharing be-
tween mutually-distrustful kernels in different protection
domains. This data structure is the object hash table,
which maps object IDs to kernel objects, and it is im-
plemented using chaining, so that each kernel object has
a pointer to the next object in the same hash bucket.

The monitor ensures the integrity of the object ID to
kernel object mapping by tagging the hash table struc-
ture, and the linked list pointer and object ID fields in ev-
ery kernel object with a special kernel-object tag value.
This tag value allows read but not write access for all pro-
tection domains. Loki’s support for fine-grained word-
level tagging simplifies the enforcement of kernel data
structure integrity in this case. The integrity of the object
ID mapping ensures that a user-level application, which
uses object IDs to access its objects, will always access
the correct object. An attacker that compromises the ker-
nel running with different access rights will not be able
to substitute other objects with the same object ID into
the hash table.

The object type is also protected by the monitor, to
ensure that one type of object cannot be mistaken for
another. The contents of different types of kernel ob-

jects have different meanings, and the monitor associates
certain privileges with thread and gate objects, based on
their label. If the object’s type was not protected, an at-
tacker might be able to convince the security monitor to
interpret the bit-level representation of a gate object as a
thread with the privileges of the original gate object. De-
pending on the exact bit-level layout of these objects, this
might result in the monitor executing arbitrary code in a
thread with the gate’s privileges. Enforcing the integrity
of an object’s type prevents these kinds of attacks.

The monitor also protects each object’s reference
count field, to ensure that a malicious kernel cannot de-
allocate a kernel object unless it controls every reference
to that object. Every reference to a kernel object cor-
responds to a 64-bit memory location which holds the
61-bit ID of that kernel object. These references are pro-
tected by setting the low bit, called the reference-holder
bit, of that memory location’s tag to 1 (typically tags
have the low bits set to 0, since tag values are page-
aligned physical memory addresses of label objects).
The monitor will only increment or decrement reference
counts for an object if it also atomically sets or clears
the reference-holder bit in the tag of a 64-bit word of
memory storing that object ID. Thus, memory locations
tagged as reference-holders are effectively capabilities to
un-reference that object later on. To ensure these capa-
bilities are not tampered with, the monitor only allows
read access to tags with the reference-holder bit set, even
if the tag with that bit cleared would have allowed write
access.

Other linked lists of objects in the kernel, such as lists
of waiting threads, are not protected by the security mon-
itor in the same way as the global object hash table. In-
stead, kernels are free to arbitrarily manipulate all point-
ers in such linked lists. However, well-behaved kernel
code can ensure that it is traversing a valid list of ker-
nel objects by verifying that linked list pointers point to
memory with the special kernel-object tag, and by veri-
fying the object’s type value at each step. Although mali-
cious kernel code can corrupt the linked list and form an
infinite loop, it cannot trick another kernel into accessing
a kernel object of the wrong type, or any other piece of
memory that is not a kernel object, in its traversal of a
linked list. In the case of a list of waiting threads, this
can result in lost or spurious wakeups, or more generally,
denial of service, but not data corruption.

Finally, the monitor provides a narrow interface to per-
form a small number of operations on these integrity-
protected data structures, which we describe in the next
subsection. To provide this system-call-like interface, the
monitor allocates a monitor-call tag that is not accessi-
ble to kernel code, and a special monitor-call memory
word, tagged with the monitor-call tag value, which is
used to invoke the monitor. When kernel code wants to
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invoke a privileged monitor operation, it places its re-
quest in its registers and accesses the monitor-call word.
This causes a tag exception, invoking monitor code. The
monitor performs the requested operation, subject to se-
curity checks, and resumes kernel execution at the next
instruction, skipping the memory access that caused the
exception.

3.5 Monitor call API
The monitor call interface consists of a number of opera-
tions that cannot be safely implemented through memory
tagging alone, which we will now describe. The first set
of operations context-switch to a different protection do-
main:

• Switch to another thread, represented by a ker-
nel thread object. LoStar implements cooperative
scheduling between kernels. The monitor ensures
the validity of the thread object, and loads the ac-
cess rights associated with that thread object before
executing its kernel code.

