
Software Engineer

brendan.gregg@joyent.com

Brendan Gregg

Performance
Visualizations

Thursday, November 11, 2010

mailto:rod@joyent.com
mailto:rod@joyent.com

• GʼDay, Iʼm Brendan

• ... also known as “shouting guy”

2

Thursday, November 11, 2010

硬碟也會鬧情緒

•

3

Thursday, November 11, 2010

• I do performance analysis

• and Iʼm a DTrace addict

4

Thursday, November 11, 2010

•

5

Thursday, November 11, 2010

Agenda

• Performance

• Workload Analysis and Resource Monitoring

• Understanding available and ideal metrics before plotting

• Visualizations

• Current examples

• Latency

• Utilization

• Future opportunities

• Cloud Computing

6

Thursday, November 11, 2010

Visualizations like these

• The “rainbow pterodactyl”

• ... which needs quite a bit of explanation

7

Time

Latency

Thursday, November 11, 2010

Primary Objectives

• Consider performance metrics before plotting

• See the value of visualizations

• Remember key examples

8

Thursday, November 11, 2010

Secondary Objectives

• Consider performance metrics before plotting

• Why studying latency is good

• ... and studying IOPS can be bad

• See the value of visualizations

• Why heat maps are needed

• ... and line graphs can be bad

• Remember key examples

• I/O latency, as a heat map

• CPU utilization by CPU, as a heat map

9

Thursday, November 11, 2010

Content based on

• “Visualizing System Latency”, Communications of the ACM
July 2010, by Brendan Gregg

• and more

10

Thursday, November 11, 2010

Understanding the metrics before we
visualize them

Performance

11

Thursday, November 11, 2010

Performance Activities

12

• Workload analysis

• Is there an issue? Is an issue real?

• Where is the issue?

• Will the proposed fix work? Did it work?

• Resource monitoring

• How utilized are the environment components?

• Important activity for capacity planning

Thursday, November 11, 2010

Workload Analysis

• Applied during:

• software and hardware development

• proof of concept testing

• regression testing

• benchmarking

• monitoring

13

Thursday, November 11, 2010

Workload Performance Issues

• Load

• Architecture

14

Thursday, November 11, 2010

Workload Performance Issues

• Load

• Workload applied

• Too much for the system?

• Poorly constructed?

• Architecture

• System configuration

• Software and hardware bugs

15

Thursday, November 11, 2010

Workload Analysis Steps

• Identify or confirm if a workload has a performance issue

• Quantify

• Locate issue

• Quantify

• Determine, apply and verify solution

• Quantify

16

Thursday, November 11, 2010

Quantify

• Finding a performance issue isnʼt the problem ... itʼs finding
the issue that matters

17

Thursday, November 11, 2010

bugs.mysql.com “performance”

•

18

Thursday, November 11, 2010

bugs.opensolaris.org “performance”

•

19

Thursday, November 11, 2010

bugs.mozilla.org: “performance”

•

20

Thursday, November 11, 2010

“performance” bugs

• ... and those are just the known performance bugs

• ... and usually only of a certain type (architecture)

21

Thursday, November 11, 2010

How to Quantify

• Observation based

• Choose a reliable metric

• Estimate performance gain from resolving issue

• Experimentation based

• Apply fix

• Quantify before vs. after using a reliable metric

22

Thursday, November 11, 2010

Observation based

• For example:

• Observed: application I/O takes 10 ms

• Observed: 9 ms of which is disk I/O

• Suggestion: replace disks with flash-memory based SSDs, with
an expected latency of ~100 us

• Estimated gain: 10 ms -> 1.1 ms (10 ms - 9 ms + 0.1 ms)
=~ 9x gain

• Very useful - but not possible without accurate quantification

23

Thursday, November 11, 2010

Experimentation based

• For example:

• Observed: Application transaction latency average 10 ms

• Experiment: Added more DRAM to increase cache hits and
reduce average latency

• Observed: Application transaction latency average 2 ms

• Gain: 10 ms -> 2 ms = 5x

• Also very useful - but risky without accurate quantification

24

Thursday, November 11, 2010

Metrics to Quantify Performance

• Choose reliable metrics to quantify performance:

• IOPS

• transactions/second

• throughput

• utilization

• latency

• Ideally

• interpretation is straightforward

• reliable

25

Thursday, November 11, 2010

Metrics to Quantify Performance

• Choose reliable metrics to quantify performance:

• IOPS

• transactions/second

• throughput

• utilization

• latency

• Ideally

• interpretation is straightforward

• reliable

26

generally better suited for:

Capacity Planning

Workload Analysis

Thursday, November 11, 2010

Metrics Availability

• Ideally (given the luxury of time):

