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Abstract
We present PeerMon, a peer-to-peer resource monitor-

ing system for general purpose Unix local area network

(LAN) systems. PeerMon is designed to monitor sys-

tem resources on a single LAN, but it also could be de-

ployed on several LANs where some inter-LAN resource

sharing is supported. Its peer-to-peer design makes Peer-

Mon a scalable and fault tolerant monitoring system for

efficiently collecting system-wide resource usage infor-

mation. Experiments evaluating PeerMon’s performance

show that it adds little additional overhead to the sys-

tem and that it scales well to large-sized LANs. Peer-

Mon was initially designed to be used by system services

that provide load balancing and job placement, how-

ever, it can be easily extended to provide monitoring data

for other system-wide services. We present three tools

(smarterSSH, autoMPIgen, and a dynamic DNS binding

system) that use PeerMon data to pick ”good” nodes for

job or process placement in a LAN. Tools using PeerMon

data for job placement can greatly improve the perfor-

mance of applications running on general purpose LANs.

We present results showing application speed-ups of up

to 4.6 using our tools.

1 Introduction

General purpose LANs of workstations are systems

where multiple machines (nodes) are connected by a net-

work. Each machine runs a stand-alone operating system

(OS) and typically runs a network file system and may

support a few other types of networked resource sharing.

These types of systems are common at universities and

other organizations where machines in offices and labs

are connected to allow some system-wide resource shar-

ing, but where most of a machine’s resources are under

the control of its local OS. Typically, these systems do

not implement any kind of centralized scheduling of net-

worked resources; resource scheduling is done locally by

the OS running on the individual nodes.

In general purpose LANs multiple users can log into

individual nodes and use the networked resources to run

any workload including batch, interactive, sequential and

parallel applications. The workload in such systems is

muchmore dynamic and not as well controlled as in clus-

ter systems that typically run system-wide job scheduling

software that users must use. As a result, there are often

large variations in system-wide resource usage and large

imbalances in the use of computational resources in gen-

eral purpose LANs [3].

To perform computational tasks efficiently it is often

key to have some knowledge of resource availability and

resource load. For example, it would be ideal to choose

the node with the lowest CPU load, the largest amount

of free RAM, and the fewest number of users to run a

computationally intensive sequential program. For par-

allel applications (such as MPI) running on a network of

workstations, performance is usually determined by the

slowest node. If a user had a tool that could easily iden-

tify the best nodes on which to run a parallel job, avoid-

ing heavily loaded nodes, the result could be a dramatic

improvement in execution time of the application.

Because general purpose networked systems do not

provide system-wide resource scheduling, it is up to

users to either guess at good placement or gather current

usage information on their own to make better informed

job placement options. In some cases, this can require a

fair amount of effort; in others, it may not be possible.

For example, a system may be set up so that individual

nodes cannot be specified for remote ssh. Instead, the

DNS server may use a round-robin mapping of a generic

name like lab.cs.swarthmore.edu to one of the

nodes in the system. In this case, a user can end up on a

heavily loaded node, her only recourse being to log out

and hope for better placement when she tries again.

A network resource monitoring system that efficiently

provides system-wide usage data could be used to better

distribute users and program workloads across the sys-

tem. This would result in more balanced resource usage



across the system, better system-wide resource utiliza-

tion and, thus, better average system-wide performance.

We designed PeerMon to efficiently provide system-

wide resource usage information to tools that implement

load balancing functions in general purpose LAN sys-

tems. Each node in the system runs a PeerMon dae-

mon peer that periodically collects system usage statis-

tics about its own node and sends its information about

system-wide resource usage to a fixed number of peers

(currently three). The peers are chosen based on heuris-

tics designed to maintain accurate system-wide data and

a high degree of P2P network connectivity while at the

same time minimizing network overheads.

PeerMon’s peer-to-peer design solves problems as-

sociated with more centralized client-server monitoring

systems like those based on Simple Network Manage-

ment Protocol (SNMP), namely the single server bottle-

neck and single point of failure. Because there is no

central authority for system-wide resource information,

there is no central server that can become a bottleneck as

systems grow to larger numbers of nodes. Applications

that use PeerMon data access it locally on the nodes on

which they run by interacting with their local PeerMon

daemon. This ensures that system-wide resource usage

data are always available and can be accessed quickly

through a local service on each node. Additionally, since

it is not necessary that system-wide resource usage data

be consistent across all peers for the data to be useful,

our system is designed to avoid costly peer data synchro-

nization and peer data recovery.

