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Abstract

Botnets are a significant source of abusive messaging
(spam, phishing, etc) and other types of malicious traffic.
A promising approach to help mitigate botnet-generated
traffic is signal analysis of transport-layer (i.e. TCP/IP)
characteristics, e.g. timing, packet reordering, conges-
tion, and flow-control. Prior work [4] shows that ma-
chine learning analysis of such traffic features on an
SMTP MTA can accurately differentiate between botnet
and legitimate sources. We make two contributions to-
ward the real-world deployment of such techniques: i)
an architecture for real-time on-line operation; and ii)
auto-learning of the unsupervised model across differ-
ent environments without human labeling (i.e. training).
We present a “SpamFlow” SpamAssassin plugin and the
requisite auxiliary daemons to integrate transport-layer
signal analysis with a popular open-source spam filter.
Using our system, we detail results from a production
deployment where our auto-learning technique achieves
better than 95 percent accuracy, precision, and recall af-
ter reception of ~ 1,000 emails.

1 Introduction

“Botnets” are distributed collections of compromised
networked machines under common control [7]. Auto-
mated methods scan, infect, or socially engineer vulner-
able hosts in order to incorporate them into the botnet.
Botnets provide a formidable computing and communi-
cation platform by harnessing the power of thousands,
or even millions, of nodes for a common collective pur-
pose [21]. Unfortunately, that purpose is often malicious
and economically or politically motivated.

As one common use scenario, botnets account for
more than 85 percent of all abusive electronic mail
(including spam, phishing, malware, etc) by one esti-
mate [14]. Botnet-based spamming campaigns are large
and long-lived [20], with more than 340,000 botnet hosts
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involved in nearly 8,000 campaigns in one study [27].
The Messaging Anti-Abuse Working Group (MAAWG)
coalition of service providers reported that across 500M
monitored mailboxes in one quarter of 2007, 75 percent
of all messages (almost 400 billion) were spam [18].
A subsequent 2010 MAAWG study reports the situa-
tion has worsened: abusive messages accounted for 89
percent of all electronic mail in a representative sample
across many providers.

Abusive message traffic abounds on the Internet. This
deluge of unwanted traffic is more than a mere nui-
sance: a broad survey of large service providers finds
that abusive messages account for the largest fraction of
expended operational resources [1]. Despite extensive
research and operational deployments, attackers and at-
tacks have evolved at a rate faster than the Internet’s abil-
ity to defend. There remains ample room for improve-
ment of in-production botnet attribution and mitigation.

One promising approach for mitigating botnet-
generated abusive messaging is statistical traffic analy-
sis. Prior work [4] shows that by using transport-layer
traffic features, e.g. TCP retransmits, out-of-order pack-
ets, delay, jitter, etc., one can reliably infer whether the
source of an email SMTP [16] flow is legitimate or orig-
inating from a member of a botnet. Botnets must send
large volumes of abusive messages to remain financially
viable. Because bots are frequently attached via asym-
metric (low upload bandwidth) residential connections,
they necessarily congest their local uplink — an effect
that is remotely detectable. Perhaps most importantly,
transport-layer classifiers are content (e.g. the words of
the message itself) and IP reputation (e.g. blocklist) ag-
nostic, facilitating privacy-preserving deployment even
within the network core. Deployed on individual Mail
Transport Agents (MTAs), such techniques can permit
early-rejection of messages before application delivery,
significantly reducing system load.

Thus far, research in transport-layer classification has
been offline, where experimental data is examined a pos-



teriori. In this paper, we present the system engineering
efforts required to integrate TCP transport features into
the classification decisions of the popular open-source
SpamAssassin [17] spam filter. A crucial obstacle to re-
alizing such techniques is the ability to adequately train
and build a model of normal and abusive traffic across
a variety of operational environments. Rather than re-
quiring human labeling or overly general models to build
ground-truth, we exploit the auto-learning functionality
of SpamAssassin. Our primary contributions include:

1. On-line and real-time transport-layer classification
of live email messages on a production MTA.

2. Auto-learning of transport features to automatically
learn the unsupervised model across different oper-
ating environments without human training.

The remainder of this paper describes related work
(§2). From this foundation, we describe our system ar-
chitecture and testing methodology (§3). We present pro-
duction deployment results in §4 and discuss their impli-
cations (§5). We conclude by outlining future work.