• design the desired metrics

• then see if they exist, or,

• implement them (eg, DTrace)

• Non-ideally

• see what already exists

• make-do (eg, vmstat -> gnuplot)

27

Thursday, November 11, 2010

Assumptions to avoid

• Available metrics are implemented correctly

• all software has bugs

• eg, CR: 6687884 nxge rbytes and obytes kstat are wrong

• trust no metric without double checking from other sources

• Available metrics are designed by performance experts

• sometimes added by the programmer to only debug their code

• Available metrics are complete

• you wonʼt always find what you really need

28

Thursday, November 11, 2010

Getting technical

• This will be explained using two examples:

• Workload Analysis

• Capacity Planning

29

Thursday, November 11, 2010

Example: Workload Analysis

• Quantifying performance issues with IOPS vs latency

• IOPS is commonly presented by performance analysis tools

• eg: disk IOPS via kstat, SNMP, iostat, ...

30

Thursday, November 11, 2010

IOPS

• Depends on where the I/O is measured

• app -> library -> syscall -> VFS -> filesystem -> RAID -> device

• Depends on what the I/O is

• synchronous or asynchronous

• random or sequential

• size

• Interpretation difficult

• what value is good or bad?

• is there a max?

31

Thursday, November 11, 2010

Some disk IOPS problems

• IOPS Inflation

• Library or Filesystem prefetch/read-ahead

• Filesystem metadata

• RAID stripes

• IOPS Deflation

• Read caching

• Write cancellation

• Filesystem I/O aggregation

• IOPS arenʼt created equal

32

Thursday, November 11, 2010

IOPS example: iostat -xnz 1

• Consider this disk: 86 IOPS == 99% busy

• Versus this disk: 21,284 IOPS == 99% busy

33

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 21284.7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1d0

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 c1d0

Thursday, November 11, 2010

IOPS example: iostat -xnz 1

• Consider this disk: 86 IOPS == 99% busy

• Versus this disk: 21,284 IOPS == 99% busy

• ... they are the same disk, different I/O types

• 1) 8 Kbyte random

• 2) 512 byte sequential (on-disk DRAM cache)

34

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 21284.7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1d0

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 c1d0

Thursday, November 11, 2010

Using IOPS to quantify issues

• to identify

• is 100 IOPS an problem? Per disk?

• to locate

• 90% of IOPS are random. Is that the problem?

• to verify

• A filesystem tunable caused IOPS to reduce.
Has this fixed the issue?

35

Thursday, November 11, 2010

Using IOPS to quantify issues

• to identify

• is 100 IOPS an problem? Per disk? (depends...)

• to locate

• 90% of IOPS are random. Is that the problem? (depends...)

• to verify

• A filesystem tunable caused IOPS to reduce.
Has this fixed the issue? (probably, assuming...)

• We can introduce more metrics to understand these, but standalone
IOPS is tricky to interpret

36

Thursday, November 11, 2010

Using latency to quantify issues

• to identify

• is a 100ms I/O a problem?

• to locate

• 90ms of the 100ms is lock contention. Is that the problem?

• to verify

• A filesystem tunable caused the I/O latency to reduce to 1ms.
Has this fixed the issue?

37

Thursday, November 11, 2010

Using latency to quantify issues

• to identify

• is a 100ms I/O a problem? (probably - if synchronous to the app.)

• to locate

• 90ms of the 100ms is lock contention. Is that the problem? (yes)

• to verify

• A filesystem tunable caused the I/O latency to reduce to 1ms.
Has this fixed the issue? (probably - if 1ms is acceptable)

• Latency is much more reliable, easier to interpret

38

Thursday, November 11, 2010

Latency

• Time from I/O or transaction request to completion

• Synchronous latency has a direct impact on performance

• Application is waiting

• higher latency == worse performance

• Not all latency is synchronous:

• Asynchronous filesystem threads flushing dirty buffers to disk
eg, zfs TXG synchronous thread

• Filesystem prefetch
no one is waiting at this point

• TCP buffer and congestion window: individual packet latency may
be high, but pipe is kept full for good throughput performance

39

Thursday, November 11, 2010

Turning other metrics into latency

• Currency converter (* -> ms):

• random disk IOPS == I/O service latency

• disk saturation == I/O wait queue latency

• CPU utilization == code path execution latency

• CPU saturation == dispatcher queue latency

• ...

• Quantifying as latency allows different components to be
compared, ratios examined, improvements estimated.

40

Thursday, November 11, 2010

Example: Resource Monitoring

• Different performance activity

• Focus is environment components, not specific issues

• incl. CPUs, disks, network interfaces, memory, I/O bus, memory
bus, CPU interconnect, I/O cards, network switches, etc.