PeerMon is also fault tolerant. Each PeerMon peer

is equal and provides system-wide usage information

to clients on its local node. If a node fails, PeerMon

daemons on other nodes just stop receiving data about

the failed node, but continue to provide system-wide re-

source information for non-failed resources.

To demonstrate how PeerMon resource monitoring

data can be used, we implemented three tools that make

use of its data. The first tool, smarterSSH, uses data

collected from the peer monitor process to select the

best machine to ssh into. Currently, we support se-

lecting the ”best” machines based on combinations of

CPU load, RAM load, and number of CPU cores. The

second tool, autoMPIgen, uses PeerMon data to auto-

matically generate MPI host files based on system-wide

resource capabilities and usage. The third tool is dy-

namic DNS binding based on system-wide resource us-

age. Using data provided by the PeerMon daemon run-

ning on the DNS server, our tool sets bindings so that

a single name is mapped to the current set of ”best”

nodes in the system. A user who remotely ssh’s into

cslab.cs.swarthmore.edu will be logged into

one of the ”best” machines in our LAN. The result is that

we better distribute remote logins across machines in our

system.

Currently PeerMon runs on the Swarthmore Computer

Science Department’s LAN of about 60 Linux 2.6/x86

machines. All three tools that make use of PeerMon data

are available to the users of our system.

The remaining parts of the paper are organized as fol-

lows: Section 2 discusses related work; Section 3 dis-

cusses the design of PeerMon; Section 4 discusses Peer-

Mon’s current implementation, configuration, and run-

ning details; Section 5 discusses our three example tools

that we designed that make use of PeerMon data; Sec-

tion 6 presents performance results of PeerMon and our

example tools; and Section 7 concludes and discusses fu-

ture directions for our work.

2 Related Work

Our work is most closely related to other work in net-

work management and network resource scheduling.

There has been a a lot of work on network manage-

ment systems that are designed to obtain usage informa-

tion and manage networked resources. Most of these are

centralized systems based on the Simple Network Man-

agement Protocol (SNMP) framework [9]. The frame-

work is based on a client-server model in which a single

central server periodically sends requests to clients run-

ning on each node to send back information about the

node. In addition, SNMP allows the manager to send

action requests to clients to initiate management opera-

tions on individual nodes. The centralized design allows

for a single central authority to easily make system-wide

resource management decisions; however, it also repre-

sents a single point of failure in the system and a bottle-

neck to scaling to large-sized networks.

To address the fault tolerance and scalability problems

associated with a centralized design, there has been work

in distributing network management functionality. Some

work uses a hierarchical approach to network manage-

ment [8, 20, 10]. In these systems, one or more top-level

managers communicate with distributed mid-level man-

agers to perform resource management activities. Be-

cause the mid-level managers are distributed over the

network, these systems scale better than centralized sys-

tems. Additionally, there is typically some support for

handling failure of one or more manager processes.

There have also been systems proposed using a P2P

design for networked management systems [2, 18]. In

particular, Panisson et al. [15] propose a modification to

the SNMP protocol whereby the network contains nodes

of three different roles, two types of managers as well as

an agent processes.

Our work is similar in that we use a P2P design to

solve the fault tolerance and scalability problems with

centralized solutions. However our work differs in two
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fundamental ways. First, PeerMon is designed to pro-

vide system-wide resource monitoring and resource us-

age data collection only. It is not a network manage-

ment system, but provides lower-level monitoring and

data collection. Thus, its design is much less compli-

cated than this other work and as a result, can be better

optimized for its system-wide data collection task inde-

pendently of how its data may be used by higher-level

services. A higher-level resource management system

could be implemented as a client of PeerMon data rather

than being integrated into PeerMon. The second differ-

ence is that every PeerMon peer is an equal peer. The

result is a purer P2P design than this other work; one

that provides a more layered and flexible architecture for

designing resource management systems, and one that is

more fault tolerant and scalable.

Other work related to ours is in the area of resource

scheduling and load balancing tools for networked sys-

tems. There has been a lot of work in this area, most

focusing on cluster and grid systems [7, 13, 11, 4, 16, 17,

19].

Condor [13] and the Now/GLUnix project [7] are two

examples that are designed, in part, to run on general pur-

pose networked systems like ours. NOW/GLUnix imple-

ments a cluster abstraction on top of a network of work-

stations that are simultaneously being used by individ-

ual users as a general purpose LAN. GLUnix stores the

global state of the network on a single master node. This

state is updated by daemon processes running on each

node, which periodically send their local resource usage

information to the master. The data are used to support

resource allocation and parallel and sequential job place-

ment by the master.

