PlanetSeer: Internet Path Failure Monitoring
and Characterization in Wide-Area Services

Ming Zhang, Chi Zhang, Vivek Pai, Larry Peterson, and Randy Wang
Department of Computer Science
Princeton University

Abstract

Detecting network path anomalies generally requires ex-
amining large volumes of traffic data to find misbehav-
ior. We observe that wide-area services, such as peer-
to-peer systems and content distribution networks, ex-
hibit large traffic volumes, spread over large numbers
of geographically-dispersed endpoints. This makes them
ideal candidates for observing wide-area network behav-
ior. Specifically, we can combine passive monitoring of
wide-area traffic to detect anomalous network behavior,
with active probes from multiple nodes to quantify and
characterize the scope of these anomalies.

This approach provides several advantages over other
techniques: (1) we obtain more complete and finer-
grained views of failures since the wide-area nodes al-
ready provide geographically diverse vantage points; (2)
we incur limited additional measurement cost since most
active probing is initiated when passive monitoring de-
tects oddities; and (3) we detect failures at a much higher
rate than other researchers have reported since the ser-
vices provide large volumes of traffic to sample. This pa-
per shows how to exploit this combination of wide-area
traffic, passive monitoring, and active probing, to both
understand path anomalies and to provide optimization
opportunities for the host service.

1 Introduction

As the Internet grows and routing complexity increases,
network-level instabilities are becoming more common.
Among the problems causing end-to-end path failures
are router misconfigurations [16], maintenance, power
outages, and fiber cuts [15]. Inter-domain routers may
take tens of minutes to reach a consistent view of the net-
work topology after network failures, during which time
end-to-end paths may experience outages, packet losses
and delays [14]. These routing problems can affect per-
formance and availability [1, 14], especially if they occur
on commonly-used network paths. However, even deter-
mining the existence of such problems is nontrivial, since

no central authority monitors all Internet paths.

Previously, researchers have used routing messages,
such as BGP [16], OSPF [15] and IS-IS [12] update mes-
sages to identify inter-domain and intra-domain routing
failures. This approach usually requires collecting rout-
ing updates from multiple vantage points, which may
not be easily accessible for normal end users. Other re-
searchers have relied on some form of distributed active
probing, such as pings and traceroutes [1, 7, 19], to de-
tect path anomalies from end hosts. These approaches
monitor the paths between pairs of hosts by having them
repeatedly probe each other. Because this approach
requires cooperation from both source and destination
hosts, these techniques measure only paths among a lim-
ited set of participating nodes.

We observe that there exist several wide-area services
employing multiple geographically-distributed nodes to
serve a large and dispersed client population. Examples
of such services include Content Distribution Networks
(CDNs), where the clients are distinct from the nodes
providing the service, and Peer-to-Peer (P2P) systems,
where the clients also participate in providing the service.
In these kinds of systems, the large number of clients use
a variety of network paths to communicate with the ser-
vice, and are therefore likely to see any path instabilities
that occur between them and the service nodes.

This scenario of geographically-distributed clients ac-
cessing a wide-area service can itself be used as a mon-
itoring infrastructure, since the natural traffic generated
by the service can reveal information about the network
paths being used. By observing this traffic, we can pas-
sively detect odd behavior and then actively probe it to
understand it in more detail. This approach produces less
overhead than a purely active-probing based approach.

This monitoring can also provide direct benefit to the
wide-area service hosting the measurement infrastruc-
ture. By characterizing failures, the wide-area service
can mitigate their impact. For example, if the outbound
path between a service node and a client suddenly fails,

USENIX Association OSDI *04: 6th Symposium on Operating Systems Design and Implementation

167

it may be possible to mask the failure by sending out-
bound traffic indirectly through an unaffected service
node, using techniques such as overlay routing [1]. More
flexible services may adapt their routing decisions, and
have clients use service nodes that avoid the failure en-
tirely. Finally, a history of failure may motivate place-
ment decisions—a service may opt to place a service
node within an ISP if intra-ISP paths are more reliable
than paths between it and other ISPs.

This paper describes a monitoring system, PlanetSeer,
that has been running on PlanetLab since February 2004.
It passively monitors traffic between PlanetLab and thou-
sands of clients to detect anomalous behavior, and then
coordinates active probes from many PlanetLab sites to
confirm the anomaly, characterize it, and determine its
scope. We are able to confirm roughly 90,000 anomalies
per month using this approach, which exceeds the rate
of previous active-probing measurements by more than
two orders of magnitude [7]. Furthermore, since we can
monitor traffic initiated by clients outside PlanetLab, we
are also able to detect anomalies beyond those seen by a
purely active-probing approach.

In describing PlanetSeer, this paper makes three con-
tributions. First, it describes the design of the passive and
active monitoring techniques we employ, and presents
the algorithms we use to analyze the failure informa-
tion we collect. Second, it reports the results of running
PlanetSeer over a three month period of time, including
a characterization of the failures we see. Third, it dis-
cusses opportunities to exploit PlanetSeer diagnostics to
improve the level of service received by end users.

2 Background

Although the Internet is designed to be self-healing, var-
ious problems can arise in the protocols, implementa-
tions [15], and configurations [16] to cause network in-
stability. Even in the absence of such problems, rout-
ing updates can take time to propagate, so failures may
be visible for minutes rather than seconds. Even though
tools like ping and traceroute exist for diagnosing net-
work problems, pinpointing failures and determining
their origins is nontrivial for several reasons:

Network paths are often asymmetric. Paxson ob-
served that 49% of node pairs have different forward and
reverse paths which visit at least one different city [19].
Since traceroute only maps the forward path, it is hard to
infer whether the forward or reverse path is at fault with-
out cooperation from the destination. PlanetSeer com-
bines passive monitoring results, path history informa-
tion, and multi-point probing to isolate forward failures.

Failure origin may differ from failure appearance.
Routing protocols, such as BGP and OSPF, may propa-

gate failure information to divert traffic away from failed
links. When a traceroute stops at a hop, it is often the
case that the router has received a routing update to with-
draw that path, leaving no route to the destination.

Failure durations are highly varied. Some failures,
like routing loops, can last for days. Others may persist
for less than a minute. This high variance makes it hard
to diagnose failures and react in time.

Failure isolation requires broad coverage. Histori-
cally, few sites had enough network coverage to initiate
enough traceroutes to identify all affected paths. The ad-
vent of public traceroute servers [24] provides some re-
sources to help manually diagnose problems, and tools
such as ScriptRoute [22] can help automate the process.

The advent of wide-coverage networking testbeds like
PlanetLab has made it possible to deploy wide-area ser-
vices on a platform with enough network coverage to
also perform the probing on the same system. This ap-
proach addresses the problems listed above: (1) when
clients initiate connections to the wide-area service, we
obtain a forward path that we can monitor for anoma-
lies; (2) PlanetLab nodes span a large number of diverse
autonomous systems (ASes), providing reasonable net-
work coverage to initiate probing; and (3) active probing
can be launched as soon as problems are visible in the
passively-monitored traffic, making it possible to catch
even short-term anomalies that last only a few minutes.

While our focus is techniques for efficiently identify-
ing and characterizing network anomalies, we must give
some attention to the possibility of our host platform af-
fecting our results. In particular, it has been recently
observed that intra-PlanetLab paths may not be repre-
sentative of the Internet [2], since these nodes are of-
ten hosted on research-oriented networks. Fortunately,
by monitoring services with large client populations, we
conveniently bypass this issue since most of the paths be-
ing monitored terminate outside of PlanetLab. By using
geographically-dispersed clients connecting to a large
number of PlanetLab nodes, we observe more than just
intra-PlanetLab connections.

3 PlanetSeer Operation

This section describes our environment and our ap-
proach, including how we monitor traffic, identify po-
tential path anomalies, and actively probe them.

3.1 Components

We currently use the CoDeeN Content Distribution Net-
work [26] as our host wide-area service, since it attracts
a reasonably large number of clients (7K-12K daily) and
generates a reasonable traffic volume (100-200 GB/day,
5-7 million reqs/day). CoDeeN currently runs on 120

168

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association

PlanetLab nodes in North America (out of 350 world-
wide), but it attracts clients from around the world.
CoDeeN acts as a large, cooperative cache, and it for-
wards requests between nodes. When it does not have
a document cached, it gets the document from the con-
tent provider (also known as the origin server). As a re-
sult, in addition to the paths between CoDeeN and the
clients, we also see intra-CoDeeN paths, and paths be-
tween CoDeeN and the origin servers.