• Information is used for capacity planning

• Identifying future issues before they happen

• Quantifying resource monitoring with IOPS vs utilization

41

Thursday, November 11, 2010

IOPS vs Utilization

• Another look at this disk:

• Q. does this system need more spindles for IOPS capacity?

42

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 c1d0
[...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 21284.7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1d0

Thursday, November 11, 2010

IOPS vs Utilization

• Another look at this disk:

• Q. does this system need more spindles for IOPS capacity?

• IOPS (r/s + w/s): ???

• Utilization (%b): yes (even considering NCQ)

43

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 c1d0
[...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 21284.7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1d0

Thursday, November 11, 2010

IOPS vs Utilization

• Another look at this disk:

• Q. does this system need more spindles for IOPS capacity?

• IOPS (r/s + w/s): ???

• Utilization (%b): yes (even considering NCQ)

• Latency (wsvc_t): no

• Latency will identify the issue once it is an issue; utilization
will forecast the issue - capacity planning

44

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 c1d0
[...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 21284.7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1d0

Thursday, November 11, 2010

Performance Summary

• Metrics matter - need to reliably quantify performance

• to identify, locate, verify

• try to think, design

• Workload Analysis

• latency

• Resource Monitoring

• utilization

• Other metrics are useful to further understand the nature of
the workload and resource behavior

45

Thursday, November 11, 2010

Objectives

• Consider performance metrics before plotting

• Why latency is good

• ... and IOPS can be bad

• See the value of visualizations

• Why heat maps are needed

• ... and line graphs can be bad

• Remember key examples

• I/O latency, as a heat map

• CPU utilization by CPU, as a heat map

46

Thursday, November 11, 2010

Current Examples

Visualizations

47

Latency

Thursday, November 11, 2010

Visualizations

• So far weʼve picked:

• Latency

• for workload analysis

• Utilization

• for resource monitoring

48

Thursday, November 11, 2010

Latency

• For example, disk I/O

• Raw data looks like this:

• iosnoop is DTrace based

• examines latency for every disk (back end) I/O

49

iosnoop -o
DTIME UID PID D BLOCK SIZE COMM PATHNAME
125 100 337 R 72608 8192 bash /usr/sbin/tar
138 100 337 R 72624 8192 bash /usr/sbin/tar
127 100 337 R 72640 8192 bash /usr/sbin/tar
135 100 337 R 72656 8192 bash /usr/sbin/tar
118 100 337 R 72672 8192 bash /usr/sbin/tar
108 100 337 R 72688 4096 bash /usr/sbin/tar
87 100 337 R 72696 3072 bash /usr/sbin/tar
9148 100 337 R 113408 8192 tar /etc/default/lu
8806 100 337 R 104738 7168 tar /etc/default/lu
2262 100 337 R 13600 1024 tar /etc/default/cron
76 100 337 R 13616 1024 tar /etc/default/devfsadm
[...many pages of output...]

Thursday, November 11, 2010

Latency Data

• tuples

• I/O completion time

• I/O latency

• can be 1,000s of these per second

50

Thursday, November 11, 2010

Summarizing Latency

• iostat(1M) can show per second average:

51

$ iostat -xnz 1
[...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 471.0 7.0 786.1 12.0 0.1 1.2 0.2 2.5 4 90 c1d0
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 631.0 0.0 1063.1 0.0 0.2 1.0 0.3 1.6 9 92 c1d0
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 472.0 0.0 529.0 0.0 0.0 1.0 0.0 2.1 0 94 c1d0
[...]

Thursday, November 11, 2010

Per second

• Condenses I/O completion time

• Almost always a sufficient resolution

• (So far Iʼve only had one case where examining raw completion
time data was crucial: an interrupt coalescing bug)

52

Thursday, November 11, 2010

Average/second

• Average loses latency outliers

• Average loses latency distribution

• ... but not disk distribution:

• only because iostat(1M) prints this per-disk

• but that gets hard to read for 100s of disks, per second!

53

$ iostat -xnz 1
[...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 43.9 0.0 351.5 0.0 0.0 0.4 0.0 10.0 0 34 c0t5000CCA215C46459d0
 47.6 0.0 381.1 0.0 0.0 0.5 0.0 9.8 0 36 c0t5000CCA215C4521Dd0
 42.7 0.0 349.9 0.0 0.0 0.4 0.0 10.1 0 35 c0t5000CCA215C45F89d0
 41.4 0.0 331.5 0.0 0.0 0.4 0.0 9.6 0 32 c0t5000CCA215C42A4Cd0
 45.6 0.0 365.1 0.0 0.0 0.4 0.0 9.2 0 34 c0t5000CCA215C45541d0
 45.0 0.0 360.3 0.0 0.0 0.4 0.0 9.4 0 34 c0t5000CCA215C458F1d0
 42.9 0.0 343.5 0.0 0.0 0.4 0.0 9.9 0 33 c0t5000CCA215C450E3d0
 44.9 0.0 359.5 0.0 0.0 0.4 0.0 9.3 0 35 c0t5000CCA215C45323d0
[...]