• Invoke the garbage collection code for a particular
kernel object. The monitor conceptually keeps an
idle protection domain associated with each kernel
object, created when a kernel object is allocated,
ready to garbage collect the kernel object once its
reference count reaches zero. This protection do-
main has implicit rights over its respective kernel
object and any reference counts that this object in
turn holds.

• Call a function in a special protection domain, used
for the page allocator. The monitor provides a fixed-
depth stack for storing the caller’s protection do-
main and execution state while the called protection
domain executes (e.g. allocating or freeing a page
of memory in the page allocator). The monitor pro-
vides the called protection domain with a fresh exe-
cution stack.

• Return from a cross-domain function call, pass-
ing the return values to the caller and restoring the
caller’s protection domain and execution state.

The monitor also provides operations to manipulate
memory, such as pages and kernel objects:

• Change the tag for a range of memory, used to trans-
fer memory between protection domains. Any pro-
tection domain that has read and write access to a
range of memory can ask the monitor to assign any
other non-reserved tag (that is, not reference-holder,
kernel-object, and so on) to that range of memory.
The page allocator is implemented as just another
protection domain; allocating memory involves the

allocator re-labeling one of its free pages with the
caller’s requested tag value, and freeing a tag in-
volves re-labeling a page of memory with the allo-
cator’s tag value.

• Allocate a new kernel object with a particular type,
label, and clearance. The monitor allocates an
empty kernel object with a fresh object ID, places
it on the object hash table, and returns the object
pointer to the caller for further initialization. The
monitor ensures that the label (and clearance, for
threads and gates) of the new object is permitted for
the currently executing thread.

• Atomically increment or decrement the refcount of
a kernel object and, correspondingly, set-from-zero
or clear-from-one the reference-holder bit in the tag
of a 64-bit memory location storing the object ID
of that kernel object. The monitor checks that the
caller has read and write privileges over the tag of
the memory location with the reference-holder bit
cleared, and to avoid potential ID splicing attacks,
disallows 64-bit memory locations that span pages.

Finally, the monitor provides operations to manipulate
protection domains:

• Change the protection domain of the current thread
by invoking a gate. The monitor verifies the valid-
ity of the supplied gate object, and checks that the
caller is authorized to invoke the gate.

• Change the protection domain of the current thread
by adjusting the label or clearance, as long as it is
permitted by the thread’s current label and clear-
ance.

• Allocate a new category. The monitor grants owner-
ship of the newly allocated category to the request-
ing thread.

The LoStar prototype incurs some performance over-
head due to the introduction of a security monitor. In par-
ticular, any communication between two instances of the
kernel running in different protection domains must now
go through the security monitor, and the security monitor
must be involved in the creation of new protection do-
mains, as well as switches between protection domains.
Section 5 will present a more detailed evaluation of the
performance overheads incurred by the introduction of
the security monitor.

3.6 Interrupts
LoStar must deal with two kinds of exceptions: tradi-
tional CPU exceptions, which include synchronous pro-
cessor faults and asynchronous device interrupts, and
Loki’s tag exceptions, which will be described in more
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detail in Section 4.3. The two exception mechanisms are
independent, in that the CPU maintains two separate vec-
tor tables for the two kinds of exceptions, and only tag
exceptions switch the processor into monitor mode.

Traditional synchronous CPU exceptions, such as
page faults or divides by zero, are handled by the cur-
rently running kernel instance in LoStar, without switch-
ing into a different protection domain. Asynchronous de-
vice interrupts are also initially vectored to the currently
running kernel instance, and can either be handled by the
same kernel, or handed off to the device driver’s protec-
tion domain. In the case of timer interrupts, the currently
running kernel instance simply runs the scheduler, which
picks another thread to execute and asks the monitor to
switch to that thread’s kernel instance. Network device
interrupts, on the other hand, are handled by invoking
the security monitor to pass the interrupt to the network
device driver.

To simplify the security monitor, tag exceptions
mask external interrupts when transitioning into moni-
tor mode. However, the SPARC CPU can invoke syn-
chronous register window overflow or underflow excep-
tions at almost any function call or return. As a result,
the tag exception handler must install its own traditional
CPU exception handlers before proceeding to execute C
code in monitor mode. Since the traditional CPU excep-
tion mechanism does not transition the processor either
in or out of monitor mode on its own, the security mon-
itor’s traditional exception handlers need not be any dif-
ferent than their non-monitor-mode counterparts.

