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• GʼDay, Iʼm Brendan

• ... also known as “shouting guy”
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硬碟也會鬧情緒

•
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• I do performance analysis

• and Iʼm a DTrace addict
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•
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Agenda

• Performance

• Workload Analysis and Resource Monitoring

• Understanding available and ideal metrics before plotting

• Visualizations

• Current examples

• Latency

• Utilization

• Future opportunities

• Cloud Computing
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Visualizations like these

• The “rainbow pterodactyl”

• ... which needs quite a bit of explanation
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Time

Latency
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Primary Objectives

• Consider performance metrics before plotting

• See the value of visualizations

• Remember key examples
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Secondary Objectives

• Consider performance metrics before plotting

• Why studying latency is good

• ... and studying IOPS can be bad

• See the value of visualizations

• Why heat maps are needed

• ... and line graphs can be bad

• Remember key examples

• I/O latency, as a heat map

• CPU utilization by CPU, as a heat map

9

Thursday, November 11, 2010



Content based on

• “Visualizing System Latency”, Communications of the ACM 
July 2010, by Brendan Gregg

• and more
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Understanding the metrics before we 
visualize them

Performance

11
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Performance Activities

12

• Workload analysis

• Is there an issue? Is an issue real?

• Where is the issue?

• Will the proposed fix work? Did it work?

• Resource monitoring

• How utilized are the environment components?

• Important activity for capacity planning
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Workload Analysis

• Applied during:

• software and hardware development

• proof of concept testing

• regression testing

• benchmarking

• monitoring
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Workload Performance Issues

• Load

• Architecture
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Workload Performance Issues

• Load

• Workload applied

• Too much for the system?

• Poorly constructed?

• Architecture

• System configuration

• Software and hardware bugs

15
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Workload Analysis Steps

• Identify or confirm if a workload has a performance issue

• Quantify 

• Locate issue

• Quantify 

• Determine, apply and verify solution

• Quantify

16
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Quantify

• Finding a performance issue isnʼt the problem ... itʼs finding 
the issue that matters
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bugs.mysql.com “performance”

•
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bugs.opensolaris.org “performance”

•
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bugs.mozilla.org: “performance”

•
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“performance” bugs

• ... and those are just the known performance bugs

• ... and usually only of a certain type (architecture)
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How to Quantify

• Observation based

• Choose a reliable metric

• Estimate performance gain from resolving issue

• Experimentation based

• Apply fix

• Quantify before vs. after using a reliable metric

22
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Observation based

• For example:

• Observed: application I/O takes 10 ms

• Observed: 9 ms of which is disk I/O

• Suggestion: replace disks with flash-memory based SSDs, with 
an expected latency of ~100 us

• Estimated gain: 10 ms -> 1.1 ms (10 ms - 9 ms + 0.1 ms)
=~ 9x gain

• Very useful - but not possible without accurate quantification

23
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Experimentation based

• For example:

• Observed: Application transaction latency average 10 ms

• Experiment: Added more DRAM to increase cache hits and 
reduce average latency

• Observed: Application transaction latency average 2 ms

• Gain: 10 ms -> 2 ms = 5x

• Also very useful - but risky without accurate quantification

24
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Metrics to Quantify Performance

• Choose reliable metrics to quantify performance:

• IOPS

• transactions/second

• throughput

• utilization

• latency

• Ideally

• interpretation is straightforward

• reliable
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Metrics to Quantify Performance

• Choose reliable metrics to quantify performance:

• IOPS

• transactions/second

• throughput

• utilization

• latency

• Ideally

• interpretation is straightforward

• reliable

26

generally better suited for:

Capacity Planning

Workload Analysis
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Metrics Availability

• Ideally (given the luxury of time):

• design the desired metrics

• then see if they exist, or,

• implement them (eg, DTrace)

• Non-ideally

• see what already exists

• make-do (eg, vmstat -> gnuplot)

27
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Assumptions to avoid

• Available metrics are implemented correctly

• all software has bugs

• eg, CR: 6687884 nxge rbytes and obytes kstat are wrong

• trust no metric without double checking from other sources

• Available metrics are designed by performance experts

• sometimes added by the programmer to only debug their code

• Available metrics are complete

• you wonʼt always find what you really need

28
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Getting technical

• This will be explained using two examples:

• Workload Analysis

• Capacity Planning
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Example: Workload Analysis

• Quantifying performance issues with IOPS vs latency

• IOPS is commonly presented by performance analysis tools

• eg: disk IOPS via kstat, SNMP, iostat, ...