PlanetSeer consists of a set of passive monitoring dae-
mons (MonD) and active probing daemons (ProbeD).
The MonDs run on all CoDeeN nodes, and watch for
anomalous behavior in TCP traffic. The ProbeDs run
on all PlanetLab nodes, including the CoDeeN nodes,
and wait to be activated. When a MonD detects a pos-
sible anomaly, it sends a request to its local ProbeD. The
local ProbeD then contacts ProbeDs on the other nodes
to begin a coordinated planet-wide probe. The ProbeDs
are organized into groups so that not all ProbeDs are in-
volved in every distributed probe.

Currently, some aspects of PlanetSeer are manually
configured, including the selection of nodes and the or-
ganization of ProbeD groups. Given the level of trust
necessary to monitor traffic, we have not invested any
effort to make the system self-organizing or open to un-
trusted nodes. While we believe that both goals may be
possible, these are not the current focus of our research.

Note that none of our infrastructure is CoDeeN-
specific or PlanetLab-specific, and we could easily mon-
itor other services on other platforms. For PlanetSeer,
the appeal of CoDeeN (and hence, PlanetLab) is its large
and active client population. The only requirement we
have is the ability to view packet headers for TCP traf-
fic, and the ability to launch traceroutes. On PlanetLab,
the use of safe raw sockets [3] mitigates some privacy
issues — the PlanetSeer service only sees those packets
that its hosting service (CoDeeN) generates. In other en-
vironments, we believe the use of superuser-configured
in-kernel packet filters can achieve a similar effect.

In terms of resources, neither ProbeD nor MonD re-
quire much memory or CPU to run. The non-glibc por-
tion of ProbeD has a IMB memory footprint. The MonD
processes have a memory consumption tied to the level
of traffic activity, and is used to store flow tables, statis-
tics, etc. In practice, we find that it requires roughly 1KB
per simultaneous flow, but we have made no effort to op-
timize this consumption. The CPU usage of monitoring
and probing is low, with only analysis requiring much
CPU. Currently, analysis is done offline in a centralized
location, but only so we can reliably archive the data. We
could perform the analysis on-line if desired — currently,
each anomaly requires a 20 second history to detect, one
minute to issue and collect the probes, and less than 10ms
of CPU time to analyze.

3.2 MonD Mechanics

MonD runs on all CoDeeN nodes and observes all in-
coming/outgoing TCP packets on each node using Plan-
etLab’s tcpdump utility. It uses this information to gen-
erate path-level and flow-level statistics, which are then
used for identifying possible anomalies in real-time.

Although flow-level information regarding TCP time-
outs, retransmissions, and round-trip times (RTTs) al-
ready exists inside the kernel, this information is not eas-
ily exported by most operating systems. Since MonD
runs as a user-level process, it instead derives this infor-
mation by observing packet-level activity from tcpdump.
It instead infers flow-level information—e.g., timeouts,
retransmissions, and round trip times (RTTs)—from the
sniffed packets, and aggregates information from flows
on the same path to infer anomalies on that path.

MonD maintains path-level and flow-level informa-
tion, with paths identified by their source and destination
IP addresses, and flows identified by both port numbers
in addition to the addresses. Flow-level information in-
cludes information such as sequence numbers, timeouts,
retransmissions, and round-trip times. Path-level infor-
mation aggregates some flow-level information, such as
loss rates and RTTs.

MonD adds new entries when it sees new paths/flows.
On packet arrival, MonD updates a timestamp for the
flow entry. Inactive flows, which have not received any
traffic in FlowLifeTime (15 minutes in the current sys-
tem), are pruned from the path entry, and any empty
paths are removed from the table.

3.3 MonD Behavior

MonD uses two indicators to identify possible anomalies,
which are then forwarded to ProbeD for confirmation.
The first indicator is a change in a flow’s Time-To-Live
(TTL) field. The TTL field in an IP packet is initialized
by a remote host and gets decremented by one at each
hop along the traversed path. If the path between a source
and destination is static, the TTL value of all packets that
reach the destination should be the same. If the TTL
changes in the middle of the stream, it usually means a
routing change has occurred.

The second indicator, multiple consecutive timeouts,
signals a possible path anomaly since such timeouts
should be relatively rare. A TCP flow can time out sev-
eral times from a single unacknowledged data packet,
and each consecutive timeout causes the retransmission
timeout period to double [25]. The minimum initial
retransmission timeout in TCP ranges from 200ms (in
Linux) to 1 second (in RFC 2988 [25]). Thus, n consec-
utive timeouts means either the data packets or the cor-
responding acknowledgment packets (ACKs) have not
been received during the last 2™ — 1 periods (seconds
or 200ms ticks).

USENIX Association OSDI *04: 6th Symposium on Operating Systems Design and Implementation

169

Our current threshold is four consecutive timeouts,
which corresponds to 3.2—-16 seconds. Since most con-
gestion periods on today’s Internet are short-lived (95%
are less than 220ms [27]), these consecutive timeouts are
likely due to path anomalies. We can further subdivide
this case based on whether MonD is on the sender or re-
ceiver side of the flow. If MonD is on the receiver side,
then no ACKSs are reaching the sender, and we can in-
fer the problem is on the path from the CoDeeN node to
the client/server, which we call forward path. If MonD
is on the sender side, then we cannot determine whether
outbound packets are being lost or whether ACKs are be-
ing lost on the way to MonD.

3.4 MonD Flow/Path Statistics

We now describe how MonD infers path anomalies after
grouping packets into flows. We examine how to mea-
sure the per-flow RTTs, timeouts and retransmissions.

To detect timeouts when MonD is on the sender side,
we maintain two variables, SendSeqNo and SendRtx-
Count for each flow. SendSeqgNo is the sequence num-
ber (seqno) of the most recently sent new packet, while
SendRtxCount is a count of how many times the packet
has been retransmitted. If we use CurrSegNo to represent
the seqno of the packet currently being sent, we see three
cases: If CurrSeqNo > SendSeqNo, the flow is mak-
ing progress, so we clear SendRtxCount and set Send-
SegNo to CurrSeqNo. If CurrSeqNo < SendSegNo, the
packet is a fast retransmit, and we again set SendSegNo to
CurrSeqNo. If CurrSeqgNo = SendSeqNo, we conclude a
timeout has occurred and we increment SendRtxCount.
If SendRtxCount exceeds our threshold, MonD notifies
ProbeD that a possible path anomaly has occurred.

A similar mechanism is used when MonD observes the
receiver side of a TCP connection. It keeps track of the
largest seqno received per flow, and if the current packet
has the same seqno, a counter is incremented. Doing this
determines how many times a packet has been retrans-
mitted due to consecutive timeouts at the sender. When
this counter hits our threshold, MonD notifies ProbeD
that this sender is not seeing our ACKs. Since we are
seeing the sender’s packets, we know that this direction
is working correctly. Note that this method assumes that
duplicate packets are mostly due to retransmissions at the
sender. This assumption is safe because previous work
has shown that packets are rarely duplicated by the net-
work [20].

Detecting TTL change is trivial: MonD records the
TTL for the first packet received along each path. For
each packet received from any flow on the same path, we
compare its TTL to our recorded value. If MonD detects
any change, it notifies ProbeD that a possible anomaly
has occurred. Note that this case can aggregate informa-
tion from all flows along the path.

3.5 ProbeD Operation

ProbeD is responsible for the active probing portion of
PlanetSeer, and generally operates after being notified of
possible anomalies by MonD. For the purpose of the fol-
lowing discussion, when an anomaly occurs, we call the
CoDeeN node where the anomaly is detected the local
node, and the corresponding remote client/server the des-
tination. The active probing is performed using tracer-
oute, a standard network diagnostic tool. ProbeD sup-
ports three probing operations:

Baseline Probes: When a new IP address is added to
MonD’s path table, the ProbeD on the local node
performs a “baseline probe” to that destination. It
is expected that the results of this traceroute re-
flect the default network path used to communi-
cate with that destination under normal conditions.
For actively-used communication paths, a baseline
probe is launched once every 30 minutes. When
PlanetSeer is run on CoDeeN nodes, these baseline
probes are generated whenever a new client con-
nects to a node, or when a node has to contact a
new origin server.

Forward Probes: When a possible anomaly is detected
by the local MonD and reported to ProbeD, it in-
vokes multiple traceroutes from a set of geographi-
cally distributed nodes (including itself) to the des-
tination; we call the traceroute from the local node
the local traceroute or local path. This process is
performed twice, generally within one minute, in
order to identify what we term ultrashort anomalies.
On particularly problematic paths, MonD might re-
port possible anomalies very frequently, especially
if the path is very unstable. To avoid generating
too much probing traffic, ProbeD rate-limits the for-
ward probes so that it does not probe the same des-
tination within 10 minutes.

Reprobes: If the forward probes confirm an anomaly
along a path to a destination, the local ProbeD that
initiated the forward probes periodically reprobes
that path to determine the duration and effects of the
anomaly. We currently reprobe four times, at 0.5,
1.5, 3.5, and 7.5 hours after the anomaly detection
time. These reprobes can compare their traceroute
results with the original baseline probe as well as
the forward probes.