2 Related Work

Recent research efforts have shown great promise in un-
derstanding the character and behavior of botnets. While
these proposed solutions are currently effective, they fre-
quently rely on brittle heuristics and unreliable indica-
tors. For instance, Xie et al. provide a system [27]
to identify and characterize botnets using an automatic
technique based on discerning spam URLs in email.
Other research relies on IP addresses as indicators [29].
However, malicious botnet IP addresses are highly dy-
namic as new hosts are compromised, existing hosts re-
ceive new DHCP leases, or sources are spoofed [3]. In-
deed, “fresh” IP addresses, i.e. those not in real-time
blocklists, are a valuable commodity. Similarly, DNS is
a poor identifier of malicious hosts given the prevalence
of botnets employing DNS fast-flux [5] techniques to dis-
tribute load among redirectors, survive node failures, and
obfuscate back-end hosting infrastructure.

A large body of work examines network-layer (IP)
properties of botnets. Ramachandran et al. [22] charac-
terize spamming behavior by correlating data collected
from three sources: a sinkhole, a large e-mail provider,
and the command and control of a Bobax botnet. By
focusing on network-level properties including: i) IP
address space from which spam originates; ii) the au-
tonomous system (AS) that sent spam messages to their
sinkhole; and iii) BGP route announcements, they show
that spam and legitimate e-mail originate from the same
portion of the IP address space. Thus, IP addresses are
not a reliable indicator of malicious or abusive nodes.

Subsequent work from Hao et al. [11] demonstrates
that AS alone as a feature may cause a large rate of
false positives. They achieve better results by extracting
lightweight features from network-level properties such
as geodesic distance between sender and receiver, sender
IP neighborhood density, probability ratio of spam to
ham at the time of day the message arrives, the AS num-
ber of the sender, and the status of open ports on the
sender machine. Further studies [15, 28] have shown
that a spammer can evade such techniques by advertis-
ing routes from a forged AS number [11].

Schatzmann et al. [24] similarly focus on network-
level characteristics of spammers, but from the perspec-
tive of an AS or service provider. Their idea is to pas-
sively collect the aggregate decisions of a large num-
ber of e-mail servers that perform some level of pre-
filtering (e.g. blocklisting). Using passive flow collec-
tion to gather byte, packet, and packet size counts, this
aggregated knowledge can enhance spam mitigation.

Commercial vendors expend considerable effort divid-
ing the Internet IP address space into regions, with partic-
ular attention given to identifying residential broadband
addresses. By discriminating against residential hosts,
the hope is to block traffic from nodes that should not be
sourcing email in the first place. This approach is both
brittle and raises architectural misgivings in the form of
arbitrarily discriminating against classes of users without
prior provocation. Such residential blocking may have
implications on notions of network neutrality as neutral-
ity legislation catches up with technology.

In contrast to these spam detection and mitigation
techniques, Beverly and Sollins [4] present a content and
IP reputation agnostic scheme based on statistical sig-
nal analysis of the transport (TCP) traffic stream. The
premise is that spammers must send large volumes of e-
mail to be effective, causing constituent network links
to experience contention and congestion. Such conges-
tion effects are particularly prominent for many botnet
hosts which reside on residential broadband connections
where there are large gateway buffers [12] and asym-
metric bandwidth. Transport-layer properties such as the
number of lost segments and round trip time (RTT) there-
fore exhibit different distributions, permitting discrimi-
nation between spam and legitimate behavior. Among
many TCP features, their analysis found that RTT and
minimum-congestion window are the most discrimina-
tory. This transport-only classifier exhibits more than 90
percent accuracy and precision on their data.

Follow-on work to [4] explore similar ideas, including
the use of lightweight single-TCP/SYN passive operat-
ing system signatures at the router-level [10]. Ouyang
et al. [19] conduct a large-scale empirical analysis of
transport-layer characteristics on over 600,000 messages.
Among tested features, their analysis similarly finds the



three-way-handshake latency, time-to-live (TTL), and
inter-packet idle time and variance most discriminating
for ham versus spam. These features remain stable over
time, yielding 85-92 percent classification accuracy.

Based on the encouraging results of this body of prior
work, we endeavor to take a step toward the real-world
deployment of transport-classifier based botnet detection
and abusive traffic mitigation techniques.