30
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IOPS

• Depends on where the I/O is measured

• app -> library -> syscall -> VFS -> filesystem -> RAID -> device

• Depends on what the I/O is

• synchronous or asynchronous

• random or sequential

• size

• Interpretation difficult

• what value is good or bad?

• is there a max?

31
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Some disk IOPS problems

• IOPS Inflation

• Library or Filesystem prefetch/read-ahead

• Filesystem metadata

• RAID stripes

• IOPS Deflation

• Read caching

• Write cancellation

• Filesystem I/O aggregation

• IOPS arenʼt created equal

32
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IOPS example: iostat -xnz 1

• Consider this disk: 86 IOPS == 99% busy

• Versus this disk: 21,284 IOPS == 99% busy

33

                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
 21284.7    0.0 10642.4    0.0  0.0  1.8    0.0    0.1   2  99 c1d0

                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
   86.6    0.0  655.5    0.0  0.0  1.0    0.0   11.5   0  99 c1d0
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IOPS example: iostat -xnz 1

• Consider this disk: 86 IOPS == 99% busy

• Versus this disk: 21,284 IOPS == 99% busy

• ... they are the same disk, different I/O types

• 1) 8 Kbyte random

• 2) 512 byte sequential (on-disk DRAM cache)

34

                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
 21284.7    0.0 10642.4    0.0  0.0  1.8    0.0    0.1   2  99 c1d0

                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
   86.6    0.0  655.5    0.0  0.0  1.0    0.0   11.5   0  99 c1d0
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Using IOPS to quantify issues

• to identify

• is 100 IOPS an problem?  Per disk?

• to locate

• 90% of IOPS are random. Is that the problem?

• to verify

• A filesystem tunable caused IOPS to reduce.
Has this fixed the issue?

35
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Using IOPS to quantify issues

• to identify

• is 100 IOPS an problem?  Per disk?  (depends...)

• to locate

• 90% of IOPS are random. Is that the problem?  (depends...)

• to verify

• A filesystem tunable caused IOPS to reduce.
Has this fixed the issue?  (probably, assuming...)

• We can introduce more metrics to understand these, but standalone 
IOPS is tricky to interpret
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Using latency to quantify issues

• to identify

• is a 100ms I/O a problem?

• to locate

• 90ms of the 100ms is lock contention. Is that the problem?

• to verify

• A filesystem tunable caused the I/O latency to reduce to 1ms.
Has this fixed the issue?

37

Thursday, November 11, 2010



Using latency to quantify issues

• to identify

• is a 100ms I/O a problem?  (probably - if synchronous to the app.)

• to locate

• 90ms of the 100ms is lock contention. Is that the problem?  (yes)

• to verify

• A filesystem tunable caused the I/O latency to reduce to 1ms.
Has this fixed the issue?  (probably - if 1ms is acceptable)

• Latency is much more reliable, easier to interpret

38
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Latency

• Time from I/O or transaction request to completion

• Synchronous latency has a direct impact on performance

• Application is waiting

• higher latency == worse performance

• Not all latency is synchronous:

• Asynchronous filesystem threads flushing dirty buffers to disk
eg, zfs TXG synchronous thread

• Filesystem prefetch
no one is waiting at this point

• TCP buffer and congestion window: individual packet latency may 
be high, but pipe is kept full for good throughput performance

39
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Turning other metrics into latency

• Currency converter (* -> ms):

• random disk IOPS == I/O service latency

• disk saturation == I/O wait queue latency

• CPU utilization == code path execution latency

• CPU saturation == dispatcher queue latency

• ...

• Quantifying as latency allows different components to be 
compared, ratios examined, improvements estimated.

40
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Example: Resource Monitoring

• Different performance activity

• Focus is environment components, not specific issues

• incl. CPUs, disks, network interfaces, memory, I/O bus, memory 
bus, CPU interconnect, I/O cards, network switches, etc.

• Information is used for capacity planning

• Identifying future issues before they happen

• Quantifying resource monitoring with IOPS vs utilization

41
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IOPS vs Utilization

• Another look at this disk:

• Q. does this system need more spindles for IOPS capacity?

42

                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
   86.6    0.0  655.5    0.0  0.0  1.0    0.0   11.5   0  99 c1d0
[...]
                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
 21284.7    0.0 10642.4    0.0  0.0  1.8    0.0    0.1   2  99 c1d0
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IOPS vs Utilization

• Another look at this disk:

• Q. does this system need more spindles for IOPS capacity?