Thursday, November 11, 2010

Latency outliers

• Occasional high-latency I/O

• Can be the sole reason for performance issues

• Can be lost in an average

• 10,000 fast I/O @ 1ms

• 1 slow I/O @ 500ms

• average = 1.05 ms

• Can be seen using max instead of (or as well as) average

54

Thursday, November 11, 2010

Maximum/second

• iostat(1M) doesnʼt show this, however DTrace can

• can be visualized along with average/second

• does identify outliers

• doesnʼt identify latency distribution details

55

Thursday, November 11, 2010

Latency distribution

• Apart from outliers and average, it can be useful to examine
the full profile of latency - all the data.

• For such a crucial metric, keep as much details as possible

• For latency, distributions weʼd expect to see include:

• bi-modal: cache hit vs cache miss

• tri-modal: multiple cache layers

• flat: random disk I/O

56

Thursday, November 11, 2010

Latency Distribution Example

• Using DTrace:

57

./disklatency.d
Tracing... Hit Ctrl-C to end.
^C
 sd4 (28,256), us:

 value ------------- Distribution ------------- count
 16 | 0
 32 | 82
 64 |@@@ 621
 128 |@@@@@ 833
 256 |@@@@ 641
 512 |@@@ 615
 1024 |@@@@@@@ 1239
 2048 |@@@@@@@@@ 1615
 4096 |@@@@@@@@ 1483
 8192 | 76
 16384 | 1
 32768 | 0
 65536 | 2
 131072 | 0

Thursday, November 11, 2010

disklatency.d

• not why we are here, but before someone asks...

58

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("Tracing... Hit Ctrl-C to end.\n");
}

io:::start
{
 start_time[arg0] = timestamp;
}

io:::done
/this->start = start_time[arg0]/
{
 this->delta = (timestamp - this->start) / 1000;
 @[args[1]->dev_statname, args[1]->dev_major, args[1]->dev_minor] =
 quantize(this->delta);
 start_time[arg0] = 0;
}

dtrace:::END
{
 printa(" %s (%d,%d), us:\n%@d\n", @);
}

Thursday, November 11, 2010

Latency Distribution Example

• ... but can we see this distribution per second?

• ... how do we visualize a 3rd dimension?

59

./disklatency.d
Tracing... Hit Ctrl-C to end.
^C
 sd4 (28,256), us:

 value ------------- Distribution ------------- count
 16 | 0
 32 | 82
 64 |@@@ 621
 128 |@@@@@ 833
 256 |@@@@ 641
 512 |@@@ 615
 1024 |@@@@@@@ 1239
 2048 |@@@@@@@@@ 1615
 4096 |@@@@@@@@ 1483
 8192 | 76
 16384 | 1
 32768 | 0
 65536 | 2
 131072 | 0

65 - 131 ms
outliers

Thursday, November 11, 2010

Column Quantized Visualization
aka “heat map”

• For example:

•

60

Thursday, November 11, 2010

Heat Map: Offset Distribution

• x-axis: time

• y-axis: offset

• z-axis (color scale): I/O count for that time/offset range

• Identified random vs. sequential very well

• Similar heat maps have been used before by defrag tools

61

Thursday, November 11, 2010

Heat Map: Latency Distribution

• For example:

• x-axis: time

• y-axis: latency

• z-axis (color saturation): I/O count for that time/latency range

62

Thursday, November 11, 2010

Heat Map: Latency Distribution

• ... in fact, this is a great example:

• reads
served
from:

63

DRAM
 disk

 DRAM
flash-memory based SSD
 disk

ZFS “L2ARC” enabled

Thursday, November 11, 2010

Heat Map: Latency Distribution

• ... in fact, this is a great example:

• reads
served
from:

64

DRAM
 disk

 DRAM
flash-memory based SSD
 disk

ZFS “L2ARC” enabled

Thursday, November 11, 2010

Latency Heat Map

• A color shaded matrix of pixels

• Each pixel is a time and latency range

• Color shade picked based on number of I/O in that range

• Adjusting saturation seems to work better than color hue.
Eg:

• darker == more I/O

• lighter == less I/O

65

Thursday, November 11, 2010

Pixel Size

• Large pixels (and corresponding time/latency ranges)

• increases likelyhood that adjacent pixels
include I/O, have color, and combine to
form patterns

• allows color to be more easily seen

• Smaller pixels (and time/latency ranges)