3.7 Devices

One limitation of our prototype is that most device han-
dling code is part of the trusted security monitor. More-
over, because the traditional interrupt mechanism does
not switch the processor into monitor mode, device live-
ness relies on individual kernel instances handing off
device interrupts to the driver in the security monitor.
(However, if untrusted kernel code cannot clear the in-
terrupt condition, the interrupt will be serviced as soon
as the CPU starts executing a well-behaved kernel in-
stance.) We believe that there are two approaches to re-
ducing the amount of trusted device driver code, corre-
sponding to two kinds of devices, as follows.

For devices that only handle data with a single label,
such as a network card, a mechanism for controlling both
device DMA and access to device registers would be suf-
ficient for moving the device driver into a separate pro-
tection domain outside the fully-trusted monitor. The
DMA control mechanism could use either memory tag-
ging to define the set of tags accessible to each device, or
an IOMMU mechanism like Intel’s VT-d [1], although
properly implementing protection through translation re-

quires avoiding peer-to-peer bus transactions and other
potential pitfalls [24].

The more difficult case is devices that handle
differently-labeled data, such as the disk. While the disk
device driver would likely remain in trusted code, we ex-
pect that support for lightweight tagging of on-disk data
would allow moving some of the file system implemen-
tation into untrusted code. For example, a small amount
of flash available in hybrid disk drives today could be
used to store sector-level tag values, and track the label
of data as it moves between RAM and disk.

4 MICROARCHITECTURE

Loki enables building secure systems by providing fine-
grained, software-controlled permission checks and tag
exceptions. This section discusses several key aspects of
the Loki design and microarchitecture. Figure 4 shows
the overall structure of the Loki pipeline.

4.1 Memory tagging
Loki provides memory tagging support by logically as-
sociating an opaque 32-bit tag with every 32-bit word of
physical memory. Associating tags with physical mem-
ory, as opposed to virtual addresses, avoids potential
aliasing and translation issues in the security monitor.
These tags are cacheable, similar to data, and have iden-
tical locality.

Naively associating a 32-bit tag value with each 32-
bit physical memory location would not only double the
amount of physical memory, but also impact runtime per-
formance. Setting tag values for large ranges of mem-
ory would be prohibitively expensive if it required man-
ually updating a separate tag for each word of memory.
Since tags tend to exhibit high spatial locality [29], our
design adopts a multi-granular tag storage approach in
which page-level tags are stored in a linear array in phys-
ical memory, called the page-tag array, allocated by the
monitor code. This array is indexed by the physical page
number to obtain the 32-bit tag for that page. These
tags are cached in a structure similar to a TLB for per-
formance. Note that this is different from previous work
where page-level tags are stored in the TLBs and page ta-
bles [29]. Since we do not make any assumptions about
the correctness of the MMU code, we must maintain our
tags in a separate structure. The monitor can specify
fine-grained tags for a page of memory on demand, by
allocating a shadow memory page to hold a 32-bit tag
for every 32-bit word of data in the original page, and
putting the physical address of the shadow page in the
appropriate entry in the linear array, along with a bit to
indicate an indirect entry. The benefit of this approach is
that DRAM need not be modified to store tags, and the
tag storage overhead is proportional to the use of fine-
grained tags.

9



234 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association10 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DRAM Tag

ALU Writeback

Permission
Checks

ExceptionsInstruction
Decode

Reg
File

Memory 
Controller

I-Cache

Tag

Tag Handling

Execute
P-Cache

D-Cache

Tag

Read/Write
P-Cache

Tag Loki Tags

Loki Logic

LEGEND

Figure 4: The Loki pipeline, based on a traditional pipelined SPARC processor.