• IOPS (r/s + w/s): ???

• Utilization (%b): yes (even considering NCQ)

43

                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
   86.6    0.0  655.5    0.0  0.0  1.0    0.0   11.5   0  99 c1d0
[...]
                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
 21284.7    0.0 10642.4    0.0  0.0  1.8    0.0    0.1   2  99 c1d0

Thursday, November 11, 2010



IOPS vs Utilization

• Another look at this disk:

• Q. does this system need more spindles for IOPS capacity?

• IOPS (r/s + w/s): ???

• Utilization (%b): yes (even considering NCQ)

• Latency (wsvc_t): no

• Latency will identify the issue once it is an issue; utilization 
will forecast the issue - capacity planning

44

                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
   86.6    0.0  655.5    0.0  0.0  1.0    0.0   11.5   0  99 c1d0
[...]
                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
 21284.7    0.0 10642.4    0.0  0.0  1.8    0.0    0.1   2  99 c1d0
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Performance Summary

• Metrics matter - need to reliably quantify performance

• to identify, locate, verify

• try to think, design

• Workload Analysis

• latency

• Resource Monitoring

• utilization

• Other metrics are useful to further understand the nature of 
the workload and resource behavior

45
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Objectives

• Consider performance metrics before plotting

• Why latency is good

• ... and IOPS can be bad

• See the value of visualizations

• Why heat maps are needed

• ... and line graphs can be bad

• Remember key examples

• I/O latency, as a heat map

• CPU utilization by CPU, as a heat map

46
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Current Examples

Visualizations

47

Latency
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Visualizations

• So far weʼve picked:

• Latency

• for workload analysis

• Utilization

• for resource monitoring

48
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Latency

• For example, disk I/O

• Raw data looks like this:

• iosnoop is DTrace based

• examines latency for every disk (back end) I/O

49

# iosnoop -o
DTIME        UID   PID D    BLOCK   SIZE       COMM PATHNAME
125          100   337 R    72608   8192       bash /usr/sbin/tar
138          100   337 R    72624   8192       bash /usr/sbin/tar
127          100   337 R    72640   8192       bash /usr/sbin/tar
135          100   337 R    72656   8192       bash /usr/sbin/tar
118          100   337 R    72672   8192       bash /usr/sbin/tar
108          100   337 R    72688   4096       bash /usr/sbin/tar
87           100   337 R    72696   3072       bash /usr/sbin/tar
9148         100   337 R   113408   8192        tar /etc/default/lu
8806         100   337 R   104738   7168        tar /etc/default/lu
2262         100   337 R    13600   1024        tar /etc/default/cron
76           100   337 R    13616   1024        tar /etc/default/devfsadm
[...many pages of output...]
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Latency Data

• tuples

• I/O completion time

• I/O latency

• can be 1,000s of these per second

50
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Summarizing Latency

• iostat(1M) can show per second average:

51

$ iostat -xnz 1
[...]
                    extended device statistics
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
  471.0    7.0  786.1   12.0  0.1  1.2    0.2    2.5   4  90 c1d0
                    extended device statistics
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
  631.0    0.0 1063.1    0.0  0.2  1.0    0.3    1.6   9  92 c1d0
                    extended device statistics
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
  472.0    0.0  529.0    0.0  0.0  1.0    0.0    2.1   0  94 c1d0
[...]
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Per second

• Condenses I/O completion time

• Almost always a sufficient resolution

• (So far Iʼve only had one case where examining raw completion 
time data was crucial: an interrupt coalescing bug)

52
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Average/second

• Average loses latency outliers

• Average loses latency distribution

• ... but not disk distribution:

• only because iostat(1M) prints this per-disk

• but that gets hard to read for 100s of disks, per second!