• can make heat map look like a scatter plot

• of the same color - if ranges are so small
only one I/O is typically included

66

Thursday, November 11, 2010

Color Palette

• Linear scale can make subtle details (outliers) difficult to see

• observing latency outliers is usually of high importance

• outliers are usually < 1% of the I/O

• assigning < 1% of the color scale to them will washout patterns

• False color palette can be used to emphasize these details

• although color comparisons become more confusing - non-linear

67

Thursday, November 11, 2010

Outliers

• Heat maps show these very well

• However, latency outliers can
compress the bulk of the heat
map data

• eg, 1 second outlier while most
I/O is < 10 ms

• Users should have some control
to be able to zoom/truncate details

• both x and y axis

68

outlier

data bulk

Thursday, November 11, 2010

Data Storage

• Since heat-maps are three dimensions, storing this data can
become costly (volume)

• Most of the data points are zero

• and you can prevent storing zeroʼs by only storing populated
elements: associative array

• You can reduce to a sufficiently high resolution, and
resample lower as needed

• You can also be aggressive at reducing resolution at higher
latencies

• 10 us granularity not as interesting for I/O > 1 second

• non-linear resolution

69

Thursday, November 11, 2010

Other Interesting Latency Heat Maps

• The “Icy Lake”

• The “Rainbow Pterodactyl”

• Latency Levels

70

Thursday, November 11, 2010

The “Icy Lake” Workload

• About as simple as it gets:

• Single client, single thread, sequential synchronous 8 Kbyte
writes to an NFS share

• NFS server: 22 x 7,200 RPM disks, striped pool

• The resulting latency heat map was unexpected

71

Thursday, November 11, 2010

The “Icy Lake”

•

72

Thursday, November 11, 2010

“Icy Lake” Analysis: Observation

• Examining single disk latency:

• Pattern match with NFS latency: similar lines

• each disk contributing some lines to the overall pattern

73

Thursday, November 11, 2010

Pattern Match?

• We just associated NFS latency with disk device latency,
using our eyeballs

• see the titles on the previous heat maps

• You can programmatically do this (DTrace), but that can get
difficult to associate context across software stack layers
(but not impossible!)

• Heat Maps allow this part of the problem to be offloaded to
your brain

• and we are very good at pattern matching

74

Thursday, November 11, 2010

“Icy Lake” Analysis: Experimentation

• Same workload, single disk pool:

• No diagonal lines

• but more questions - see the line (false color palette enhanced) at
9.29 ms? this is < 1% of the I/O. (Iʼm told, and I believe, that this
is due to adjacent track seek latency.)

75

Thursday, November 11, 2010

“Icy Lake” Analysis: Experimentation

• Same workload, two disk striped pool:

• Ah-hah! Diagonal lines.

• ... but still more questions: why does the angle sometimes
change? why do some lines slope upwards and some down?

76

Thursday, November 11, 2010

“Icy Lake” Analysis: Experimentation

• ... each disk from that pool:

•

77

Thursday, November 11, 2010

“Icy Lake” Analysis: Questions

• Remaining Questions:

• Why does the slope sometimes change?

• What exactly seeds the slope in the first place?

78

Thursday, November 11, 2010

“Icy Lake” Analysis: Mirroring

• Trying mirroring the pool disks instead of striping:

79

Thursday, November 11, 2010

Another Example: “X marks the spot”

80

Thursday, November 11, 2010

The “Rainbow Pterodactyl” Workload

• 48 x 7,200 RPM disks, 2 disk enclosures

• Sequential 128 Kbyte reads to each disk (raw device),
adding disks every 2 seconds

• Goal: Performance analysis of system architecture

• identifying I/O throughput limits by driving I/O subsystem to
saturation, one disk at a time (finds knee points)

81

Thursday, November 11, 2010

The “Rainbow Pterodactyl”

82

Thursday, November 11, 2010

The “Rainbow Pterodactyl”

83

Thursday, November 11, 2010

The “Rainbow Pterodactyl”

84

Beak Head Neck

Wing Shoulders BodyBuldge

Thursday, November 11, 2010

The “Rainbow Pterodactyl”: Analysis

• Hasnʼt been understood in detail

• Would never be understood (or even known) without heat maps

• It is repeatable

85

Thursday, November 11, 2010

The “Rainbow Pterodactyl”: Theories

• “Beak”: disk cache hit vs disk cache miss -> bimodal

• “Head”: 9th disk, contention on the 2 x4 SAS ports

• “Buldge”: ?

• “Neck”: ?

• “Wing”: contention?

• “Shoulders”: ?