4.2 Permissions cache

Fine-grained permission checks are enforced in hardware
using a permission cache, or P-cache. The P-cache stores
a set of tag values, along with a 3-bit vector of permis-
sions (read, write, and execute) for each of those tag val-
ues, which represent the privileges of the currently exe-
cuting code. Each memory access (load, store, or instruc-
tion fetch) checks that the accessed memory location’s
tag value is present in the P-cache and that the appropri-
ate permission bit is set.

The P-cache is indexed by the least significant bits of
the tag. A P-cache entry stores the upper bits of the tag
and its 3-bit permission vector. The monitor handles P-
cache misses by filling it in as required, similar in spirit
to a software-managed TLB. All known TLB optimiza-
tion techniques apply to the P-cache design as well, such
as multi-level caches, separate caches for instruction and
data accesses, hardware assisted fills, and so on.

The size of the P-cache, and the width of the tags
used, are two important hardware parameters in the Loki
architecture that impact the design and performance of
software. The size of the P-cache affects system perfor-
mance, and effectively limits the working set size of ap-
plication and kernel code in terms of how many different
tags are being accessed at the same time. Applications
that access more tags than the P-cache can hold will incur
frequent exceptions invoking the monitor code to refill
the P-cache. However, the total number of security poli-
cies specified in hardware is not limited by the size of the
P-cache, but by the width of the tag. In our experience,
32-bit tags provide both a sufficient number of tag val-
ues, and sufficient flexibility in the design of the tag value
representation scheme. Finally, as we will show later in
the evaluation of our prototype, even a small number of

P-cache entries is sufficient to achieve good performance
for a wide variety of workloads.

4.3 Tag exceptions

When a tag permission check fails, control must be trans-
ferred to the security monitor, which will either update
the permission cache based on the tag of the accessed
memory location, or terminate the offending protection
domain. Ideally, the exception mechanism will be such
that the trusted security handler can be as simple as possi-
ble, to minimize TCB size. Traditional trap and interrupt
handling facilities do not conform with this, as they rely
on the integrity of the MMU state, such as page tables,
and privileged registers that may be modified by poten-
tially malicious kernel code.

To address this limitation, Loki introduces a tag ex-
ception mechanism that is independent of the traditional
CPU exception mechanism. On a tag exception, Loki
saves exception information to a few dedicated hardware
registers, disables the MMU, switches to the monitor
privilege level, and jumps to the tag exception handler
in the trusted monitor. The MMU must be disabled be-
cause untrusted kernel code has full control over MMU
registers and page tables. For simplicity, Loki also dis-
ables external device interrupts when handling a tag ex-
ception. The predefined address for the monitor is avail-
able in a special register introduced by Loki, which can
only be updated while in monitor mode, to preclude ma-
licious code from hijacking monitor mode. As all code in
the monitor is trusted, tag permission checks are disabled
in monitor mode. The monitor also has direct access to
a set of registers that contain information about the tag
exception, such as the faulting tag.

10
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5 PROTOTYPE EVALUATION

The main goal of this paper was to show that tagged
memory support can significantly reduce the amount of
trusted code in a system. To that end, this section re-
ports on our prototype implementation of Loki hardware
and the complexity and security of our LoStar software
prototype. We then show that our prototype performs ac-
ceptably by evaluating its performance, and justify our
hardware parameter choices by measuring the patterns
and locality of tag usage.

In modifying HiStar to take advantage of Loki, we
added approximately 1,300 lines of C and assembly code
to the kernel, and modified another 300 lines of C code,
but the resulting TCB is reduced by 6,400 lines of code—
more than a factor of two. While Loki greatly reduces the
amount of trusted code, we have no formal proof of the
system’s security. Instead, our current prototype relies
manual inspection of both its design and implementation
to minimize the risk of a vulnerability.

5.1 Loki prototype
To evaluate our design of Loki, we developed a proto-
type system based on the SPARC architecture. Our pro-
totype is based on the Leon SPARC V8 processor, a 32-
bit open-source synthesizable core developed by Gaisler
Research [11]. We modified the pipeline to perform our
security operations, and mapped the design to an FPGA
board, resulting in a fully functional SPARC system that
runs HiStar. This gives us the ability to run real-world
applications and gauge the effectiveness of our security
primitives.