53

$ iostat -xnz 1
[...]
                    extended device statistics              
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
   43.9    0.0  351.5    0.0  0.0  0.4    0.0   10.0   0  34 c0t5000CCA215C46459d0  
   47.6    0.0  381.1    0.0  0.0  0.5    0.0    9.8   0  36 c0t5000CCA215C4521Dd0
   42.7    0.0  349.9    0.0  0.0  0.4    0.0   10.1   0  35 c0t5000CCA215C45F89d0
   41.4    0.0  331.5    0.0  0.0  0.4    0.0    9.6   0  32 c0t5000CCA215C42A4Cd0
   45.6    0.0  365.1    0.0  0.0  0.4    0.0    9.2   0  34 c0t5000CCA215C45541d0
   45.0    0.0  360.3    0.0  0.0  0.4    0.0    9.4   0  34 c0t5000CCA215C458F1d0
   42.9    0.0  343.5    0.0  0.0  0.4    0.0    9.9   0  33 c0t5000CCA215C450E3d0
   44.9    0.0  359.5    0.0  0.0  0.4    0.0    9.3   0  35 c0t5000CCA215C45323d0
[...]
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Latency outliers

• Occasional high-latency I/O

• Can be the sole reason for performance issues

• Can be lost in an average

• 10,000 fast I/O @ 1ms

• 1 slow I/O @ 500ms

• average = 1.05 ms

• Can be seen using max instead of (or as well as) average

54
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Maximum/second

• iostat(1M) doesnʼt show this, however DTrace can

• can be visualized along with average/second

• does identify outliers

• doesnʼt identify latency distribution details

55
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Latency distribution

• Apart from outliers and average, it can be useful to examine 
the full profile of latency - all the data.

• For such a crucial metric, keep as much details as possible

• For latency, distributions weʼd expect to see include:

• bi-modal: cache hit vs cache miss

• tri-modal: multiple cache layers

• flat: random disk I/O

56
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Latency Distribution Example

• Using DTrace:

57

# ./disklatency.d 
Tracing... Hit Ctrl-C to end.
^C
   sd4 (28,256), us:

        value  ------------- Distribution ------------- count    
           16 |                                         0        
           32 |                                         82       
           64 |@@@                                      621      
          128 |@@@@@                                    833      
          256 |@@@@                                     641      
          512 |@@@                                      615      
         1024 |@@@@@@@                                  1239     
         2048 |@@@@@@@@@                                1615     
         4096 |@@@@@@@@                                 1483     
         8192 |                                         76       
        16384 |                                         1        
        32768 |                                         0        
        65536 |                                         2        
       131072 |                                         0   

Thursday, November 11, 2010



disklatency.d

• not why we are here, but before someone asks...

58

#!/usr/sbin/dtrace -s 
 
#pragma D option quiet 
  
dtrace:::BEGIN 
{ 
        printf("Tracing... Hit Ctrl-C to end.\n"); 
} 

io:::start 
{ 
        start_time[arg0] = timestamp; 
} 
 
io:::done 
/this->start = start_time[arg0]/ 
{ 
        this->delta = (timestamp - this->start) / 1000; 
        @[args[1]->dev_statname, args[1]->dev_major, args[1]->dev_minor] = 
            quantize(this->delta); 
        start_time[arg0] = 0;
} 
 
dtrace:::END 
{ 
        printa("   %s (%d,%d), us:\n%@d\n", @); 
} 
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Latency Distribution Example

• ... but can we see this distribution per second?

• ... how do we visualize a 3rd dimension?

59

# ./disklatency.d 
Tracing... Hit Ctrl-C to end.
^C
   sd4 (28,256), us:

        value  ------------- Distribution ------------- count    
           16 |                                         0        
           32 |                                         82       
           64 |@@@                                      621      
          128 |@@@@@                                    833      
          256 |@@@@                                     641      
          512 |@@@                                      615      
         1024 |@@@@@@@                                  1239     
         2048 |@@@@@@@@@                                1615     
         4096 |@@@@@@@@                                 1483     
         8192 |                                         76       
        16384 |                                         1        
        32768 |                                         0        
        65536 |                                         2        
       131072 |                                         0   

65 - 131 ms
outliers
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Column Quantized Visualization
aka “heat map”

• For example:

•

60
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Heat Map: Offset Distribution

• x-axis: time

• y-axis: offset

• z-axis (color scale): I/O count for that time/offset range

• Identified random vs. sequential very well

• Similar heat maps have been used before by defrag tools

61
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Heat Map: Latency Distribution

• For example:

• x-axis: time

• y-axis: latency

• z-axis (color saturation): I/O count for that time/latency range

62
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Heat Map: Latency Distribution

• ... in fact, this is a great example:

• reads
served
from:

63

DRAM
    disk

            DRAM
flash-memory based SSD
              disk

ZFS “L2ARC” enabled
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Heat Map: Latency Distribution

• ... in fact, this is a great example:

• reads
served
from:

64

DRAM
    disk

            DRAM
flash-memory based SSD
              disk

ZFS “L2ARC” enabled
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Latency Heat Map