• “Body”: PCI-gen1 bus contention

86

Thursday, November 11, 2010

Latency Levels Workload

• Same as “Rainbow Pterodactyl”, stepping disks

• Instead of sequential reads, this is repeated 128 Kbyte
reads (read -> seek 0 -> read -> ...), to deliberately hit from
the disk DRAM cache to improve test throughput

87

Thursday, November 11, 2010

Latency Levels

•

88

Thursday, November 11, 2010

Latency Levels Theories

• ???

89

Thursday, November 11, 2010

Bonus Latency Heat Map

• This time we do know the source of the latency...

90

Thursday, November 11, 2010

硬碟也會鬧情緒

•

91

Thursday, November 11, 2010

Latency Heat Maps: Summary

• Shows latency distribution over time

• Shows outliers (maximums)

• Indirectly shows average

• Shows patterns

• allows correlation with other software stack layers

92

Thursday, November 11, 2010

Similar Heat Map Uses

• These all have a dynamic y-axis scale:

• I/O size

• I/O offset

• These arenʼt a primary measure of performance (like
latency); they provide secondary information to understand
the workload

93

Thursday, November 11, 2010

Heat Map: I/O Offset

94

• y-axis: I/O offset (in this case, NFSv3 file location)

Thursday, November 11, 2010

Heat Map: I/O Size

95

• y-axis: I/O size (bytes)

Thursday, November 11, 2010

Heat Map Abuse

96

• What can we ʻpaintʼ by adjusting the workload?

Thursday, November 11, 2010

I/O Size

97

• How was this done?

Thursday, November 11, 2010

I/O Offset

98

• How was this done?

Thursday, November 11, 2010

I/O Latency

99

• How was this done?

Thursday, November 11, 2010

Current Examples

Visualizations

100

Utilization

Thursday, November 11, 2010

CPU Utilization

• Commonly used indicator of CPU performance

• eg, vmstat(1M)

101

$ vmstat 1 5
 kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr s0 s1 s2 s3 in sy cs us sy id
 0 0 0 95125264 28022732 301 1742 1 17 17 0 0 -0 -0 -0 6 5008 21927 3886 4 1 94
 0 0 0 91512024 25075924 6 55 0 0 0 0 0 0 0 0 0 4665 18228 4299 10 1 89
 0 0 0 91511864 25075796 9 24 0 0 0 0 0 0 0 0 0 3504 12757 3158 8 0 92
 0 0 0 91511228 25075164 3 163 0 0 0 0 0 0 0 0 0 4104 15375 3611 9 5 86
 0 0 0 91510824 25074940 5 66 0 0 0 0 0 0 0 0 0 4607 19492 4394 10 1 89

Thursday, November 11, 2010

CPU Utilization: Line Graph

• Easy to plot:

102

Thursday, November 11, 2010

CPU Utilization: Line Graph

• Easy to plot:

• Average across all CPUs:

• Identifies how utilized all CPUs are, indicating remaining
headroom - provided sufficient threads to use CPUs

103

Thursday, November 11, 2010

CPU Utilization by CPU

• mpstat(1M) can show utilization by-CPU:

• can identify a single hot CPU (thread)

• and un-balanced configurations

104

$ mpstat 1
[...]
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 2 313 105 315 0 24 4 0 1331 5 1 0 94
 1 0 0 0 65 28 190 0 12 4 0 576 1 1 0 98
 2 0 0 0 64 20 152 0 12 1 0 438 0 1 0 99
 3 0 0 0 127 74 274 1 21 3 0 537 1 1 0 98
 4 0 0 0 32 5 229 0 9 2 0 902 1 1 0 98
 5 0 0 0 46 19 138 0 7 3 0 521 1 0 0 99
 6 2 0 0 109 32 296 0 8 2 0 1266 4 0 0 96
 7 0 0 0 30 8 0 9 0 1 0 0 100 0 0 0
 8 0 0 0 169 68 311 0 22 2 0 847 2 1 0 97
 9 0 0 30 111 54 274 0 16 4 0 868 2 0 0 98
 10 0 0 0 69 29 445 0 13 7 0 2559 7 1 0 92
 11 0 0 0 78 36 303 0 7 8 0 1041 2 0 0 98
 12 0 0 0 74 34 312 0 10 1 0 1250 7 1 0 92
 13 38 0 15 456 285 336 2 10 1 0 1408 5 2 0 93
 14 0 0 0 2620 2497 209 0 10 38 0 259 1 3 0 96
 15 0 0 0 20 8 10 0 4 2 0 2 0 0 0 100

Thursday, November 11, 2010

CPU Resource Monitoring

• Monitor overall utilization for capacity planning

• Also valuable to monitor individual CPUs

• can identify un-balanced configurations

• such as a single hot CPU (thread)

• The virtual CPUs on a single host can now reach the 100s

• its own dimension

• how can we display this 3rd dimension?