Leon uses a single-issue, 7-stage pipeline. We mod-
ified its RTL code to add support for coarse and fine-
grained tags, added the P-cache, introduced the security
registers defined by Loki, and added the instructions that
manipulate special registers and provide direct access to
tags in the monitor mode. We added 6 instructions to the
SPARC ISA to read/write memory tags, read/write secu-
rity registers, write to the permission cache, and return
from a tag exception. We also added 7 security regis-
ters that store the exception PC, exception nPC, cause
of exception, tag of the faulting memory location, mon-
itor mode flag, address of the tag exception handler in
the monitor, and the address of the base of the page-tag
array. Figure 4 shows the prototype we built.

We built a permission cache using the design discussed
in Section 4.2. This cache has 32 entries and is 2-way
set associative. During instruction fetch, the tag of the
instruction’s memory word is read in along with the in-
struction from the I-cache. This tag is used to check the
Execute permission bit. Memory operations—loads and
stores—index this cache a second time, using the mem-
ory word’s tag. This is used to check the Read and Write
permission bits. As a result, the permission cache is ac-

Parameter Specification
Pipeline depth 7 stages

Register windows 8
Instruction cache 16 KB, 2-way set associative

Data cache 32 KB, 2-way set associative
Instruction TLB 8 entries, fully-associative

Data TLB 8 entries, fully-associative
Memory bus width 64 bits

Prototype Board Xilinx University Program (XUP)
FPGA device XC2VP30

Memory 512 MB SDRAM DIMM
Network I/O 100 Mbps Ethernet MAC

Clock frequency 65 MHz

Figure 5: The architectural and design parameters for our prototype of
the Loki architecture.

Component Block RAMs 4-input LUTs
Base Leon 43 14,502
Loki Logic 2 2,756
Loki Total 45 17,258

Increase over base 5% 19%

Figure 6: Complexity of our prototype FPGA implementation of Loki
in terms of FPGA block RAMs and 4-input LUTs.

cessed at least once by every instruction, and twice by
some instructions. This requires either two ports into the
cache or separate execute and read/write P-caches to al-
low for simultaneous lookups. Figure 4 shows a simpli-
fied version of this design for clarity.

As mentioned in Section 4.1, we implement a multi-
granular tag scheme with a page-tag array that stores the
page-level tags for all the pages in the system. These tags
are cached for performance in an 8-entry cache that re-
sembles a TLB. Fine-grained tags can be allocated on de-
mand at word granularity. We reserve a portion of main
memory for storing these tags and modified the mem-
ory controller to properly access both data and tags on
cached and uncached requests. We also modified the in-
struction and data caches to accommodate these tag bits.

We synthesized our design on the Xilinx Univer-
sity Program (XUP) board which contains a Xilinx
XC2VP30 FPGA. Figure 5 summarizes the basic board
and design statistics, and Figure 6 quantifies the changes
made for the Loki prototype by detailing the utilization
of FPGA resources. Note that the area overhead of Loki’s
logic will be lower in modern superscalar designs that are
significantly more complex than the Leon. Since Leon
uses a write-through, no-write-allocate data cache, we
had to modify its design to perform a read-modify-write
access on the tag bits in the case of a write miss. This
change and its small impact on application performance
would not have been necessary with a write-back cache.
There was no other impact on the processor performance,
as the permission table accesses and tag processing occur
in parallel and are independent from data processing in
all pipeline stages.

11
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Lines of code HiStar LoStar
Kernel code 11,600 (trusted) 12,700 (untrusted)

Bootstrapping code 1,300 1,300
Security monitor code N/A 5,200 (trusted)

TCB size: trusted code 11,600 5,200

Figure 7: Complexity of the original trusted HiStar kernel, the un-
trusted LoStar kernel, and the trusted LoStar security monitor. The
size of the LoStar kernel includes the security monitor, since the kernel
uses some common code shared with the security monitor. The boot-
strapping code, used during boot to initialize the kernel and the security
monitor, is not counted as part of the TCB because it is not part of the
attack surface in our threat model.