3.6 ProbeD Mechanics

When ProbeD performs the forward probes, it launches
them from geographically distributed nodes on Planet-
Lab. Compared with only doing traceroute from the lo-
cal node, using multiple vantage points gives us a more

170

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association

Category Grps | Sites Descriptions
US (edu) 11 70 US Universities

US (non-edu) 5 13 Intel, HP, NEC, etc.
Canada 2 11 Eastern & Western Canada
Europe 7 31 UK, France, Germany, etc.

Asia & MidE 4 14 China, Korea, Israel, etc.
Others 1 6 Australia, Brazil, etc.

| Total | 30 | 145 |

Table 1: Groups of the probing sites

complete view of the anomaly, such as its location, pat-
tern, and scope. Our ProbeDs are running on 353 nodes
across 145 sites on PlanetLab, more than the number
of nodes running CoDeeN. They are distributed across
North/South America, Europe, Asia and elsewhere.

Since the set of ProbeDs must communicate with each
other, they keep some membership information to track
liveness. We note that an unavailable ProbeD only re-
sults in a degradation of information quality, rather than
complete inoperability, so we do not need to aggressively
track ProbeD health. Each ProbeD queries the others
when it first starts. Thereafter, dead ProbeDs are checked
every 8 hours to reduce unneeded communication. In the
course of operation, any ProbeD that is unresponsive to
a query is considered dead.

We divide the ProbeD nodes into 30 groups based on
geographic diversity, as shown in Table 1, mainly to re-
duce the number of probes launched per anomaly. Prob-
ing every anomaly from every ProbeD location would
yield too much traffic (especially to sites with conser-
vative intrusion detection systems), and the extra traf-
fic may not yield much insight if many nodes share the
same paths to the anomaly. We also divide North Amer-
ica into educational and non-educational groups, because
the educational (.edu) sites are mostly connected to Inter-
net2, while non-educational sites are mostly connected
by commercial ISPs.

When a ProbeD receives a request from its local
MonD, it forwards it to a ProbeD in each of the other
groups. The ProbeDs perform the forward probes, and
send the results back to the requester. All results are col-
lected by the originator, and logged with other details,
such as remote IP address and the current time.

3.7 Path Diversity

We have been running PlanetSeer since February
2004. In three months, we have seen 887,521 unique
clients IPs, coming from 9232 Autonomous Systems
(ASes) (according to previous IP-to-AS mappings tech-
niques [17]). Our probes have traversed 10090 ASes,
well over half of all ASes on the Internet. We use a
hierarchical AS classification scheme that has five tiers,
based on AS relationships and connectivity [23]. The
highest layer (tier 1) represents the dense core of the In-

Tier # Covered | Tier Size | Coverage
Tier 1 22 22 100%
Tier 2 207 215 96%
Tier 3 1119 1392 80%
Tier 4 1209 1420 85%
Tier 5 5906 13872 43%
Unmapped 1627

Table 2: Path diversity

ternet, and consists of 22 ASes of the largest ISPs. Tier 2
typically includes ASes of other large national ISPs. Tier
3 includes ASes of regional ISPs. Finally, tiers 4 and 5
include ASes of small regional ISPs and customer ASes
respectively. As shown in Table 2, we have very good
coverage of the top 4 AS tiers, with complete coverage
of tier 1 and nearly-complete coverage of tier 2.

4 Confirming Anomalies

Having collected the passive data from MonD and the
traceroutes from ProbeD, the next step is processing the
probes to confirm the existence of the anomaly. This sec-
tion describes how we use this data to classify anomalies
and quantify their scope. It also reports how different
types of anomalies influence end-to-end performance.

4.1 Massaging Traceroute Data

Some of the data we receive from the traceroutes is in-
complete or unusable, but we can often perform some
simple processing on it to salvage it. The unusable
hops in a traceroute are those that do not identify the
routers or that identify the routers by special-use IP ad-
dressess [11]. The missing data is generally the absence
of a hop, and can be interpolated from other traceroutes.

Identifying and pruning unusable hops in traceroute is
simple: the unusable hops are identified by asterisks in
place of names, and other than showing the existence of
these hops, these data items provide no useful informa-
tion. We simply remove them from the traceroute but
keep the relative hop count difference between the exist-
ing hops.

Missing hops in a traceroute are slightly harder to
detect, but we can use overlapping portions of multi-
ple traceroutes to infer where they occur. We use a
simple heuristic to identify the missing hops: we com-
pare traceroutes that share the same destination, and if
the hops leading to the destination differ by an inter-
mediate hop that is present in one and missing in the
other, we replace the missing hop with the address in
the other trace. Put more formally, given two tracer-
outes from two sources to the same destination, sup-
pose there are two subsequences of these two tracer-
outes, X (X1, Xo,..., X;n)and Y (Y1, Yo, ..., Y,,) (m > 2
and n > 2) such that X; = Y7 and X,,, = Y,,. We

USENIX Association OSDI *04: 6th Symposium on Operating Systems Design and Implementation

171

Fwd Timeout
510669 (23%)

Timeout
754434 (33%)

TTL Change
994485 (44%)

Table 3: Breakdown of anomalies reported by MonD

define hop(X;) to be the hop count of X;. Note that
the number of hops between X7 and X,,,, hop(X,,) —
hop(X1), can be greater than m — 1, because we have
removed ‘“*” and special-use IPs from the traceroutes. If
hop(Xpm) — hop(X1) = hop(Ys) — hop(Y7), it is very
likely that all the hops in X and Y are the same since
they merge at X;(Y;7) and follow the same number of
hops to X, (Y},). If there exists X; such that the hop cor-
responds to hop(Y1)+hop(X;) —hop(X1) inY does not
exist because it has been removed as “*”, we consider X;
a missing hop in Y and add this hop into Y.

Our approach to inserting missing hops helps us fil-
ter out the “noise” in traceroutes so that it does not con-
fuse our anomaly confirmation using route change as de-
scribed in Section 4.2. However, it may mask certain hop
differences. For example, we sometimes see two paths X
and Y merge at X;(Y7), and diverge at some later hops
before merging at X,,(Y},) again. This usually occurs be-
tween tightly-coupled routers for load balancing reasons,
where a router selects the next hop from several paral-
lel links based on the packet IP addresses and/or traffic
load [19]. In this case, inserting missing hops may elim-
inate the different hops between the two traceroutes.

For our purposes, we do not treat such “fluttering” [19]
as anomalies because it occurs as a normal practice. We
detect fluttering by looking for hops X; and Y; such that
hop(Y;) —hop(Y1) = hop(X;) — hop(X1) but X; # Y,
and we merge them into the same hop in all the tracer-
outes. Note that this could also possibly eliminate the
hop difference caused by path change and lead to under-
estimating the number of anomalies.

4.2 Final Confirmation

After we have processed the traceroutes, we are ready to
decide whether an event reported by MonD is actually an
anomaly. We consider an anomaly “confirmed” if any of
the following conditions is met:

Loops: There is a loop in the local traceroute from
the local node to the destination, which means the
anomaly is triggered by routing loops.

Route change: The local traceroute disagrees with the
baseline traceroute. Note that the baseline tracer-
oute is no more than 30 minutes old. Given that
91% of the Internet paths remains stable for more
than several hours [19], the anomaly is most likely
caused by path change or path outage.

Non-Anomaly Anomaly Undecided

1484518 (66%) | 271898 (12%) | 503172 (22%)

Table 4: Breakdown of reported anomalies using the four
confirmation conditions

Partial unreachability: The local traceroute stops be-
fore reaching the destination, but there exist tracer-
outes from other nodes that reach the destination.
This could be caused by path outages.

Forwarding failures: The local traceroute returns an
ICMP destination unreachable message, with code
of net unreachable, host unreachable, net unknown,
or host unknown. This usually indicates that a
router does not know how to reach the destination
because of routing failures [13].

Our confirmation process is very conservative—it is
possible that some of the reported anomalies are real, but
do not meet any of the above conditions. However, our
goal is to obtain enough samples of anomalies for our
analysis and we do not want our results to be tainted by
false positives. Hence, we choose stricter conditions for
confirming anomalies. Similarly, we confirm a reported
anomaly as non-anomaly if the local traceroute does not
contain any loop, agrees with the baseline traceroute, and
reaches the destination. For a confirmed non-anomaly,
we do not perform traceroutes at remote ProbeDs, in or-
der to reduce measurement traffic.

In three months, we have seen a total of 2,259,588
possible anomalies reported, of which we confirmed
271,898. Table 3 shows the number of reported anoma-
lies of each type. As we can see, TTL change is the most
common type of reported anomaly, accounting for 44%
of the reported anomalies. For the remaining anomalies
triggered by timeouts, passive monitoring suggests that
23% are most likely caused by forward path problems.