• A color shaded matrix of pixels

• Each pixel is a time and latency range

• Color shade picked based on number of I/O in that range

• Adjusting saturation seems to work better than color hue. 
Eg:

• darker == more I/O

• lighter == less I/O

65
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Pixel Size

• Large pixels (and corresponding time/latency ranges)

• increases likelyhood that adjacent pixels
include I/O, have color, and combine to
form patterns

• allows color to be more easily seen

• Smaller pixels (and time/latency ranges)

• can make heat map look like a scatter plot

• of the same color - if ranges are so small
only one I/O is typically included

66
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Color Palette

• Linear scale can make subtle details (outliers) difficult to see

• observing latency outliers is usually of high importance

• outliers are usually < 1% of the I/O

• assigning < 1% of the color scale to them will washout patterns

• False color palette can be used to emphasize these details

• although color comparisons become more confusing - non-linear

67
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Outliers

• Heat maps show these very well

• However, latency outliers can
compress the bulk of the heat
map data

• eg, 1 second outlier while most
I/O is < 10 ms

• Users should have some control
to be able to zoom/truncate details

• both x and y axis

68

outlier

data bulk
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Data Storage

• Since heat-maps are three dimensions, storing this data can 
become costly (volume)

• Most of the data points are zero

• and you can prevent storing zeroʼs by only storing populated 
elements: associative array

• You can reduce to a sufficiently high resolution, and 
resample lower as needed

• You can also be aggressive at reducing resolution at higher 
latencies

• 10 us granularity not as interesting for I/O > 1 second

• non-linear resolution

69
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Other Interesting Latency Heat Maps

• The “Icy Lake”

• The “Rainbow Pterodactyl”

• Latency Levels

70
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The “Icy Lake” Workload

• About as simple as it gets:

• Single client, single thread, sequential synchronous 8 Kbyte 
writes to an NFS share

• NFS server: 22 x 7,200 RPM disks, striped pool

• The resulting latency heat map was unexpected

71
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The “Icy Lake”

•

72
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“Icy Lake” Analysis: Observation

• Examining single disk latency:

• Pattern match with NFS latency: similar lines

• each disk contributing some lines to the overall pattern

73
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Pattern Match?

• We just associated NFS latency with disk device latency, 
using our eyeballs

• see the titles on the previous heat maps

• You can programmatically do this (DTrace), but that can get 
difficult to associate context across software stack layers 
(but not impossible!)

• Heat Maps allow this part of the problem to be offloaded to 
your brain

• and we are very good at pattern matching

74
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“Icy Lake” Analysis: Experimentation

• Same workload, single disk pool:

• No diagonal lines

• but more questions - see the line (false color palette enhanced) at 
9.29 ms?  this is < 1% of the I/O.  (Iʼm told, and I believe, that this 
is due to adjacent track seek latency.)

75
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“Icy Lake” Analysis: Experimentation

• Same workload, two disk striped pool:

• Ah-hah!  Diagonal lines.

• ... but still more questions: why does the angle sometimes 
change? why do some lines slope upwards and some down?

76
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“Icy Lake” Analysis: Experimentation

• ... each disk from that pool:

•

77
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“Icy Lake” Analysis: Questions

• Remaining Questions:

• Why does the slope sometimes change?

• What exactly seeds the slope in the first place?

78
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“Icy Lake” Analysis: Mirroring

• Trying mirroring the pool disks instead of striping:

79
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Another Example: “X marks the spot”

80
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The “Rainbow Pterodactyl” Workload

• 48 x 7,200 RPM disks, 2 disk enclosures

• Sequential 128 Kbyte reads to each disk (raw device), 
adding disks every 2 seconds

• Goal: Performance analysis of system architecture

• identifying I/O throughput limits by driving I/O subsystem to 
saturation, one disk at a time (finds knee points)

81
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The “Rainbow Pterodactyl”

82
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The “Rainbow Pterodactyl”

83

Thursday, November 11, 2010



The “Rainbow Pterodactyl”

84

Beak Head Neck

Wing Shoulders BodyBuldge
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The “Rainbow Pterodactyl”: Analysis

• Hasnʼt been understood in detail

• Would never be understood (or even known) without heat maps

• It is repeatable

85
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The “Rainbow Pterodactyl”: Theories

• “Beak”: disk cache hit vs disk cache miss -> bimodal

• “Head”: 9th disk, contention on the 2 x4 SAS ports

• “Buldge”: ?

• “Neck”: ?