3 System Architecture

The TCP/IP network stack logically divides functional-
ity between layers. As a result, applications do not nor-
mally have access to lower-layer features. For example,
TCP (implemented in the kernel or lower) provides an
abstraction of a reliable and in-order data stream to the
application via a socket interface. Applications are re-
moved from the details of packet arrival timing, order-
ing, TTL, etc. Thus, our design must collect, on a per-
message basis, transport-layer traffic characteristics and
expose them up the stack to the SpamFlow (SF) plugin.
This section describes our system architecture and the in-
teraction between various components: SpamAssassin,
SpamFlow, and the SpamFlow plugin.

3.1 Overview

We start with an overview of our SpamFlow system ar-
chitecture, shown in Figure 1. For clarity of exposition,
we describe all functionality as being co-located with the
Mail Transport Agent (MTA); however, the components
can easily be distributed across different machines. The
system is comprised of four main components: Spam-
Assassin, the SpamFlow traffic feature extraction engine,
the SpamFlow plugin, and the classification software —
referred to as SpamAssassin, SpamFlow, SF plugin, and
classifier respectively.

Every message received by the MTA is processed by
SpamAssassin and then piped to the plugin. Simulta-
neously, SpamFlow continuously and promiscuously lis-
tens on the network interface, capturing SMTP packets
via the pcap API [13], aggregating packets into flows,
and computing the relevant traffic statistics (e.g. TCP re-
transmits, out-of-order packets, delay, jitter, etc.). The
plugin queries SpamFlow with the message’s identifier
in order to retrieve the flow-level transport features cor-
responding to that message. Next, the plugin sends the
message’s transport feature vector to the classifier. In re-
sponse, the classifier returns a binary or probabilistic pre-
diction (depending on the classifier employed) that then
influences the final score of the message, and hence the
final disposition. We describe each component in more
detail in the following subsections.
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Figure 1: SpamFlow system architecture: transport-layer
features are aggregated on a per-flow basis. The Spam-
Flow SpamAssassin plugin uses XML-RPC to obtain
each message’s feature vector which is then sent to the
classifier. Predictions are relayed to the plugin and inte-
grated into the final SpamAssassin message score.

3.2 SpamAssassin

SpamAssassin [17] is an open-source, rule and content
learning-based spam filter. Each rule is assigned a weight
by a perceptron algorithm [25] and then the weighted
scores are summed to produce an overall score for each
message. The classification process involves comparing
the overall score with a user-defined threshold ¢ (which
defaults to a value that maximized performance on a
broadly representative training sample). If the score is
above ¢, then the message is classified as spam; other-
wise, as legitimate. SpamAssassin is modular and exten-
sible for adding other filtering techniques. Popular plu-
gins include real-time block lists (RBLs), domain-keys,
permit lists, collaborative filtering, learning-based tech-
niques (e.g. naive Bayes), and others.

Furthermore, SpamAssassin features a threshold-
based mode in which new exemplar emails trigger an au-
tomatic retraining process. While SpamAssassin refers
to this retraining as “auto-learning,” this is typically
known as “online” or “iterative” learning in machine
learning. The primary difference is that advanced itera-
tive learning approaches modify the classification model
to account for new emails, whereas in auto-learning the
entire model is rebuilt each time. In SpamAssassin auto-
learning, a previously unseen message is used to retrain
the model if it receives a score greater than 7" (assumed
spam) or less than 7~ (assumed non-spam). For example,
when a message exceeds these threshold values, Spam-
Assassin rebuilds the model of the built-in naive Bayes
classifier, and classifies subsequent messages with the
newly updated model.



--- src/smtpd/smtpd.c.orig

+++ src/smtpd/smtpd.c

@@ -2807,9 +2807,9 @@

*/

if (!proxy || state->xforward.flags == 0) {

out_fprintf (out_stream, REC_TYPE_NORM,

"Received: from %s (%s [%s])",
"Received: from %s (%s [hs:%s1)",
state->helo_name ? state->helo_name :
state->name, state->rfc_addr);
state->name, state->rfc_addr, state->port);

state->name

--- received.c.orig

+++ received.c

@@ -44,2 +44,3 @@

char *remoteip;

+char *remoteport;

char *remotehost;

@@ -63,2 +64,5 Q@
safeput (qqt,remoteip);

+ remoteport = getenv("TCPREMOTEPORT") ;

+ gmail_puts(qqt,":");

+ safeput(qqt,remoteport);
gmail_puts(qqt,")\n by ");

Figure 2: Postfix modification to support traffic identifiers

3.3 SpamFlow

SpamFlow [4] is our network analyzer. Using libpcap
[13], SpamFlow promiscuously listens on the network
interface and builds source host/port flows (the destina-
tion MTA address is constant and known and thus not
part of the flow tuple). As SMTP flows complete, either
via an explicit TCP termination handshake or via time-
out, SpamFlow extracts transport-layer features for each
as detailed extensively in [4]. SpamFlow listens for XML
queries for a particular flow’s IP and port, responding in
kind with the features for that flow.