Table 4 shows the breakdown of anomalies using the
4 confirmation conditions. The non-anomalies account
for 2/3 of the reported anomalies. Among the possible
reasons for the occurrence of non-anomalies are: ultra-
short anomalies, path-based TTL, and aggressive con-
secutive timeout levels. Some anomalies, which we
term ultrashort, are so short that our system is unable
to respond in time. Since they often are in the process
of being resolved when the forward probes are taking
place, the traceroute results may be inconsistent. Many
false alarms from path-based TTL changes are due to
NAT boxes. When clients with different initial TTL val-
ues share a NAT box, their interleaved packets appear
to show TTL change. Using flow-based TTL change
would reduce these false alarms, but may miss real TTL
changes that occur between flows since any path history

172

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association

| Temporary |

Persistent

Total | 3565 (17%) | 18000 (83%) |
< 30min N/A 54%
< 1.5 hrs N/A 11%
<3.5hrs N/A 6%
< 7.5 hrs N/A 6%
> 7.5 hrs N/A 23%
Single Loop 3008 (84%) 17007(94%)
Multiple Loops 557 (16%) 993 (6%)
1AS 3021, (85%) | 17895, (99%)
2 ASes 416, (12%) 101, (1%)
3 ASes 106, (3%) 4, (0%)
>4 ASes 22, (0%) 0, (0%)
Tier-1 AS 510 (15%) 244 (2%)
Tier-2 AS 859 (25%) 789 (6%)
Tier-3 AS 1378(40%) 6263 (46%)
Tier-4 AS 197 (5%) 3899 (29%)
Tier-5 AS 538 (15%) 2401 (17%)
Total 3482 13596

Table 5: Summarized breakdown of 21565 loop anomalies.
Some counts less than 100% because some ASes are not in the
AS hierarchy mapping.

would be lost. Finally, our consecutive timeout condi-
tions may be aggressive for hosts with short timeout pe-
riods. Excluding the non-anomalies, we confirm 271898
(35%) of the remaining anomalies and probe them from
multiple vantage points. We use these anomalies for our
analysis in the remainder of this paper.

S Loop-Based Anomalies

This section focuses on analyzing routing loops, which
can occur due to inconsistencies in routing state, miscon-
figuration, and other causes. We are interested in their
frequency, duration, size, location, and effect on end-to-
end performance.

We detect routing loops by observing the same se-
quence of routers appearing several times in a traceroute.
Since loops in traceroute may reflect upstream routing
changes rather than true routing loops [19], we choose to
take a conservative approach and require that the same
sequence appear in a traceroute at least 3 times before
we confirm it as a routing loop.

Using this metric, we identify a total number of 21565
routing loops in our data. If we relax the loop condi-
tion to allow loops that have the same sequence only
twice, this count increases to 119,936, almost six times
as many. Using this approach, our overall confirmed
anomaly count would increase 36% to over 370K.

Loops are separated into persistent and temporary
loops [19] based on whether the traceroute was ulti-
mately able to exit the loop. If the traceroute stays within

the loop until the maximum number of hops (32 in our
case), we classify it as persistent, while if the loop is re-
solved before the traceroute reaches the maximum hop, it
is temporary. Temporary loops can occur due to the time
necessary to propagate updated routing information to
the different parts of the network, while persistent loops
can be caused by various reasons, including router mis-
configuration [16]. Persistent loops tend to last longer
and may require human intervention to be resolved, so
they are considered more harmful. About 83% of the ob-
served loops are persistent, as shown in Table 5. Since
temporary loops only exist for a short period, it may be
harder to catch them.

We use the reprobes to determine duration of the per-
sistent loops. The reprobes for some persistent loops are
missing, often because the local PlanetLab node failed or
rebooted before all reprobes completed. For those loops,
we do not know when the loops were resolved. We only
include the loops having all 4 reprobes in our analysis.
Therefore, we show the percentage of loops in each dura-
tion instead of the exact numbers in Table 5. We can see
many persistent loops are either resolved quickly (54%
terminate within half an hour) or last for a long time
(23% stay for more than 7.5 hours).

Previous research has noted that routing loops are
likely to be correlated [19], because nearby routers usu-
ally share routing information very quickly. If some
routers have inconsistent information, such information
is likely to be propagated to other nearby routers and
cause those routers to form loops. We observe a similar
phenomenon, which is quantified in Table 5. We count
the number of distinct loops in traceroutes from other
ProbeDs during the same period. We find that 16% of
the temporary loops are accompanied by at least one dis-
joint loop while only 6% of the persistent loops see them.
We suspect the reason is temporary loops are more likely
to stem from inconsistent routing state while persistent
loops are more likely to be caused by other factors which
may not be related to routing inconsistency.

Finally, using the persistent loop data, we can also get
some insight into the relative distribution of AS qual-
ity by measuring how evenly-distributed the loops are.
Since these loops are largely single-AS, they are very
unlikely to arise from external factors, and may provide
some insight into the monitoring/management quality of
the AS operators. We use a metric, which we call skew,
to provide some insight into the distribution. We cal-
culate skew as the percentage of per-tier loops seen by
the “worst” 10% of the ASes in that tier. A skew value
of 10% indicates all ASes in the tier are likely to be uni-
form in the quality, while larger numbers indicate a wider
disparity between the best ASes and the worst.

In tier 1, the top 2 ASes (10% of 22) account for 35%
of the loops, while in tier 2, the top 21 ASes (10% of 215)

USENIX Association OSDI *04: 6th Symposium on Operating Systems Design and Implementation

173

2 3 4 5| 6+
Persistent/All 97% 2% 1% | 0% | 0%
Persistent/Core 94% 4% 1% | 1% | 0%
Persistent/Edge 97% 2% 1% | 0% | 0%
Temporary/All 51% | 29% | 11% | 7% | 2%
Temporary/Core | 45% | 31% | 13% | 8% | 3%
Temporary/Edge | 53% | 27% | 12% | 6% | 2%

Table 6: Number of hops in loops, as % of loops

account for 97% of the loops. This skew may translate
into different reliabilities for the customers they serve.
The disparity in traffic must also be considered when
judging how important these skew numbers are. With
respect to the traffic that we observe, we find that these
ASes account for 20% of tier 1 traffic and 63% of tier 2
traffic. The disparity between the loop rates and the traf-
fic for these ASes would indicate that these ASes appear
to be much more problematic than others in their tier.

5.1 Scope

Besides their frequency, one of the other factors that de-
termines the effect of routing loops is their scope, includ-
ing how many routers/ASes are involved in the loop, and
where they are located. We use the term loop length to
refer to the number of routers involved, and we show a
breakdown of this metric in Table 6. The most noticeable
feature is that temporary loops have much longer lengths
than persistent loops. 97% of the persistent loops consist
of only 2 routers, while the ratio is only 50% for tem-
porary loops. Intuitively, the more routers are involved
in a loop, the less stable it is. Therefore, most persis-
tent loops exist between only two routers, while tempo-
rary loops span additional routers as the inconsistent state
propagates.

We next examine the number of ASes that are involved
in the loops. The breakdown is shown in Table 5, which
shows that persistent loops overwhelmingly occur within
a single AS, while 15% of temporary loops span multi-
ple ASes. Ideally, BGP prevents any inter-AS loops by
prohibiting a router from accepting an AS path with its
own AS number in that path. However, BGP allows tran-
sient inconsistency, which can arise during route with-
drawals and announcements [10], and this is why we see
more temporary loops spanning multiple ASes. In con-
trast, persistent loops can occur due to static routing [19]
or router misconfigurations [16]. Given how few persis-
tent loops span multiple ASes, it appears that BGP’s loop
suppression mechanism is effective.

To understand where loops arise, we classify them ac-
cording to the hierarchy of ASes involved. In theory, we
could calculate their depth [7], which would tell us the
minimum number of hops from the routers to the net-
work edge. However, since we cannot launch probes

fraction
o
[6)]
T

persistent
terlnporlary

o
-
T

0 | 1 1
0 010203040506 070809 1
loss rate

Figure 1: CDF of loss rates proceding the loop anomalies

from the clients, this depth metric would be misleading.
If the loop occurs on an AS that does not lie near any of
our ProbeD locations, our probes travel through the net-
work core to reach it, and we would believe it to be very
far from the edge. If we could launch probes from the
clients, network depth would be meaningful.

We map loops into tiers by using the tier(s) of the
AS(es) involved. A loop can be mapped to multiple tiers
if it involves multiple ASes. Table 5 shows the number
of loops occurring in each tier. Tier-1 and tier-2 ASes
have very few persistent loops, possibly because they are
better provisioned than smaller ASes. A large portion of
loops (40% for temporary and 46% for persistent) occur
in tier-3 (outer core) ASes, which suggests that the paths
in those large regional ASes are less stable. In Table 6,
we compare the loops in the core network (tiers 1, 2, 3)
or the edge network (tiers 4, 5). As the table shows, both
temporary and persistent loops are likely to involve more
hops if occurring in the core network.