5.2 Trusted code base
To evaluate how well the Loki architecture allows an op-
erating system to reduce the amount of trusted code, we
compare the sizes of the original, fully trusted HiStar ker-
nel for the Leon SPARC system, and the modified LoStar
kernel that includes a security monitor, in Figure 7. To
approximate the size and complexity of the trusted code
base, we report the total number of lines of code. The
kernel and the monitor are largely written in C, although
each of them also uses a few hundred lines of assembly
for handling hardware traps. LoStar reduces the amount
of trusted code in comparison with HiStar by more than
a factor of two. The code that LoStar removed from the
TCB is evenly split between three main categories: the
system call interface, page table handling, and resource
management (the security monitor tags pages of memory
but does not directly manage them).

5.3 Performance
To understand the performance characteristics of our de-
sign, we compare the relative performance of a set of
applications running on unmodified HiStar on a Leon
processor and on our modified LoStar system on a Leon
processor with Loki support. The application binaries are
the same in both cases, since the kernel interface remains
the same. We also measure the performance of LoStar
while using only word-granularity tags, to illustrate the
need for page-level tag support in hardware.

Figure 8 shows the performance of a number of bench-
marks. Overall, most benchmarks achieve similar per-
formance under HiStar and LoStar (overhead for LoStar
ranges from 0% to 4%), but support for page-level tags
is critical for good performance, due to the extensive use
of page-level memory tagging. For example, the page al-
locator must change the tag values for all of the words
in an entire page of memory in order to give a particu-
lar protection domain access to a newly-allocated page.
Conversely, to revoke access to a page from a protec-
tion domain when the page is freed, the page allocator
must reset all tag values back to a special tag value that
no other protection domain can access. Explicitly setting
tags for each of the words in a page incurs a significant
performance penalty (up to 55%), and being able to ad-

just the tag of a page with a single memory write greatly
improves performance.

Compute-intensive applications, represented by the
primes and gzip workloads, achieve the same perfor-
mance in both cases (0% overhead). Even system-
intensive applications that do not switch protection do-
mains, such as the system call and file system bench-
marks, incur negligible overhead (0-2%), since they
rarely invoke the security monitor. Applications that
frequently switch between protection domains incur a
slightly higher overhead, because all protection domain
context switches must be done through the security mon-
itor, as illustrated by the IPC ping-pong workload (2%
overhead). However, LoStar achieves good network
I/O performance, despite a user-level TCP/IP stack that
causes significant context switching, as can be seen in the
wget workload (4% overhead). Finally, creation of a new
protection domain, illustrated by the fork/exec workload,
involves re-labeling a large number of pages, as can be
seen from the high performance overhead (55%) with-
out page-level tags. However, the use of page-level tags
reduces that overhead down to just 1%.

5.4 Tag usage and storage
To evaluate our hardware design parameters, we mea-
sured the tag usage patterns of the different workloads. In
particular, we wanted to determine the number of pages
that require fine-grained word-level tags versus the num-
ber of pages where all of the words in the page have the
same tag value, and the working set size of tags—that
is, how many different tags are used at once by differ-
ent workloads. Figure 9 summarizes our results for the
workloads from the previous sub-section.

The results show that all of the different workloads
under consideration make moderate use of fine-grained
tags. The primary use of fine-grained tags comes from
protecting the metadata of each kernel object. For exam-
ple, workloads with a large number of small files, each
of which corresponds to a separate kernel object, require
significantly more pages with fine-grained tags compared
to a workload that uses a small number of large files.
Since Loki implements fine-grained tagging for a page
by allocating a shadow page to store a 32-bit tag for each
32-bit word of the original page, tag storage overhead
for such pages is 100%. On the other hand, pages stor-
ing user data (which includes file contents) have page-
level tags, which incur a much lower tag storage over-
head of 4/4096 ≈ 0.1%. As a result, overall tag stor-
age overhead is largely influenced by the average size
of kernel objects cached in memory for a given work-
load. We expect that it’s possible to further reduce tag
storage overhead for fine-grained tags by using a more
compact in-memory representation, like the one used by
Mondriaan Memory Protection [33], or to rearrange ker-
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Figure 8: Relative running time (wall clock time) of benchmarks running on unmodified HiStar, on LoStar, and on a version of LoStar without
page-level tag support, normalized to the running time on HiStar. The primes workload computes the prime numbers from 1 to 100,000. The syscall
workload executes a system call that gets the ID of the current thread. The IPC ping-pong workload sends a short message back and forth between
two processes over a pipe. The fork/exec workload spawns a new process using fork and exec. The small-file workload creates, reads, and deletes
1000 512-byte files. The large-file workload performs random 4KB reads and writes within a single 4MB file. The wget workload measures the
time to download a large file from a web server over the local area network. Finally, the gzip workload compresses a 1MB binary file.