We explored two options for uniquely identifying mes-
sages to correlate between messages and their constituent
flow data. First, every message contains a unique mes-
sage string (“Message-ID” in the header) [23] to facil-
itate replies, threading, etc. Using deep packet inspec-
tion, SpamFlow could reassemble email messages from
the packet payloads to uniquely identify each flow by
Message-ID. The immediate downside to using the mes-
sage identification field is that doing so removes the ben-
efit of only examining packet header statistics: namely
privacy and efficiency.

Instead, we opt to follow a simpler approach and use
remote host IP address and ephemeral port number as
the message identifier. These fields are readily available
without any transport reassembly and are, in general,
unique. Naturally, IP address and port tuples are reused
(there is a maximum of only 2'® unique TCP client-side
ephemeral ports). For a tuple collision to occur in Spam-
Flow, two identical flows must arrive within less time
than the messages can be delivered to the MTA and pro-
cessed by SpamAssassin, i.e. on the order of a few sec-
onds. Not only is this in violation of the TCP time wait
procedure, we do not observe any duplicate flows within
such short time periods in our empirical data.

The final detail is how to expose the message identifier
to the plugin so it can query SpamFlow. We modify our
MTA server to add the (IP_address, TCP_port) identifi-
cation tuple of the remote MTA to the header of each in-
coming e-mail. The actual MTA code modifications are

Figure 3: gmail modification to support traffic identifiers

small and straightforward. For reference we provide the
code changes for the popular Postfix and gmail MTAs in
Figures 2 and 3.

3.4 SpamFlow Plugin

SpamFlow does not operate as a standalone MTA or
spam classifier. Therefore, we integrate it with an ex-
isting one. We select SpamAssassin [17] because it is
open source and widely used; for instance, the commer-
cial Barracuda [2] network appliance is based on Spam-
Assassin. Importantly, SpamAssassin employs a modu-
lar architecture that allows developers to extend its func-
tionality through plugins. As SpamAssassin is written
in Perl, we develop a small, lightweight SpamAssassin
Perl plugin tying the various components of Figure 1
together. In real-time, as e-mail messages are routed
through the SpamFlow plugin, it scores them using a pre-
viously learned model of transport features. This score,
in combination with the scores from other rules, provides
a final message disposition.

The plugin acts as the controller of the system and
binds the traffic analysis engine and the classifier to-
gether. First, the plugin provides SpamFlow with the 2-
tuple identifier of the message under inspection and re-
ceives in return the corresponding message’s transport-
layer features. After obtaining the features, the plugin
passes them to a logically distinct machine learning clas-
sifier and retrieves the corresponding prediction. Fig-
ure 4 shows an example where the MTA added the mes-
sage identifier (here, 77.239.18.226:37689) and the
plugin attached SpamFlow’s transport feature vector to
the message’s headers.

Between components, we use XML-RPC [26] to com-
municate. XML-RPC is a simple protocol that allows
communication between procedures running in different
applications or machines. Specifically, the client uses the
HTTP-POST request to pass data to the server; the server
in return sends an HTTP response. In our implementa-
tion, we register the classifier with a classify proce-
dure that takes as input the features. Thus, the plugin




From Josephine@rsi.com Tue Feb 01 23:21:58 2011
Return-Path: <Josephine@rsi.com>

X-Spam-Level: skx*xx*x*

Message-ID: <4D489025.5040600etisbew.com>
Date: Wed, 2 Feb 2011 00:20:48 +0100
From: Essie <Essie@hermes.com>

X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on ralph.rbeverly.net

X-Spam-Status: Yes, score=6.9 required=5.0 tests=BAYES_50,RCVD_IN_XBL,HTML_MESSAGE,
SPAMFLOW, UNPARSEABLE_RELAY autolearn=no version=3.3.1

X-Spam-Spamflow-Tag: 3792891725:37689,12,10,0,0,0,0,1,1,0,53248,34.464852,0.162818,
120.441156,148.297699,51.891697,5840,48,1,64

Received: (gqmail 30920 invoked from network); 1 Feb 2011 23:21:57 -0000

Received: from cm-static-18-226.telekabel.ba (77.239.18.226:37689)

Received: from vdhvjcvivjvbwyhscvfwq (192.168.1.185) by bluebellgroup.com (77.239.18.226) with Microsoft SMTP

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.12)

Figure 4: Example email message headers with transport features added by the SpamFlow system

sends the HTTP-POST request with the name of the clas-
sify procedure along with the features, as comma sepa-
rated values forming a string!, and receives via HTTP
response the classification prediction from the classifier.