5.2 End-to-End Effects

Loops can degrade end-to-end performance in two ways:
by overloading routers due to processing the same packet
multiple times [10] (for temporary loops), or by leading
to loss of connectivity between pairs of hosts (for perma-
nent loops). Since MonD monitors all flows between the
node and remote hosts, we can use the network statistics
it keeps to understand end-to-end effects.

When MonD suspects an anomaly, it logs the retrans-
mission rate and RTT leading up to that point. Retrans-
mission rates are calculated for the last 5 minutes. RTTs
are calculated using an Exponentially Weighted Moving
Average (EWMA) with the most recent value given a
weight of 1/8, similar to that used in TCP. Figure 1 shows
the CDF of the retransmission rate, and we see that 65%
of the temporary loops and 55% of the persistent loops
are preceded by loss rates exceeding 30%. Since the typ-
ical Internet loss rate is less than 5% [20], this higher loss
rate will significantly reduce end-user TCP performance
prior to the start of the anomaly.

174

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association

0.9 | T e T e E
0.8 [e T .
0.7 | i .
S 0B [t s
G 05 - R R -
g 0.4 B o - m
03 E{ /o _ persistent i
02 blf persistent normal ————— |
< temporary -
0-8 o {temporary normal - |
0 05 1 15 2 25 3 35 4

RTT (seconds)

Figure 2: CDF of RTTs proceding the loop anomalies vs. un-
der normal conditions

In addition to the high loss rates, loop anomalies are
also preceded by high latency, as shown in Figure 2.
High latency can be caused by queuing due to conges-
tion or packets repeatedly traversing the same sequence
of routers. We compare the RTT right before loops oc-
cur with the RTT measured in the baseline traceroute on
the same path. It is evident that loops can significantly
degrade RTTs.

6 Building a Reference Path

While loop-based anomalies are relatively simple to
identify, they represent a relatively small fraction of the
total confirmed anomalies. Classifying the other anoma-
lies, however, requires more effort. This section dis-
cusses the steps taken to classify the non-loop anoma-
lies, and the complications involved. The main problem
is how to determine that the anomaly occurs on the for-
ward path from the local node to the destination. Addi-
tionally, we want to characterize the anomaly’s features,
such as its pattern, location and affected routers.

To deal with these two problems, we need a refer-
ence path from the local node to the destination, which
represents the path before the anomaly occurs. Then
we can compare it against the local traceroute during
the anomaly. This comparison serves three purposes:
First, it can help us distinguish between forward-path
and reverse-path anomalies. If the local path during the
anomaly is different from the reference path, the route
change usually indicates that the anomaly is on the for-
ward path. Second, it can be used to quantify the scope
of the anomaly. By examining which routers overlap
between the local path and the reference path, we can
estimate which routers are potentially affected by the
anomaly. It can also be used to determine the location
of the anomaly, in terms of the number of the router hops
between the anomaly and the end hosts. Third, it is used
to classify the anomalies. Based on whether the local
traceroute reaches the last hop of the reference path, we
can classify it as either path change or path outage.

Ideally, we could simply use the baseline traceroute as
the reference path, if it successfully reaches the destina-
tion. If the local traceroute during an anomaly stops at
some intermediate hop, we know it is an outage. If the
local traceroute is different, but reaches the destination,
we know it is a routing change. However, the baseline
traceroute may not reach the destination for a variety rea-
sons. Some of these include:

e The destination is behind a firewall which filters
traceroutes. In this case, we still want to use it as
the reference path, which can be compared with lo-
cal traceroute to analyze anomalies.

e Some intermediate routers filter traceroutes. In this
case, we do not have enough information about the
hops after the last known hop on the forward path.
When an outage occurs, we cannot quantify where
it occurs since the anomaly may occur after the last
known hop.

e The baseline traceroute is also affected by the
anomaly and fails to reach the destination. In this
case, we cannot use it as a reference because it usu-
ally does not provide more useful information than
the local traceroute.

The rest of this section focuses on deciding whether the
baseline traceroute can be used as the reference path
when it does not reach the destination. If a baseline
path S stops at hop S, we try to guess if S, is a firewall
using some heuristics. .S, must meet the following four
requirements before we consider it a firewall:

1. From MonD’s passive data, we know the client is
able to send and receive TCP packets with the lo-
cal node. Therefore, the path is working when the
baseline traceroute is being calculated.

2. S does not return an ICMP destination unreachable
message, which usually indicates that the traceroute
encounters routing problems at S, [13].

3. S, and the destination are in the same AS. We as-
sume that a firewall and its protected clients should
belong to the same organization.

4. S, is within n hops (close) to the destination.

The first three requirements are easy to verify, so we
focus on the last requirement. Let RevHop(h) be
the number of hops from hop h to the local node
on the reverse path. We first want to check if 0 <
RevHop(dst) — RevHop(S;) < m. From MonD,
we know RevTTL(dst), the TTL of a packet when
it arrives at the local node from the destination. If

USENIX Association OSDI *04: 6th Symposium on Operating Systems Design and Implementation

175

| Type | Number | Percentage |
Path Change 120,283 48%
Forward Outage | 23,921 10%
Other Outage 62,107 24%
Temporary 44,022 18%

| Total | 250,333 [100% |

Table 7: Non-loop anomalies breakdown

the TTL is initialized to InitTT L(dst) by the desti-
nation, we have InitTTL(dst) — RevTTL(dst) =
RevHop(dst) because the TTL is decremented at each
hop along the reverse path. The issue is how to deter-
mine InitTT L(dst). The initial TTL values differ by
OS, but are generally one of the following: 32 (Win
95/98/ME), 64 (Linux, Tru64), 128 (Win NT/2000/XP),
or 255 (Solaris). Because most Internet paths have less
than 32 hops, we can simply try these 4 possible ini-
tial TTL values and see which one, when subtracted by
RevTTL(dst), gives a RevHop(dst) that is less than
32 hops. We will use that as InitTT L(dst) to calculate
RevHop(dst). Similarly, from the traceroute, we can
also calculate RevHop(S;) using RevT T L(Sy).

Although inter-AS routing can be asymmetric, intra-
AS paths are usually symmetric [19]. Since S, and
the destination are in the same AS, their forward hop
count difference should be the same as their reverse
hop count difference, which we are able compute as de-
scribed above.

Choosing an appropriate n for all settings is difficult,
as there may be one or more hops between a firewall and
its protected hosts. We conservatively choose n = 1,
which means we consider S as a valid reference path
only when S, is one hop away from the destination.
This will minimize the possibility that a real path out-
age is interpreted as a traceroute being blocked by a fire-
wall. However, it leads to bias against large organiza-
tions, where end hosts are multiple hops behind a fire-
wall. In such cases, we cannot determine if the anomalies
are due to path outage or blocking at a firewall. There-
fore, we do not further analyze these anomalies.

7 Classifying Non-loop Anomalies

In this section, we discuss classifying anomalies by com-
paring the reference path R with the local path L. There
are three possibilities when we compare L and R:

1. L reaches the last hop of R. In this case, L must
differ from R in some intermediate hops, or else we
would not have confirmed it as an anomaly. This
case corresponds to a path change, which will be
discussed in Section 7.1.

2. If L stops at some intermediate hop of R, it could

Figure 3: Confining the scope of path change

be due to path outage on the forward path or reverse
path failure. We will describe how to distinguish
between them in Section 7.2.

3. If L diverges from R after some hops and stops be-
fore merging into IR, we consider it as a path outage
although it is accompanied by a route change. We
will also discuss this case in Section 7.2.

We observe a total of 250333 non-loop anomalies,
with their breakdown shown in Table 7. About half of
them are path changes, and 10% are forward path out-
ages. For the 24% that are classified as other outages,
we cannot infer whether they are on the forward or re-
verse paths. The remaining 18% are temporary anoma-
lies. In these cases, the first local traceroute does not
match the reference path, but the second local traceroute
matches. In these cases, the recovery has taken place be-
fore we can gather the results of the remote probes, mak-
ing characterization impossible. While it is possible that
some remote probes may see the anomaly, the rapidly-
changing state is sure to cause inconsistencies if we were
to analyze them. To be conservative, we do not perform
any further analysis of these anomalies, and focus only
on path changes and forward outages. These temporary
anomalies are different from the ultrashort anomalies in
that the ultrashort anomalies were already in the repair
process during the first probe. So, while we choose not
to analyze temporary anomalies further, we can at least
inarguably confirm their existence, which is not the case
with the ultrashort anomalies.