Workload primes syscall IPC fork/exec small files large files wget gzip
Fraction of memory pages

40% 49% 54% 65% 58% 3% 18% 16%
with word-granularity tags

Maximum number of
12 11 18 24 13 13 30 12

concurrently accessed tag values

Figure 9: Tag usage under different workloads running on LoStar.

nel data structures to keep data with similar tags together,
although doing so would likely increase complexity ei-
ther in hardware or software.

Finally, all workloads shown in Figure 9 exhibit rea-
sonable tag locality, requiring only a small number of
tags at time. This supports our design decision to use a
small fixed-size hardware permission cache.

6 RELATED WORK

Since this paper describes a combination of hardware and
software, we will discuss related work in these two areas
in turn.

6.1 Hardware
Many hardware protection architectures have been pre-
viously proposed. Multics [25] introduced hierarchical
protection rings which were used to isolate trusted code
in a coarse-grained manner. x86 processors also have 4
privilege levels, but the page table mechanism can only
distinguish between two effective levels. However, ap-
plication security policies are often not hierarchical, and
Loki’s 32-bit tag space provides a way of representing a
large number of such policies in hardware.

The Intel i432 and Cambridge CAP systems, among
others [20], augment the way applications name mem-
ory with a capability, which allows enforcing non-

hierarchical security policies by controlling access to ca-
pabilities, at the cost of changing the way software uses
pointers. Loki associates security policies with physi-
cal memory, instead of introducing a name translation
mechanism to perform security checks. As a result, the
security policy for any piece of data in Loki is always un-
ambiguously defined, regardless of any aliasing that may
be present in higher-level translation mechanisms.

The protection lookaside buffer (PLB) [16] provides a
similarly non-hierarchical access control mechanism for
a global address space (although only at page-level gran-
ularity). While the PLB caches permissions for virtual
addresses, Loki’s permissions cache stores permissions
in terms of tag values, which is much more compact, as
Section 5.4 suggests.

The IBM system i [13] associates a one-bit tag with
physical memory to indicate whether the value represents
a pointer or not. Similarly, the Intel i960 [14] provides
a one-bit tag to protect kernel memory. Loki’s tagged
memory architecture is more general, providing a large
number of protection domains.

Mondriaan Memory Protection (MMP) [33] provides
lightweight, fine-grained (down to individual memory
words) protection domains for isolating buggy code.
However, MMP was not designed to reduce the amount
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of trusted code in a system. Since the MMP supervi-
sor relies on the integrity of the MMU and page tables,
MMP cannot enforce security guarantees once the kernel
is compromised. Loki extends the idea of lightweight
protection domains to physical resources, such as physi-
cal memory, to achieve benefits similar to MMP’s pro-
tection domains with stronger guarantees and a much
smaller TCB. Moreover, this paper describes how a fine-
grained memory protection mechanism can be used to
extend the enforcement of application security policies
all the way down into hardware.

The Loki design was initially inspired by the Rak-
sha hardware architecture [9]. However, the two sys-
tems have significant design differences. Raksha main-
tains four independent one-bit tag values (corresponding
to four security policies) for each CPU register and each
word in physical memory, and propagates tag values ac-
cording to customizable tag propagation rules. Loki, on
the other hand, maintains a single 32-bit tag value for
each word of physical memory (allowing the security
monitor to define how multiple security policies inter-
act), does not tag CPU registers, and does not propagate
tag values. Raksha’s propagation of tag values was nec-
essary for fine-grained taint tracking in unmodified appli-
cations, but it could not enforce write-protection of phys-
ical memory. Conversely, Loki’s explicit specification of
tag values works well for a system like HiStar, where all
state in the system already has a well-defined security
label that controls both read and write access.