Not only is XML-RPC simple and standardized, it
allows the classifier to potentially operate on a differ-
ent machine from SpamFlow, which in the future could
allow the XML-RPC classifier to serve many Spam-
Flow instances in a multi-threaded fashion and distribute
load. Further, all popular programming languages pro-
vide XML-RPC APIs, notably allowing us to use our
language of choice for the various tasks. In our specific
implementation, we develop SpamFlow in C++ while the
classifier is a Python daemon.

3.5 Classification Engine

The final component of the system architecture is the
traffic classification engine which we implement using
the open source Orange [9] machine learning and data
mining Python package. While the details of the ma-
chine learning algorithms are out of scope for this paper,
we note that Orange includes a variety of algorithms and
statistical modules for performance evaluation.

Our classifier implementation experiments with three
machine-learning algorithms: naive Bayes, decision
trees (specifically, the C4.5 algorithm), and support vec-
tor machines (SVM). These three algorithms are broadly
representative of different classes of learning strategies
and allow us to evaluate both system classification per-
formance, generality, and system speed.

4 Results

This section first describes results from load testing the
SpamFlow system in a controlled laboratory environ-

IThe CSV string is used for expediency; in the future, we plan to
use individual XML identifiers for each feature.

ment in order to understand its practical feasibility. We
then detail performance results using auto-learning of
transport features in a live production environment.

4.1 Load Testing

To understand the system-level performance of our
SpamFlow design as outlined in §3, we create the con-
trolled testing environment depicted in Figure 5. One
host runs the SpamFlow system and is physically con-
nected to a second traffic sourcing host. The traffic sourc-
ing host implements our custom e-mail “replayer” appli-
cation and a modified Dummynet [6] network emulator.
The replayer reads from the TREC public email cor-
pus [8] of 92,187 messages, of which 52,788 are spam
and 39,399 are legitimate. For each message, the re-
player: 1) extracts the headers and adds as recipient a
valid user of our virtual-network domain; 2) establishes
an SMTP session with the MTA (Postfix) of the Spam-
Flow system under test; 3) sets the differentiated services
code point (DSCP) in the IP header of each message ac-
cording to the ground truth label (spam or ham); 4) uses
the standard SMTP protocol to transmit the message.
We set the DSCP differently for spam and non-spam
messages in order to influence the emulated network be-
havior. Our goal is to coarsely simulate the character-
istics that botnet-generated spam traffic exhibits, such
as TCP timeouts, retransmissions, resets, and highly
variable RTT estimates. For our evaluation, we select
Dummynet [6], a publicly-available tool that enables in-
troduction of delay, loss, bandwidth and queuing con-
straints, etc. for packets passing through virtual network
links. In our testing setup, Dummynet applies differ-
ent queuing, scheduling, bandwidth, delay, loss, etc. de-
pending on the DSCP bits which correspond to email
type. Dummynet emulates a only fixed propagation de-
lay. We therefore modify it to generate random delays
drawn from a normal distribution with a mean delay of
U = 150ms with ¢ = 50ms standard deviation for spam
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Figure 5: Laboratory testing environment: enabling

tightly controlled and easily configurable repeatable ex-
periments. The replayer application replays an email
corpus while Dummynet emulates different network be-
havior to mimic botnet and legitimate traffic. Using the
testbed, we load test and debug SpamFlow.

traffic that originates from the replayer, and a 4 = 40ms
delay with o = 25ms for legitimate traffic in both direc-
tions. We introduce delay in legitimate traffic in order
to avoid overfitting our learned statistical model. These
delays need not be precise as they are intended to merely
mimic a congested environment. To emulate timeouts,
retransmissions, and resets, we apply a random-packet-
drop policy on the Dummynet pipe.

Note that we disable all SpamAssassin rules requiring
network access, e.g. real-time blocklists, as such rules
are dynamic and thus sensitive to dates and time.