7.1 Path Changes

We first consider path changes, in which the local path
L diverges from the reference path R after some hops,
then merges back into R and successfully terminates at
the last hop of R. This kind of anomaly is shown in
Figure 3.

7.1.1 Scope and End-to-End Effects

As discussed in Section 2, it is usually very difficult to
locate the origin of path anomalies purely from end-to-
end measurement [8]. However, even if the precise ori-
gin cannot be determined, we may be able to narrow
the scope of the anomaly. We define the scope of a
path change as the number of hops on R which possi-
bly change their next hop value. Flows through these
routers may all have their paths changed. In Figure 3, L

176

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association

1 T
0.9 | g BRI
0.8 [g T
0.7 [rrpmern@t g iR
& 0.6 pogfe i e]
S 05 F o path change .
S o4l path change in core --->--—- _|
03k path change at edge --—--*--- |
0'2 B path outage o |
: path outage in core --m--
0-(1) B path outage at edge -~ -]

0 2 4 6 8 10 12 14
number of hops

Figure 4: Scope of path changes and forward outages in number

of hops

diverges from R at ; and merges into R at r;. All the
hops before r; or after r; (including ;) follow the same
next hop towards the destination. So the hops which are
possibly influenced by the path change and have different
next hops are 7;, r; and 1.

In some cases, we may be able to use remote tracer-
outes to narrow the scope even further. For example, in
Figure 3, if I, a traceroute from another ProbeD merges
into R at g, a hop that is before r;, we can eliminate
ri, from the scope of the path change anomaly, since we
know rj, has the same next hop value as it did in the ref-
erence path. We call [the intercept path. This method
may still overestimate the scope of path change: it is pos-
sible, for example, that 7;’s next hop value is unaffected,
but we cannot know this unless some traceroute merges
into R at ;.

Performing traceroute from multiple geographically
diverse vantage points increases our chances of finding
an intercept path. Our ability of narrowing the scope is
affected by the location of the anomaly. If it is closer
to the destination, we have a better chance of obtain-
ing intercept paths by launching many forward tracer-
outes, and thus successfully reducing the scope of the
anomaly. In contrast, if the anomaly is nearer our source,
the chance of another traceroute merging into the refer-
ence path early is low.

Figure 4 shows the CDF of path change scope, mea-
sured in hop count. We can confine the scope of 68%
of the path changes to within 4 hops. We do not count
fluttering as path changes, since these would appear as a
large number of path change anomalies, each with a very
small scope. We also examine how many ASes the path
change scope spans, shown in Table 8. Again, we can
confine the scope of 57% of the path changes to within
two ASes and 82% of them to within three ASes.

To gain some insight into the location of the anoma-
lies, we also study whether the path change occurs near
end hosts or in the middle of the path [7]. We measure
the distance of a path change to the end host by averag-

oo
o ©
T

_O
]
T

o
[}
T

fraction
o o
O

T T

©
w
T

o
N
T

path change
path outage -~

1
0 2 4 6 8 10
number of hops

o
~
T

Figure 5: Distance of path changes and forward outages to the
end hosts in number of hops

Change | Fwd Outage |

| Total | 120283 | 12740 |

| No Ref Path | N/A | 11181 |
1 AS 24418 (20%) | 6534 (51%)
2 ASes 43909 (37%) | 3413 (27%)
3 ASes 29426 (25%) | 1321 (10%)
4 ASes 12603 (10%) 856 (1%)
5 ASes 6322 (5%) | 411 (3%)
6 ASes 3605 (3%) 205 2%)

| Guessed Last Hop | N/A | 1055 |

| Scope Changed | 4292 (4%) | 1225 (10%) |
Tier-1 AS 12374 (6%) | 2746 (15%)
Tier-2 AS 43104 (23%) | 3255 (18%)
Tier-3 AS 88959 (47%) | 4638 (26%)
Tier-4 AS 8015 (4%) | 3501 (19%)
Tier-5 AS 38313 (20%) | 3838 21%)
Total 190765 17978

Table 8: Summary of path change and forward outage.
Some counts exceed 100% due to multiple classification.

ing the distances of all the routers within the path change
scope. The distance of a router is defined as the mini-
mum number of hops to either the source or the destina-
tion. Figure 5 plots the CDF of path change distances.
As we can see, 60% of the path changes occur within 5
hops to the end hosts.

We can also use AS tiers to characterize network lo-
cations, so we map the routers within anomaly scopes
to ASes and AS tiers. The breakdown of possibly af-
fected routers by their AS tiers is shown in Table 8. The
routers in Tier-3 are most likely to be affected by path
changes, since they account for nearly half of the total.
By comparison, the routers in tier-1 ASes are rather sta-
ble, though presumably they are traversed repeatedly by
many paths.

In Figure 4, we see that path changes in the core net-

USENIX Association OSDI *04: 6th Symposium on Operating Systems Design and Implementation

177

R dst

Figure 6: Confining the scope of forward outage

work have narrower scope than those in the edge. This is
probably because the paths in the core network are likely
to be traversed by traceroutes from many vantage points
to reach the destination. In contrast, if a route change
occurs near a local node, we have less chance of finding
an intercept path that happens to merge into the reference
path early. As a result, the anomaly scope in these cases
is more loosely confined.

Since path change is a dynamic process and anomaly
scopes may evolve over time, a measured anomaly scope
should be viewed as a snapshot of which routers are af-
fected when the traceroutes reach them. In Table 8, we
show how many path changes have changed scope be-
tween the first and second sets of forward probes. We
find that only 4% of them have changed during that pe-
riod (mostly within one minute). In addition, 66% of the
scope changes are due to local path changes instead of
intercept path changes.

We now examine the effect of path changes on end-to-
end performance. The effect of path changes on RTTs is
relatively mild, as can be seen in Figures 8. The RTTs
measured during path changes are only slightly worse
than the RTTs measured in baseline traceroutes. But the
loss rates during path changes can be very high. Nearly
45% of the path changes cause loss rates higher than
30%, which can significantly degrade TCP throughput.

7.2 Path Outage

We now focus on path outages and describe how to dis-
tinguish between forward and reverse path outages. In
Figure 6, the local path L stops at r;, which is an in-
termediate hop on the reference path R. At first glance,
one might conclude that a failure has occurred after r; on
the forward path, which prevents the packets from going
through; but other possibilities also exist—because In-
ternet paths could be asymmetric, a failure on the reverse
path may produce the same results. For example, if a
shared link on the reverse paths from all the hops beyond
r; to the source has failed, none of the ICMP packets
from those hops can return. Consequently, we will not
see the hops after r;.

If we have control of the destination, we can simply
distinguish between forward and reverse path outages us-
ing ping [7]. However, since our clients are outside of
PlanetLab and not under our control, we cannot perform
pings in both directions, and must use other information
to disambiguate forward path outages from reverse path

Fwd Timeout
8348 (35%)

Unreachable
2751 (11%)

Route change
12822 (54%)

Table 9: Breakdown of reasons for inferring forward outage

failures. Specifically, we can infer that the outage is on
the forward path using the following rules:

e There is a route change on the forward path in addi-
tion to the outage.

e The local traceroute returns an ICMP destination
unreachable message.

e The anomaly is reported as timeouts on forward
path. As described in Section 3.4, MonD will re-
port this type of anomaly when it infers ACK losses
on the forward path from the local node to the client.

Table 9 shows the number of forward path outages in-
ferred from each rule. As we can see, all three rules are
useful in identifying forward outages. More than half
of the outages are accompanied by route changes, as the
failure information is propagated and some routers try
to bypass the failure using other routes. Forward time-
outs help us infer one third of the forward outages. This
demonstrates the benefit of combining passive monitor-
ing with active probing, since we would not have been
able to disambiguate them otherwise.

7.2.1 Scope

To characterize the scope of path outages, we use a tech-
nique similar to the one we used to characterize the scope
of path change. We define a path outage scope as the
number of hops in a path that cannot forward packets to
their next hop towards the destination. In Figure 6, R is
the reference path and L is the local path. L stops at r;,
which is an intermediate hop of R. Hence, all the hops
after r; (including ;) are possibly influenced by the out-
age and may not be able to forward packets to the next
hops towards the destination. However, when we can
find another intercept path, we can narrow the scope. For
example, if I merges into R at r;, and reaches the desti-
nation, then only r; and r; can possibly be influenced by
the outage. Again, this method might overestimate the
scope of a path outage, for the same reasons described
earlier on estimating a path change scope.

Note that unlike in previous work [6, 7], we use a
set of routers to quantify the effect of path outages in-
stead of just using the last hop where the traceroute stops.
Since outage information is usually propagated to many
routers, using only one router does not give us a sense of
how many routers may have been affected by the outage.