• “Wing”: contention?

• “Shoulders”: ?

• “Body”: PCI-gen1 bus contention
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Latency Levels Workload

• Same as “Rainbow Pterodactyl”, stepping disks

• Instead of sequential reads, this is repeated 128 Kbyte 
reads (read -> seek 0 -> read -> ...), to deliberately hit from 
the disk DRAM cache to improve test throughput
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Latency Levels

•

88

Thursday, November 11, 2010



Latency Levels Theories

• ???
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Bonus Latency Heat Map

• This time we do know the source of the latency...
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硬碟也會鬧情緒

•

91
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Latency Heat Maps: Summary

• Shows latency distribution over time

• Shows outliers (maximums)

• Indirectly shows average

• Shows patterns

• allows correlation with other software stack layers
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Similar Heat Map Uses

• These all have a dynamic y-axis scale:

• I/O size

• I/O offset

• These arenʼt a primary measure of performance (like 
latency); they provide secondary information to understand 
the workload
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Thursday, November 11, 2010



Heat Map: I/O Offset

94

• y-axis: I/O offset (in this case, NFSv3 file location)
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Heat Map: I/O Size

95

• y-axis: I/O size (bytes)
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Heat Map Abuse

96

• What can we ʻpaintʼ by adjusting the workload?
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I/O Size

97

• How was this done?
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I/O Offset

98

• How was this done?
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I/O Latency

99

• How was this done?
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Current Examples

Visualizations

100

Utilization
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CPU Utilization

• Commonly used indicator of CPU performance

• eg, vmstat(1M)

101

$ vmstat 1 5
 kthr      memory            page            disk          faults      cpu
 r b w   swap  free  re  mf pi po fr de sr s0 s1 s2 s3   in   sy   cs us sy id
 0 0 0 95125264 28022732 301 1742 1 17 17 0 0 -0 -0 -0 6 5008 21927 3886 4 1 94
 0 0 0 91512024 25075924 6 55 0 0  0  0  0  0  0  0  0 4665 18228 4299 10 1 89
 0 0 0 91511864 25075796 9 24 0 0  0  0  0  0  0  0  0 3504 12757 3158 8  0 92
 0 0 0 91511228 25075164 3 163 0 0 0  0  0  0  0  0  0 4104 15375 3611 9  5 86
 0 0 0 91510824 25074940 5 66 0 0  0  0  0  0  0  0  0 4607 19492 4394 10 1 89
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CPU Utilization: Line Graph

• Easy to plot:
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CPU Utilization: Line Graph

• Easy to plot:

• Average across all CPUs:

• Identifies how utilized all CPUs are, indicating remaining 
headroom - provided sufficient threads to use CPUs
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CPU Utilization by CPU

• mpstat(1M) can show utilization by-CPU:

• can identify a single hot CPU (thread)

• and un-balanced configurations

104

$ mpstat 1
[...]
CPU minf mjf xcal  intr ithr  csw icsw migr smtx  srw syscl  usr sys  wt idl
  0    0   0    2   313  105  315    0   24    4    0  1331    5   1   0  94
  1    0   0    0    65   28  190    0   12    4    0   576    1   1   0  98
  2    0   0    0    64   20  152    0   12    1    0   438    0   1   0  99
  3    0   0    0   127   74  274    1   21    3    0   537    1   1   0  98
  4    0   0    0    32    5  229    0    9    2    0   902    1   1   0  98
  5    0   0    0    46   19  138    0    7    3    0   521    1   0   0  99
  6    2   0    0   109   32  296    0    8    2    0  1266    4   0   0  96
  7    0   0    0    30    8    0    9    0    1    0     0  100   0   0   0
  8    0   0    0   169   68  311    0   22    2    0   847    2   1   0  97
  9    0   0   30   111   54  274    0   16    4    0   868    2   0   0  98
 10    0   0    0    69   29  445    0   13    7    0  2559    7   1   0  92
 11    0   0    0    78   36  303    0    7    8    0  1041    2   0   0  98
 12    0   0    0    74   34  312    0   10    1    0  1250    7   1   0  92
 13   38   0   15   456  285  336    2   10    1    0  1408    5   2   0  93
 14    0   0    0  2620 2497  209    0   10   38    0   259    1   3   0  96
 15    0   0    0    20    8   10    0    4    2    0     2    0   0   0 100
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CPU Resource Monitoring

• Monitor overall utilization for capacity planning

• Also valuable to monitor individual CPUs

• can identify un-balanced configurations

• such as a single hot CPU (thread)