While we recognize that our modifications to Dum-
mynet only partially emulate a congested network (for
example, loss events are independent — an assumption
that does not hold true in a real queue), our goal in the
emulation environment is to enable reproducible testing.
Thus, we use the environment to emulate high-rate traffic
and evaluate performance, throughput, system load, etc.
on representative traffic. Section 4.3 goes on to detail
real-world performance on live production traffic.

Table 1 shows the performance of the three classifiers
with respect to training time. C4.5 has the smallest train-
ing time. SVM, on the other hand, has the largest training
time, due to the more complex decision model.

We then examine throughput: the rate at which the
system is able to classify and process emails from the
replayer. Naive Bayes, C4.5, and SVM achieve 1,300,
1,000, and 700 messages per second throughput respec-
tively in our environment. Naive Bayes provides the
highest throughput, likely due to its simple decision rule.

Many factors impact throughput; our intent is to un-
derstand the relative performance of each classifier and
to establish real-world feasibility. The takeaway from
these measurements is that, taking into account the rel-
ative independence of our system from the classification
method, we can select the classification model that fits
our needs. For example, the low training time of C4.5
makes it a good candidate when we need to retrain often.

Table 1: SpamFlow training time (sec) as a function of
classifier type and sample size

Training Samples
Classifier 10 \ 100 \ 1000 \ 10,000
Naive Bayes | 0.88 | 15.02 | 105.45 | 104.84
C4.5 0.15 | 096 | 16.02 | 29.80
SVM 0.72 | 12.69 | 224.25 | 260.02

4.2 Production Environment

Live testing is important because it reveals how the sys-
tem interacts with possibly unknown features of the ex-
ternal environment. We deployed our system in a live
environment at our university for a small domain from
January 25, 2011 to March 2, 2011 and collected a trace
of 5,926 e-mail messages.

Ground truth was first established using an unmodified
SpamAssassin version 3.3.1 instance without transport-
layer traffic features, i.e. with only the default built-in
rules and content analysis. We then manually examined
all the legitimate ham messages and relabeled those that
were false negatives. We manually sampled the spam
messages to eliminate false positives and establish rea-
sonable ground truth. While the volume of traffic cap-
tured is small, our intent in this experiment is to establish
the ability to auto-learn the transport-layer features in a
production environment and ascertain the resulting clas-
sification performance. We envision larger-scale, higher-
volume live testing in the future.

Auto-learning is the incremental process of building
the classification model based on exemplar e-mail mes-
sages whose scores exceed certain threshold values. In
our case, we use features of e-mail messages otherwise
classified via orthogonal methods as having very high or
very low scores (for instance, those emails whose content
triggers many of SpamAssassin’s rule-based indicators).
Specifically, we explicitly retrain the classifier’s model
each time a new message obtains an especially high or
low score from the other SpamAssassin methods (rule-
and Bayesian-word based); i.e. a score above or below
set thresholds. After retraining is complete, we evalu-
ate performance iteratively on subsequent messages un-
til a new message arrives with a score above or below the
threshold, triggering retraining again.

Our thresholds selection is based on empirical spam
and ham SpamAssassin score distributions. Spam mes-
sage scores follow a normal distribution with u = 16.3
and o = 7.7, whereas scores of legitimate messages have
amean of 4 = 1.3, but are skewed left. Therefore, for the
legitimate messages we first experiment with a threshold
Tt =16 and T~ = 1, which allows the classifiers to be
trained on an approximately even fraction of training and
test examples: a total of 2,683/5,590 (48.0%) spam and



296/436 (67.9%) ham messages.

We canonically call spam a “positive” and ham a “neg-
ative” to indicate disposition. Correct predictions result
in either a true positive (¢p) or true negative (tn). A
spam message that is mispredicted as ham produces a
false negative (fn), while a ham message misclassified
as spam produces a false positive (fp). Note that false
positives in email filtering are particularly expensive for
users as there is a high cost to missing or discarding le-
gitimate messages. As performance metrics, we consider
accuracy, precision, recall, specificity, and F-score:
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All of these metrics are important to consider to prop-
erly understand system performance. For instance, accu-
racy is misleading if the underlying class prior is heavily
skewed: if 95% of the messages are in fact spam, then a
deterministic classifier that always predicts “spam” will
achieve seemingly high 95% accuracy without any learn-
ing. Precision therefore measures, among messages pre-
dicted to be spam, the fraction that are truly spam. Re-
call measures the influence of misclassified spam mes-
sages, i.e. is a metric of the classifier’s ability to detect
spam. Specificity, or true negative rate, determines how
well the classifier is differentiating between false posi-
tives and true negatives. Finally, because there is a nat-
ural tension between achieving high precision and high
recall, a common metric is F-Score which is simply the
harmonic mean of precision and recall.