In some cases, we may not have a complete baseline
path which reaches the destination or the penultimate
router. In these cases, we can not estimate the scope

178

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association

o
©
T

©
(o]
T

I
iy
T

o
[e)]
T

fraction
o
[6)]
T

O ¢
N
T

©
w
T

o
N
T

path change
IpathI outage

1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1
loss rate

o
o
T

Figure 7: CDF of loss rates proceding path changes and for-
ward outages

of the forward outage because we do not know the ex-
act number of hops between the last hop of the baseline
path and the destination. We only know that the anomaly
occurs somewhere on the forward path. Among all the
outages, about 47% have no complete reference path. In
the following, we use only those with complete reference
paths in the scope analysis.

In Figure 4, we plot the CDF of the number of hops in
the forward outage scope. Compared with path change,
we can confine the outage scope more tightly. Nearly
60% of the outages can be confined to within 1 hop and
75% of them can be confined to 4 hops.

We suspect that such tight confinement is due to last
hop failures. In Figure 5, we plot the distances of forward
outages to the end hosts. The distance of an outage is
defined as the average distance of the routers within the
outage scope to the end hosts, similar to the definition
used for path change in Section 7.1. As we can see, 44%
of the outages do occur at the last hop, allowing us to
confine their scopes to 1 hop. This observation explains
why the outages in the edge network are confined more
tightly than those in core networks, as shown in Figure 4.

Excluding last hop failures, we can only confine 14%
of the outages to one hop, a result that is slightly better
than that for path changes. In general, the scopes of path
outages tend to be smaller than those of path changes.
Compared with path changes in Figure 5, path outages
tend to occur much closer to the end hosts. More than
70% of the outages occur within 4 hops to the end hosts.

Table 8 gives the number of ASes that the outages
span. Compared with path changes, we can confine a
much higher percentage of outages (78%) within two
ASes. If we examine the AS tiers where the affected
routers are located, outages are spread out more evenly
across tiers than path changes are. Paths in tier-1 ASes
are the most stable and those in tier-3 ASes are most un-
stable. If we look at both Table 5 and Table 8, we note
that paths in tier-3 ASes are most likely to be affected by
all types of anomalies. They account for 40% of tempo-

fraction

path change normal -----

0.2 path outage -]
0-2) " pathoutage normal -]
0o 05 1 15 2 25 3 35 4

RTT (seconds)

Figure 8: CDF of RTTs proceding path changes and forward
outages vs. under normal conditions

rary loops, 46% of persistent loops, 47% of path changes
and 26% of forward outages. In contrast, paths in tier-1
ASes are most stable.

Finally, in Table 8, we find that the scopes of 10%
of the forward outages might have changed between the
first and second set of forward probes, mostly due to lo-
cal path changes. Another 8% of the forward outages
have reference paths that do not terminate at the destina-
tions. These last hops are considered firewalls based on
the heuristic described in Section 6.

7.2.2 End-to-End Effect

We also study how path outages influence end-to-end
performance. Not surprisingly, forward outages can be
preceded by very high loss rates, which are slightly
worse than those generated by path changes. The com-
parisons are shown in Figure 7. Similarly, outages tend
to be preceded by much worse RTTs than path changes,
as shown in Figure 8: 23% of the outages experience
RTTs that are over one second, while only 7% do when
there is no outage. The RTT variances can also be very
high: 17% of them exceed 0.5 seconds.

8 Discussion
8.1 Bypassing Anomalies

In addition to characterizing anomalies, one of the goals
of PlanetSeer is to provide benefits to the hosts running
it. One possible approach is using the wide-area service
nodes as an overlay, to bypass path failures. Existing sys-
tems, such as RON [1], bypass path failures by indirectly
routing through intermediate nodes before reaching the
destinations. Their published results show that around
50% of the failures on a 31-node testbed can be by-
passed [7]. PlanetSeer differs in size and scope, since we
are interested in serving thousands of clients that are not
participants in the overlay, and we have a much higher
AS-level coverage.

Determining how many failures can be bypassed in
our model is more complicated, since we have no con-

USENIX Association OSDI *04: 6th Symposium on Operating Systems Design and Implementation

179

fraction

bypass ratio

Figure 9: CDF of latency ratio of overlay paths to direct paths

trol over the clients. Clients that are behind firewalls and
filter pings and traceroutes may be reachable from other
overlay nodes, but we may not be able to confirm this
scenario. As a result, we focus only on those destina-
tions that are reachable in the baseline probes, since we
can confirm their reachability during normal operation.

For this group of clients, we have a total of 62815
reachability failures, due to anomalies like path outages
or loops. Of these failures, we find that some nodes in
PlanetSeer are able to reach the destinations in 27263
cases, indicating that one-hop indirection is effective in
finding a bypass path for 43% of the failures.

In addition to improving the reachability of clients us-
ing overlay paths, the other issue is their relative perfor-
mance during failures. We calculate a bypass ratio as
the ratio between the minimum RTT of any of the by-
pass paths and the RTT of the baseline path. These re-
sults are shown in Figure 9, and we see that the results
are moderately promising — 68% of the bypass paths suf-
fer less than a factor of two in increased latency. In fact,
23% of the new paths actually see a latency improvement,
suggesting that the overlay could be used for improving
route performance in addition to failure resiliency. How-
ever, some paths see much worse latency degradation,
with the worst 5% seeing more than a factor of 18 worse
latency. While these paths may bypass the anomaly, the
performance degradation will be very noticeable, per-
haps to the point of unusability.

8.2 Reducing Measurement Overhead

While PlanetSeer’s combination of passive monitoring
and distributed active probing is very effective at find-
ing anomalies, particularly the short-lived ones, the prob-
ing traffic can be aggressive, and can come as a surprise
to low-traffic sites that suddenly see a burst of tracer-
outes coming from around the world. Therefore, we are
interested in reducing the measurement overhead while
not losing the accuracy and flexibility of our approach.
For example, we can use a single traceroute to confirm
loops, and then decide if we want distributed traceroutes

0.9 |
0.8 |
0.7 |
0.6 [
0.5 |
0.4 -
0.3 |/
0.2 |/~ B
01 Il Il Il Il Il Il

fraction

number of probes

Figure 10: CDF of number of path examined before finding
the intercept path

to test for the presence of correlated loops. Similarly,
for path changes and outages, we can reduce the num-
ber of distributed traceroutes if we are willing to tolerate
some inaccuracy in characterizing their scope. In Fig-
ure 10, we plot the CDF of the number of the probes from
other vantages points we have to examine before we find
the intercept traceroutes that can successfully narrow the
scopes of the anomalies. Using only 15 vantage points,
we achieve the same results as when using all 30 vantage
points in 80% of the cases. We are interested in studying
this issue further, so that we can determine which van-
tage points we need to achieve good results.

9 Related Work

There is extensive existing work on studying Internet
path failure. Labovitz and Ahuja [15] studied inter-
domain routing failures using BGP data collected from
several ISPs and 5 network exchange points. They ana-
lyzed the temporal properties of failures, such as mean
time to fail, mean time to repair and failure duration.
They found that 40% of the failures are repaired in 10
minutes and 60% of them are resolved in 30 minutes.
They also studied the intra-domain routing failures of a
medium-sized regional ISP by examining the data from
the trouble ticket tracking system managed by the Net-
work Operation Center (NOC) of the ISP, together with
the OSPF routing messages. Based on this data, they
characterize the origins of failures into hardware, soft-
ware and operational problems.

Iannaccone et al. investigated the failures in Sprint’s
IP backbones using the IS-IS routing updates collected
from three vantage points [12]. They examined the fre-
quency and duration of failures inferred from routing up-
dates and concluded that most failures are short-lived
(within 10 minutes). They also studied the interval be-
tween failures. Again, their focus is on the temporal
properties of failure.

Mahajan, Wetherall and Anderson [16] studied BGP
misconfigurations using BGP updates from Route-

180

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association

Views [18], which has 23 vantage points across different
ISPs. They found BGP misconfigurations were relatively
common and classified them into origin and export mis-
configurations. Note that BGP misconfigurations may or
may not be visible to end users. They observed that only
1 in 25 misconfigurations affect end-to-end connectivity.

More recently, Feldmann et al. have presented a
methodology to locate the origin of routing instabili-
ties along three dimensions in BGP: time, prefix, and
view [9]. Their basic assumption is that an AS path
change is caused by some instability either on the pre-
vious best path or the new best path. Caesar et al. [4]
and Chang et al. [5] also propose similar approaches to
analyze routing changes, although their algorithms are
different in details.

All of the above failure studies are based on either
inter-domain (BGP) or intra-domain (IS-IS, OSPF) rout-
ing messages, from which failures are inferred. Some
of them require access to the ISP’s internal data, such
as trouble tickets. Our study complements this work by
studying failures from an end-to-end perspective, and
quantifies how failures affect end-to-end performance,
such as loss rate and RTT.