• The virtual CPUs on a single host can now reach the 100s

• its own dimension

• how can we display this 3rd dimension?
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Heat Map: CPU Utilization

• x-axis: time

• y-axis: percent utilization

• z-axis (color saturation): # of CPUs in that time/utilization range
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Heat Map: CPU Utilization

• Single ʻhotʼ CPUs are a common problem due to application 
scaleability issues (single threaded)

• This makes identification easy, without reading pages of mpstat
(1M) output

107

60s
0%

100%

idle CPUs single ʻhotʼ CPU
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Heat Map: Disk Utilization

• Ditto for disks

• Disk Utilization heat map can identify:

• overall utilization

• unbalanced configurations

• single hot disks (versus all disks busy)

• Ideally, the disk utilization heat map is tight (y-axis) and 
below 70%, indicating a well balanced config with headroom

• which canʼt be visualized with line graphs
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Back to Line Graphs...

• Are typically used to visualize performance, be it IOPS or 
utilization

• Show patterns over time more clearly than text (higher 
resolution)

• But graphical environments can do much more

• As shown by the heat maps (to start with); which convey details 
line graphs cannot

• Ask: what “value add” does the GUI bring to the data?
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Resource Utilization Heat Map Summary

• Can exist for any resource with multiple components:

• CPUs

• Disks

• Network interfaces

• I/O busses

• ...

• Quickly identifies single hot component versus all 
components

• Best suited for physical hardware resources

• difficult to express ʻutilizationʼ for a software resource
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Future Opportunities

Visualizations

111
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So far analysis has been for a single server

   What about the cloud?

Cloud Computing

112
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From one to thousands of servers

113

Workload Analysis:
latency I/O x cloud

Resource Monitoring:
# of CPUs x cloud
# of disks x cloud
etc.
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Heat Maps for the Cloud

114

• Heat Maps are promising for cloud computing observability:

• additional dimension accommodates the scale of the cloud

• Find outliers regardless of node

• cloud-wide latency heat map just has more I/O

• Examine how applications are load balanced across nodes

• similar to CPU and disk utilization heat maps

• mpstat and iostatʼs output are already getting too long

• multiply by 1000x for the number of possible hosts in a large 
cloud application
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Proposed Visualizations

• Include:

• Latency heat map across entire cloud

• Latency heat maps for cloud application components

• CPU utilization by cloud node

• CPU utilization by CPU

• Thread/process utilization across entire cloud

• Network interface utilization by cloud node

• Network interface utilization by port

• lots, lots more
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Cloud Latency Heat Map

• Latency at different layers:

• Apache

• PHP/Ruby/...

• MySQL

• DNS

• Disk I/O

• CPU dispatcher queue latency

• and pattern match to quickly identify and locate latency
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Latency Example: MySQL

• Query latency (DTrace):

117

  query time (ns)                                   
           value  ------------- Distribution ------------- count    
            1024 |                                         0        
            2048 |                                         2        
            4096 |@                                        99       
            8192 |                                         20       
           16384 |@                                        114      
           32768 |@                                        105      
           65536 |@                                        123      
          131072 |@@@@@@@@@@@@@                            1726     
          262144 |@@@@@@@@@@@                              1515     
          524288 |@@@@                                     601      
         1048576 |@@                                       282      
         2097152 |@                                        114      
         4194304 |                                         61       
         8388608 |@@@@@                                    660      
        16777216 |                                         67       
        33554432 |                                         12       
        67108864 |                                         7        
       134217728 |                                         4        
       268435456 |                                         5        
       536870912 |                                         0  
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Latency Example: MySQL

• Query latency (DTrace):

118

  query time (ns)                                   
           value  ------------- Distribution ------------- count    
            1024 |                                         0        
            2048 |                                         2        
            4096 |@                                        99       
            8192 |                                         20       
           16384 |@                                        114      
           32768 |@                                        105      
           65536 |@                                        123      
          131072 |@@@@@@@@@@@@@                            1726     
          262144 |@@@@@@@@@@@                              1515     
          524288 |@@@@                                     601      
         1048576 |@@                                       282      
         2097152 |@                                        114      
         4194304 |                                         61       
         8388608 |@@@@@                                    660      
        16777216 |                                         67       
        33554432 |                                         12       
        67108864 |                                         7        
       134217728 |                                         4        
       268435456 |                                         5        
       536870912 |                                         0  