4.3 Production Testing

Figure 6 shows the classification performance metrics
of the three classifiers we implement in SpamFlow as a
function of cumulative training samples received. Fig-
ure 6 therefore depicts the classifiers’ auto-learning over
time as new exemplar training messages are received.
Figure 6(a) displays cumulative accuracy for each
classifier over time and includes the spam prior. The
spam prior is simply the fraction of all training emails
that are spam. A naive classifier could simply predict the
prior, so values above the prior indicate true learning. We
observe both decision trees and SVMs providing greater
than 95 percent accuracy. Figure 6(c) similarly shows de-
cision tree and SVM providing high F-scores, indicative

of very good performance using only transport-layer fea-
tures. Of note is that this level of performance is achieved
after receiving only 100-200 messages. The weakness
in SpamFlow only using traffic characteristics appears in
the specificity, Figure 6(e), where false positives drive
our best specificity down to approximately 75 percent.

To better understand the sensitivity of our auto-
learning results to the imposed thresholds 7, we exper-
iment with a spam threshold two deviations above the
mean: T+ = 30. By increasing the spam threshold, the
SpamFlow auto-learning uses fewer spam-training ex-
amples. However, we expect to have higher confidence
in their true disposition of spam with the higher thresh-
old. Important to our evaluation, T+ = 30 has the effect
of balancing the training complexion so that there is not
a strong class prior: 227 exemplar spam messages and
296 exemplar ham messages.

With the spam score threshold raised to T+ = 30, Fig-
ure 6(b) shows that the spam prior is now close to 50
percent, removing any training class bias. SVM and
naive Bayes still achieve greater than 90 percent accu-
racy. Again, clearly the auto-learning behavior is work-
ing with performance steadily increasing over time and
greatly outperforming the spam prior. As with the lower
threshold, Figure 6(d) demonstrates very high F-Scores
for all of the classifiers.

Figure 6(f) highlights the challenge in false positives.
However, the most specific classifier, the decision tree
algorithm, is also highly accurate and precise. With
machine learning there is an inherent trade off between
achieving very high true positive rates and keeping false
positive rates low. Our results demonstrate the best com-
promise with the higher auto-learning threshold and the
use of decision trees.

Finally, we perform an initial investigation into
whether the combined votes of SpamAssassin and Spam-
Flow lead to overall improved performance. We experi-
ment with adding 0.2 (experiment 1) and with adding 1.0
(experiment 2) to the final score if SpamFlow predicts
a spam message on the basis of transport traffic charac-
teristics. Otherwise, we subtract 1.0 from the final score.
This crude weighting does not leverage SpamFlow’s con-
fidence in the prediction, and does not properly weight
the vote in accordance with SpamAssassin’s other rules.
We leave complete integration of SpamFlow’s predic-
tions with SpamAssassin’s voting as future work.

Table 2 shows the confusion data for SpamAssassin
alone, SpamFlow alone, and the combination. In the first
combined vote, we achieve better performance with the
same number of false positives. In the second combined
vote, we achieve even better performance, but at the cost
of false positives. In all cases, the combination increases
the overall F-score.
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Figure 6: Auto-learning classification results for three SpamFlow classifiers on live production traffic as a function of
cumulative exemplar training messages received.



Table 2: Confusion data comparing SpamAssassin per-

formance with and without SpamFlow auto-learning
| tp [ fp] tm | fn [ F-Score
SpamAssassin 5288 | 3 | 137 | 87 0.991
SpamFlow 5224 |1 65| 75 | 151 | 0.980
SA+SpamFlow(1) | 5299 | 3 | 137 | 76 0.992
SA+SpamFlow(2) | 5335 | 19 | 121 | 40 0.995

5 Discussion

Can spammers adapt and avoid a transport-based clas-
sification scheme? By utilizing one of the fundamental
weaknesses of spammers, their need to send large vol-
umes of spam on bandwidth constrained links, we be-
lieve SpamFlow is difficult for spammers to evade. A
spammer might send spam at a lower rate or upgrade
their infrastructure in order to remove congestion effects
from their flows. However, either strategy is likely to
impose monetary and time costs on the spammer.