There also has been much work on studying Internet
failures through end-to-end measurement, and these have
greatly influenced our approach. Paxson [19] studied the
end-to-end routing behavior by running repeated tracer-
outes between 37 Internet hosts. His study shows that
49% of the Internet paths are asymmetric and visit at
least one different city. 91% of the paths persist more
than several hours. He used traceroutes to identify var-
ious routing pathologies, such as loops, fluttering, path
changes and outages. However these traceroutes do not
distinguish between forward and reverse failures.

Chandra et al. [6] studied the effect of network failures
on end-to-end services using the traceroute datasets [19,
21]. They also used the HTTP traces collected from 11
proxies. They model the failures using their location and
duration and evaluate different techniques for masking
failures. However, the HTTP and traceroute datasets are
independent. In comparison, we combine the passive
monitoring data and active probing data, which allows
us to detect failures in realtime and correlate the end-to-
end effect with different types of failures. They also clas-
sify the failures into near-source, near-destination and in-
middle by matching /24s IP prefixes with end host IPs.
In contrast, we study the location of failures using both
IP-to-AS mapping [17] and 5-tier AS hierarchies [23].
This allows us to quantify the failure locations more ac-
curately and at a finer granularity.

Feamster et al. measured the Internet failures among
31 hosts using periodic pings combined with tracer-
outes [7]. They ping the path between a pair of nodes
every 30 seconds, with consecutive ping losses trigger-

ing traceroutes. They consider the location of a failure to
be the last reachable hop in traceroute and used the num-
ber of hops to closest end host to quantify the depth of the
failure. They characterize failures as inter-AS and intra-
AS and use one-way ping to distinguish between forward
and reverse failures. They also examine the correlation
between path failures with BGP updates.

Our work is partly motivated by these approaches,
but we cannot use their methodology directly because
of environmental differences. With the large number of
clients that connect to our proxies, we can not afford to
ping each of them frequently. Failure detection and con-
firmation are more challenging in our case, since many
clients may not respond to pings (behind firewalls) or
even are offline (such as dialup users). We infer anoma-
lies by monitoring the status of active flows, which al-
lows us to study anomalies on a much more diverse set
of paths. We also combine the baseline traceroutes with
passive monitoring to distinguish between forward and
reverse failures and classify forward anomalies into sev-
eral categories. Since where the failure appears may
be different from where the failure occurs, we quantify
the scope of failures by correlating the traceroutes from
multiple vantage points, instead of using one hop (last
reachable hop) as the failure location. Finally, we study
how different types of anomalies affect end-to-end per-
formance.

10 Conclusion

This paper introduces what we believe to be an impor-
tant new type of diagnostic tool, one that passively mon-
itors network communication watching for anomalies,
and then engages widely-distributed probing machinery
when suspicious events occur. Although much work can
still be done to improve the tool—e.g., reducing the ac-
tive probes required, possibly by integrating static topol-
ogy information and BGP updates—the observations we
have been able to make in a short time are dramatic.

e Passive monitoring allows us to detect more anoma-
lies in less time: we have confirmed nearly 272,000
anomalies in three months. This is roughly 3,000 a
day, and is 10 to 100 times more than reported pre-
viously. We also see a qualitative change, such as
large numbers of ultrashort and temporary anoma-
lies that last less than one minute.

e Due to our wide coverage, we see new failure dis-
tribution and location properties. Failures are heav-
ily skewed, rather than pervasively distributed: Tier
3 seems to be the most problematic, accounting for
almost half of the loops, path changes, and path out-
ages that we see. Tier 1 ASes are generally the most
stable.

USENIX Association OSDI *04: 6th Symposium on Operating Systems Design and Implementation

181

e We provide some new measurements about routing
loop behavior. Temporary loops have much longer
lengths than persistent loops. 97% of the persis-
tent loops consist of only 2 routers, but only 50%
of temporary loops do. Many temporary loops span
4 routers. This makes sense since the more routers
are involved in a loop, the less stable it is. Persis-
tent loops are either resolved in a relative short time
(54% 1last less than 30 minute) or continue for an
extended period of time (23% last more than 7.5
hours). Our results confirm Paxson’s findings that
routing loops are correlated.

e Path changes exhibit different characteristics than
outages. Outages appear closer to the edge of the
network: 63% of outages occur within 3 hops to
end hosts while the figure is 20% for path changes.
Path changes tend to have wider impact: 57% of
path changes can be confined to two ASes and 50%
of them can be confined to within three hops, while
the respective figures are 78% and 70% for outages.
Path changes have a much milder effect on RTTs
than outages while they both can incur high loss
rates.

e Our measurements suggest less opportunity for
indirection-based resiliency than previous studies:
alternative routes are available only 43% of the
time, and a significant fraction of them suffer from
high latency inflation. These results stem from most
outages occurring nearer the edge of the network
than the core; redundancy is less available, and less
practical when it is available.

We have shown that PlanetSeer provides an effective
means to detect large numbers of anomalies with broad
coverage, especially in the case of wide-area services that
cannot rely on cooperation from one endpoint. In addi-
tion to the detection rate, the short delay between emer-
gence and detection allows us to capture anomaly behav-
ior more effectively, and our distributed framework pro-
vides improved characterization.

Acknowledgments

This research was supported in part by NSF grant CNS-
0335214. We would like to thank KyoungSoo Park for
his effort in keeping CoDeeN operational during this
work. We thank our shepherd, Miguel Castro, for his
guidance and helpful feedback, and we thank our anony-
mous reviewers for their valuable comments on improv-
ing this paper.

References

[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Re-
silient overlay networks. ACM SOSP, Oct. 2001.

(2]

[3]

[4]

(5]

(6]

(7]

(8]

(91

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Banerjee, T. G. Griffin, and M. Pias. The interdomain connec-
tivity of PlanetLab nodes. In Passive and Active Measurement
Workshop, April 2004.

A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Mawrzoniak. Op-
erating system support for planetary-scale network services. In
USENIX/ACM NSDI, Mar. 2004.

M. Caesar, L. Subramanian, and R. H. Katz. Route cause analysis
of Internet routing dynamics. In Tech Report UCB/CSD-04-1302,
2003.

D.-F. Chang, R. Govindan, and J. Heidemann. The temporal and
toplogical characteristics of BGP path changes. In JEEE ICNP,
Nov. 2003.

M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end WAN
service availability. ACM/IEEE Trans. Netw., Apr 2003.

N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F.
Kaashoek. Measuring the effects of Internet path faults on re-
active routing. In ACM SIGMETRICS, Jun 2003.

A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford,
and F. True. Deriving traffic demands for operational IP net-
works: methodology and experience. ACM SIGCOMM, Aug.
2000.

A. Feldmann, O. Maennel, Z. Mao, A. Berger, and B. Maggs.
Locating Internet routing instabilities. In ACM SIGCOMM, Aug
2004.

U. Hengartner, S. Moon, R. Mortier, and C. Diot. Detection and
analysis of routing loops in packet traces. In ACM IMW, 2002.

TANA. Special-use IPv4 addresses. RFC 3330.

G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and
C. Diot. Analysis of link failures in an IP backbone. In ACM
IMW, Nov 2002.

J. Postel. Internet control message protocol. RFC 792.

C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet
routing convergence. In ACM SIGCOMM, Sep 2000.

C. Labovitz, A. Ahuja, and F. Jahanian. Experimental study of
Internet stability and wide-area backbone failures. Technical Re-
port CSE-TR-382-98, University of Michigan, 1998.

R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP
misconfiguration. In ACM SIGCOMM, 2002.

Z.Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an accurate
AS-level traceroute tool. In ACM SIGCOMM, 2003.

U. of Oregon RouteViews Project. http://www.routeviews.org.

V. Paxson. End-to-end routing behavior in the Internet. In ACM
SIGCOMM, Aug 1996.

V. Paxson. End-to-end Internet packet dynamics. IEEE/ACM
Trans. Netw., 7(3), 1999.

S. Savage, A. Collins, and E. Hoffman. The end-to-end effects of
Internet path selection. ACM SIGCOMM, Aug. 1999.

N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A facility
for distributed Internet measurement. USITS, March 2003.

L. Subrmanian, S. Agarwal, J. Rexford, and R. H. Katz. Char-
acterizing the Internet hierarchy from multiple vantage points.
IEEE INFOCOM, June 2002.

Traceroute.Org. http://www.traceroute.org.

V. Paxson and M. Allman.
timer. RFC 2988.

L. Wang, V. Pai, and L. Peterson. The effectiveness of request
redirection on CDN robustness. In OSDI, Dec. 2002.

Y. Zhang, N. Duffield, V. Paxson, and S. Shenkar. On the con-
stancy of Internet path properties. ACM IMW, Nov. 2001.

Computing TCP’s retransmission

182

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association