What is this?
(8-16 ms latency)
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Latency Example: MySQL

119

  query time (ns)                                   
           value  ------------- Distribution ------------- count    
            1024 |                                         0        
            2048 |                                         2        
            4096 |@                                        99       
            8192 |                                         20       
           16384 |@                                        114      
           32768 |@                                        105      
           65536 |@                                        123      
          131072 |@@@@@@@@@@@@@                            1726     
          262144 |@@@@@@@@@@@                              1515     
          524288 |@@@@                                     601      
         1048576 |@@                                       282      
         2097152 |@                                        114      
         4194304 |                                         61       
         8388608 |@@@@@                                    660      
        16777216 |                                         67       
        33554432 |                                         12       
        67108864 |                                         7        
       134217728 |                                         4        
       268435456 |                                         5        
       536870912 |                                         0  

  innodb srv sleep (ns)                             
           value  ------------- Distribution ------------- count    
         4194304 |                                         0        
         8388608 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 841      
        16777216 |                                         0   

oh...
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Latency Example: MySQL

120

• Spike of MySQL query latency: 8 - 16 ms

• innodb thread concurrency back-off sleep latency: 8 - 16 ms

• Both have a similar magnitude (see “count” column)

• Add the dimension of time as a heat map, for more 
characteristics to compare

• ... quickly compare heat maps from different components of 
the cloud to pattern match and locate latency
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Cloud Latency Heat Map

• Identify latency outliers, distributions, patterns

• Can add more functionality to identify these by:

• cloud node

• application, cloud-wide

• I/O type (eg, query type)

• Targeted observability (DTrace) can be used to fetch this

• Or, we could collect it for everything

• ... do we need a 4th dimension?
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4th Dimension!

• Bryan Cantrill @Joyent coded this 11 hours ago

• assuming itʼs now about 10:30am during this talk

• ... and I added these slides about 7 hours ago
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4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range
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100 ms
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4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range 

• omega-axis (color hue): application

• blue == “coreaudiod”
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4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range 

• omega-axis (color hue): application

• green == “iChat”
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4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range 

• omega-axis (color hue): application

• violet == “Chrome”

126

0 ms
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4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range 

• omega-axis (color hue): application

• All colors

127

0 ms

100 ms
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“Dimensionality”

• While the data supports the 4th dimension, visualizing this 
properly may become difficult (we are eager to find out)

• The image itself is still only 2 dimensional

• May be best used to view a limited set, to limit the number of 
different hues; uses can include:

• Highlighting different cloud application types: DB, web server, etc.

• Highlighting one from many components: single node, CPU, disk, 
etc.

• Limiting the set also helps storage of data
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More Visualizations

• We plan much more new stuff

• We are building a team of engineers to work on it; including Bryan 
Cantrill, Dave Pacheo, and mysqlf

• Dave and I have only been at Joyent for 2 1/2 weeks
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Beyond Performance Analysis

• Visualizations such as heat maps could also be applied to:

• Security, with pattern matching for:

• robot identification based on think-time latency analysis

• inter-keystroke-latency analysis

• brute force username latency attacks?

• System Administration

• monitoring quota usage by user, filesystem, disk

• Other multi-dimensional datasets
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Objectives

• Consider performance metrics before plotting

• Why latency is good

• ... and IOPS can be bad

• See the value of visualizations

• Why heat maps are needed

• ... and line graphs can be bad

• Remember key examples

• I/O latency, as a heat map

• CPU utilization by CPU, as a heat map
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Heat Map: I/O Latency

• Latency matters

• synchronous latency has a direct impact on performance

• Heat map shows

• outliers, balance, cache layers, patterns
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Heat Map: CPU Utilization

• Identify single threaded issues

• single CPU hitting 100%

• Heat map shows

• fully utilized components, balance, overall headroom, patterns

133

100%

0%
60s

Thursday, November 11, 2010



Tools Demonstrated

134

• For Reference:

• DTraceTazTool

• 2006; based on TazTool by Richard McDougall 1995.  Open 
source, unsupported, and probably no longer works (sorry).

• Analytics

• 2008; Oracle Sun ZFS Storage Appliance

• “new stuff” (not named yet)

• 2010; Joyent; Bryan Cantrill, Dave Pacheco, Brendan Gregg
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Question Time

• Thank you!

• How to find me on the web:

• http://dtrace.org/blogs/brendan

• http://blogs.sun.com/brendan <-- is my old blog

• twitter @brendangregg
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