105

Thursday, November 11, 2010

Heat Map: CPU Utilization

• x-axis: time

• y-axis: percent utilization

• z-axis (color saturation): # of CPUs in that time/utilization range

106

60s
0%

100%

Thursday, November 11, 2010

Heat Map: CPU Utilization

• Single ʻhotʼ CPUs are a common problem due to application
scaleability issues (single threaded)

• This makes identification easy, without reading pages of mpstat
(1M) output

107

60s
0%

100%

idle CPUs single ʻhotʼ CPU

Thursday, November 11, 2010

Heat Map: Disk Utilization

• Ditto for disks

• Disk Utilization heat map can identify:

• overall utilization

• unbalanced configurations

• single hot disks (versus all disks busy)

• Ideally, the disk utilization heat map is tight (y-axis) and
below 70%, indicating a well balanced config with headroom

• which canʼt be visualized with line graphs

108

Thursday, November 11, 2010

Back to Line Graphs...

• Are typically used to visualize performance, be it IOPS or
utilization

• Show patterns over time more clearly than text (higher
resolution)

• But graphical environments can do much more

• As shown by the heat maps (to start with); which convey details
line graphs cannot

• Ask: what “value add” does the GUI bring to the data?

109

Thursday, November 11, 2010

Resource Utilization Heat Map Summary

• Can exist for any resource with multiple components:

• CPUs

• Disks

• Network interfaces

• I/O busses

• ...

• Quickly identifies single hot component versus all
components

• Best suited for physical hardware resources

• difficult to express ʻutilizationʼ for a software resource

110

Thursday, November 11, 2010

Future Opportunities

Visualizations

111

Thursday, November 11, 2010

So far analysis has been for a single server

 What about the cloud?

Cloud Computing

112

Thursday, November 11, 2010

From one to thousands of servers

113

Workload Analysis:
latency I/O x cloud

Resource Monitoring:
of CPUs x cloud
of disks x cloud
etc.

Thursday, November 11, 2010

Heat Maps for the Cloud

114

• Heat Maps are promising for cloud computing observability:

• additional dimension accommodates the scale of the cloud

• Find outliers regardless of node

• cloud-wide latency heat map just has more I/O

• Examine how applications are load balanced across nodes

• similar to CPU and disk utilization heat maps

• mpstat and iostatʼs output are already getting too long

• multiply by 1000x for the number of possible hosts in a large
cloud application

Thursday, November 11, 2010

Proposed Visualizations

• Include:

• Latency heat map across entire cloud

• Latency heat maps for cloud application components

• CPU utilization by cloud node

• CPU utilization by CPU

• Thread/process utilization across entire cloud

• Network interface utilization by cloud node

• Network interface utilization by port

• lots, lots more

115

Thursday, November 11, 2010

Cloud Latency Heat Map

• Latency at different layers:

• Apache

• PHP/Ruby/...

• MySQL

• DNS

• Disk I/O

• CPU dispatcher queue latency

• and pattern match to quickly identify and locate latency

116

Thursday, November 11, 2010

Latency Example: MySQL

• Query latency (DTrace):

117

 query time (ns)
 value ------------- Distribution ------------- count
 1024 | 0
 2048 | 2
 4096 |@ 99
 8192 | 20
 16384 |@ 114
 32768 |@ 105
 65536 |@ 123
 131072 |@@@@@@@@@@@@@ 1726
 262144 |@@@@@@@@@@@ 1515
 524288 |@@@@ 601
 1048576 |@@ 282
 2097152 |@ 114
 4194304 | 61
 8388608 |@@@@@ 660
 16777216 | 67
 33554432 | 12
 67108864 | 7
 134217728 | 4
 268435456 | 5
 536870912 | 0

Thursday, November 11, 2010

Latency Example: MySQL

• Query latency (DTrace):

118

 query time (ns)
 value ------------- Distribution ------------- count
 1024 | 0
 2048 | 2
 4096 |@ 99
 8192 | 20
 16384 |@ 114
 32768 |@ 105
 65536 |@ 123
 131072 |@@@@@@@@@@@@@ 1726
 262144 |@@@@@@@@@@@ 1515
 524288 |@@@@ 601
 1048576 |@@ 282
 2097152 |@ 114
 4194304 | 61
 8388608 |@@@@@ 660
 16777216 | 67
 33554432 | 12
 67108864 | 7
 134217728 | 4
 268435456 | 5
 536870912 | 0

What is this?
(8-16 ms latency)

Thursday, November 11, 2010

Latency Example: MySQL

119

 query time (ns)
 value ------------- Distribution ------------- count
 1024 | 0
 2048 | 2
 4096 |@ 99
 8192 | 20
 16384 |@ 114
 32768 |@ 105
 65536 |@ 123
 131072 |@@@@@@@@@@@@@ 1726
 262144 |@@@@@@@@@@@ 1515
 524288 |@@@@ 601
 1048576 |@@ 282
 2097152 |@ 114
 4194304 | 61
 8388608 |@@@@@ 660
 16777216 | 67
 33554432 | 12
 67108864 | 7
 134217728 | 4
 268435456 | 5
 536870912 | 0

 innodb srv sleep (ns)
 value ------------- Distribution ------------- count
 4194304 | 0
 8388608 |@@ 841
 16777216 | 0

oh...