Of note is that our techniques work equally well in
IPv6 as the TCP transport-layer characteristics Spam-
Flow relies on in IPv4 are the same in IPv6. The fact
that SpamFlow is IP address agnostic suggests that it may
be an even more important technique in an IPv6 world
where the large address space is difficult to reliably map.

One possible limitation of SpamFlow is that it may
be unable to distinguish between a botnet host sending
large volumes of spam and traffic from a host that is sim-
ply busy, or on a congested subnetwork. However, other
transport-layer features are decoupled from congestion,
for instance a CPU-bound bot host will perform TCP
flow control and advertise a small receiver window — an
effect that SpamFlow uses as part of its decision process.

Further, SpamFlow detects hosts that send volumes
of email that exceed the local uplink and processing ca-
pacity. Personal, home or small business servers do not
have the same volume requirement as spammers and thus
are unlikely to induce the same TCP congestion effects
we observe. In reality, there is a value judgment that
makes SpamFlow practical and reasonable. Specifically,
users who wish to ensure that their emails are delivered
typically invest in suitable infrastructure, contract with
an outside provider or use their service provider’s email
systems. Companies are not sourcing large amounts of
crucial email from hosts attached by consumer-grade
connections. The vast majority of home users utilize
their provider’s email infrastructure or employ popular
web-based services. Thus, SpamFlow only discriminates
against sources that are both poorly connected and in-
jecting large volumes of mail.

However, in future work, we plan to experiment with
the sensitivity of SpamFlow to false positive originating

from congestion induced by other nodes and other appli-
cations. We believe there will remain adequate discrimi-
natory signal to discern botnet hosts. Even when Spam-
Flow does mispredict, our results show that combining
SpamFlow with other classifiers leads to improved per-
formance and can overcome instances of false positives
by individual classifiers.

6 Conclusions and Future Work

This research implemented the necessary infrastructure
to perform real-time, on-line transport-layer classifica-
tion of email messages. We plan to distribute our system
as part of the third-party SpamAssassin plugin library in
order to facilitate widespread deployment, impart impact
on abusive messaging traffic, and to refine the system.

We detail the system architecture to integrate network
transport features with SpamAssassin, an MTA, and a
classification engine. Our testing reveals that the system
can handle realistic traffic loads. Of note, we tackle the
bootstrapping problem of obtaining representative net-
work traffic on a per-network basis by leveraging auto-
learning to automatically train on exemplar messages.

Using our techniques, we achieve accuracy, precision,
and recall performance greater than 95 percent after re-
ceiving only ~ 2! messages during live, real-world pro-
duction testing. We emphasize that these results come
from observing only network traffic features; in actual
deployment, the SpamFlow plugin will, as with other
parts of the SpamAssassin system, place a weighted vote.
Overall performance will likely improve using traditional
features in addition to network traffic features.

We note, however, that our live-testing corpus is small.
Our intent in this work was to demonstrate the practi-
cal feasibility of using transport network traffic features.
In future work, we plan to investigate SpamFlow’s per-
formance and scalability in large, production systems
against much larger volumes of traffic. Our hope is to
enable the practical deployment of transport-layer based
abusive traffic detection and mitigation techniques to sys-
tem administrators.

Finally, we observe that the distributed computing
platform offered by botnets enables a wide variety of
attacks and scams beyond abusive email. Beyond mes-
saging abuse, botnets are employed in phishing attacks,
scam infrastructure hosting, distributed denial-of-service
(DDoS) attacks, and more. For example, some bot-
nets effectively provide a Content Distribution Network
(CDN) for hosting scam infrastructure. Botnet CDNs
are used to host web sites (e.g. landing sites for ordering
prescription pharmaceuticals or redirection servers), dis-
tribute malicious code, and a variety of other nefarious
purposes. Still other botnets are employed to perform
dictionary attacks against servers, brute force or other-



wise solve CAPTCHAs [30], etc. in order to create ac-
counts on social network sites and further spread abusive
traffic via multiple distribution channels.

We believe transport-layer techniques generalize to
any botnet generated traffic, including phishing attacks,
scam infrastructure hosting, DDoS, dictionary attacks,
CAPTCHA solvers, etc. In future research, we wish to
investigate using transport-level traffic analysis to iden-
tify a variety of botnet attacks and bots themselves.
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