There has also been significant work on hardware sup-
port for other types of security mechanisms, such as dy-
namic information flow tracking, to prevent attacks such
as buffer overflows [6, 8, 9, 29]. Hardware designs for
preventing information leaks in user applications have
also been proposed [28, 32], although these designs do
not attempt to reduce the TCB size. None of these de-
signs provide a sufficiently large number of protection
domains needed to capture different application secu-
rity policies. Moreover, enforcement of information flow
control in hardware has inherent covert channels relating
to the re-labeling of physical memory locations. HiStar’s
system call interface avoids this by providing a virtually
unlimited space of kernel object IDs that are never re-
labeled.

6.2 Software
Many operating systems, including KeyKOS [4],
EROS [27], and HiStar [35], provide strong isolation
of application code using a small, fully trusted kernel.
However, existing hardware architectures fundamentally
require that the fully trusted kernel include code to man-
age page tables, device drivers, and so on, in order to
provide different protection domains for user-level code.
LoStar can enforce certain security guarantees using a

significantly smaller trusted code base, by directly spec-
ifying security policies for physical resources in hard-
ware. This allows the fully trusted code base to exclude
complex code such as page table management and device
drivers. Even for an operating system such as HiStar,
where the kernel is already small, Loki allows signifi-
cantly reducing the trusted code size.

A number of systems attempt to provide some guar-
antees even in the case of buggy or malicious kernel
code. Separation kernels [23] and virtual machine mon-
itors [15] provide strong isolation between multiple pro-
cesses on a single machine. SecVisor [26] ensures ker-
nel code integrity in a small hypervisor. Proxos [31]
allows sensitive applications to partition trust in oper-
ating system abstractions by using an untrusted kernel
for certain peripheral functionality. Flicker [21] enables
tamper-proof code execution without trusting the under-
lying operating system. Nooks [30] and Mondrix [34]
isolate potentially buggy device driver code in the Linux
kernel. These systems enforce relatively static security
policies that do not directly map onto application secu-
rity goals. As a result, applications running on top of
these systems must provide their own security enforce-
ment mechanisms. In contrast, LoStar maps application
security policies onto the underlying hardware protection
mechanisms, providing strong enforcement of applica-
tion security.

Singularity [12] avoids the need for hardware pro-
tection mechanisms by relying on type safety instead.
However, we believe that Singularity could also bene-
fit from associating security policies with data, perhaps
using types.

The VMM security kernel [15] provides strong isola-
tion across multiple virtual machines with limited shar-
ing. Using the Loki architecture, the VMM security ker-
nel could be implemented using significantly less trusted
code, by directly specifying security policies for physi-
cal hardware resources used by the different virtual ma-
chines. Unlike LoStar, the VMM security kernel pro-
vides very limited sharing. A virtual machine monitor
could adopt an interface similar to that provided by Loki
to enforce security policies on behalf of applications run-
ning inside a virtual machine.

Overshadow [7] aims to protect application data in an
untrusted OS by using a virtual machine monitor. One of
the most complex aspects of Overshadow is providing a
secure binding between application names (such as Unix
pathnames) and protection domains. LoStar addresses
this problem by relying on HiStar’s design which reduces
all naming to a single 61-bit kernel object namespace.
As a result, LoStar needs only to ensure the integrity of
a single flat namespace in the trusted security monitor,
which is simpler than a hierarchical file system.
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7 CONCLUSION

This paper showed how hardware support for tagged
memory can be used to enforce application security poli-
cies. We presented Loki, a hardware tagged memory ar-
chitecture that provides fine-grained, software-managed
access control for physical memory. We also showed
how HiStar, an existing operating system, can take ad-
vantage of Loki by directly mapping application security
policies to the hardware protection mechanism. This al-
lows the amount of trusted code in the HiStar kernel to be
reduced by over a factor of two. We built a full-system
prototype of Loki by modifying a synthesizable SPARC
core, mapping it to an FPGA board, and porting HiStar
to run on it. The prototype demonstrates that our design
can provide strong security guarantees while achieving
good performance for a variety of workloads in a famil-
iar Unix environment.
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