Thursday, November 11, 2010

Latency Example: MySQL

120

• Spike of MySQL query latency: 8 - 16 ms

• innodb thread concurrency back-off sleep latency: 8 - 16 ms

• Both have a similar magnitude (see “count” column)

• Add the dimension of time as a heat map, for more
characteristics to compare

• ... quickly compare heat maps from different components of
the cloud to pattern match and locate latency

Thursday, November 11, 2010

Cloud Latency Heat Map

• Identify latency outliers, distributions, patterns

• Can add more functionality to identify these by:

• cloud node

• application, cloud-wide

• I/O type (eg, query type)

• Targeted observability (DTrace) can be used to fetch this

• Or, we could collect it for everything

• ... do we need a 4th dimension?

121

Thursday, November 11, 2010

4th Dimension!

• Bryan Cantrill @Joyent coded this 11 hours ago

• assuming itʼs now about 10:30am during this talk

• ... and I added these slides about 7 hours ago

122

Thursday, November 11, 2010

4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range

123

0 ms

100 ms

Thursday, November 11, 2010

4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range

• omega-axis (color hue): application

• blue == “coreaudiod”

124

0 ms

100 ms

Thursday, November 11, 2010

4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range

• omega-axis (color hue): application

• green == “iChat”

125

0 ms

100 ms

Thursday, November 11, 2010

4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range

• omega-axis (color hue): application

• violet == “Chrome”

126

0 ms

100 ms

Thursday, November 11, 2010

4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range

• omega-axis (color hue): application

• All colors

127

0 ms

100 ms

Thursday, November 11, 2010

“Dimensionality”

• While the data supports the 4th dimension, visualizing this
properly may become difficult (we are eager to find out)

• The image itself is still only 2 dimensional

• May be best used to view a limited set, to limit the number of
different hues; uses can include:

• Highlighting different cloud application types: DB, web server, etc.

• Highlighting one from many components: single node, CPU, disk,
etc.

• Limiting the set also helps storage of data

128

Thursday, November 11, 2010

More Visualizations

• We plan much more new stuff

• We are building a team of engineers to work on it; including Bryan
Cantrill, Dave Pacheo, and mysqlf

• Dave and I have only been at Joyent for 2 1/2 weeks

129

Thursday, November 11, 2010

Beyond Performance Analysis

• Visualizations such as heat maps could also be applied to:

• Security, with pattern matching for:

• robot identification based on think-time latency analysis

• inter-keystroke-latency analysis

• brute force username latency attacks?

• System Administration

• monitoring quota usage by user, filesystem, disk

• Other multi-dimensional datasets

130

Thursday, November 11, 2010

Objectives

• Consider performance metrics before plotting

• Why latency is good

• ... and IOPS can be bad

• See the value of visualizations

• Why heat maps are needed

• ... and line graphs can be bad

• Remember key examples

• I/O latency, as a heat map

• CPU utilization by CPU, as a heat map

131

Thursday, November 11, 2010

Heat Map: I/O Latency

• Latency matters

• synchronous latency has a direct impact on performance

• Heat map shows

• outliers, balance, cache layers, patterns

132

Thursday, November 11, 2010

Heat Map: CPU Utilization

• Identify single threaded issues

• single CPU hitting 100%

• Heat map shows

• fully utilized components, balance, overall headroom, patterns

133

100%

0%
60s

Thursday, November 11, 2010

Tools Demonstrated

134

• For Reference:

• DTraceTazTool

• 2006; based on TazTool by Richard McDougall 1995. Open
source, unsupported, and probably no longer works (sorry).

• Analytics

• 2008; Oracle Sun ZFS Storage Appliance

• “new stuff” (not named yet)

• 2010; Joyent; Bryan Cantrill, Dave Pacheco, Brendan Gregg

Thursday, November 11, 2010

Question Time

• Thank you!

• How to find me on the web:

• http://dtrace.org/blogs/brendan

• http://blogs.sun.com/brendan <-- is my old blog

• twitter @brendangregg

135

Thursday, November 11, 2010