Condor implements a job submission and scheduling

system for running parallel and sequential applications

on LANs, clusters, and grids. When run on general pur-

pose LANs, Condor discovers idle nodes on which to run

jobs. When a node running a Condor job is no longer

idle, Condor uses process migration to moveCondor jobs

to other idle nodes in the system. Condor uses a central-

ized manager and local daemons to collect system-wide

load statistics and to perform process control.

GLUnix and Condor provide much higher-level ser-

vices and abstractions than our work, but both collect

system-wide resource usage data on the same types of

target systems. PeerMon provides only the underlying

system for data collection, but uses a P2P design instead

of a centralized one. PeerMon could potentially be used

to provide data to higher-level system services like Con-

dor or GLUnix.
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Figure 1: PeerMon Architecture. Each host runs a PeerMon

daemon . The Listener thread receives UDP messages from

the P2P network (1) and updates the hashMap with the newest

data (2). The Sender thread periodically wakes-up and updates

the hashMap with local node resource data (3). It then selects

three peers to send its hashMap data via UDP messages (4 and

5). Applications, like smarterSSH, interact with the PeerMon

Client Interface thread via a TCP/IP to obtain PeerMon system-

wide resource usage data.

3 The PeerMon System

PeerMon is designed to run on a general purpose net-

worked system where users can log into any node at

any time and run any mix of parallel and sequential pro-

grams, and batch and interactive applications. The three

main goals in designing PeerMon are: to efficiently pro-

vide, in real-time, system resource usage information; to

scale to large-sized systems; and to be fault tolerant. The

system also needs to be flexible enough to allow nodes to

easily enter and leave the P2P network. Additionally, be-

cause each node continuously runs a PeerMon daemon,

it is important that PeerMon uses minimal network and

other system resources.

To meet these goals we chose a P2P design for Peer-

Mon. Each node in the network runs a PeerMon dae-

mon, which is an equal peer in the system; there is no

central authority nor is there a hierarchical relationship

among peers. Every node in the system provides system-

wide resource usage data to its local users. Thus, users

of PeerMon data need only contact their local daemon to

get information about the entire system.

When a PeerMon node fails, the rest of the system
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continues to function; non-failed nodes continue to use

PeerMon data collected from their local PeerMon dae-

mons. Data from failed or unreachable nodes ages out

of the system and will not be included as a ”best node”

option by system services that use PeerMon.

Recovery from failure is easy. When a node comes up,

it starts a PeerMon daemon that reconnects to the system

by sending its information to three peers. Once other

peers hear of the new peer, they will send it system-wide

resource usage data in subsequent peer data exchanges.

Our tests show that it takes on average eight rounds of

message exchanges for a new peer to become fully con-

nected into the system.

To reduce the amount of network traffic between

peers, we use the observation that it is not necessary,

nor is it possible, to have completely accurate system-

wide resource usage information in general purpose net-

worked systems. Even in a centralized resource moni-

toring system, the data do not represent an instantaneous

snapshot of system-wide state [12]. PeerMon is designed

so that each peer collects system-wide resource informa-

tion, but individual PeerMon nodes may have slightly

different information about the system. Distributed Peer-

Mon data do not need to have the same type of consis-

tency constraints as distributed file system and database

data do. Thus, we do not need to implement expensive

synchronization to support consistency of data across all

peers. As long as each PeerMon peer has relatively re-

cent resource-usage information about the system, its

data is just as accurate and useful as data provided by

a centralized system.

Higher-level services that use PeerMon data to imple-

ment load balancing or job-placement combine PeerMon

data with accounting of their activities to make policy

decisions. These higher-level services could be imple-

mented as centralized, hierarchical or distributed inde-

pendent clients of PeerMon. The constraints on higher-

level service determine which PeerMon peers it would

use to make policy decisions. This is no different than

how such systems would use data from a centralized re-

source monitoring system. PeerMon, like other resource

monitoring systems, does not need to account for how its

data may be used by higher-level services.

3.1 System Architecture

Figure 1 shows the structure of the multi-threaded Peer-

Mon daemon process. The Listener thread receives mes-

sages from other peers containing system-wide resource

statistics. The Sender thread periodically wakes up, col-

lects resource usage information about its local node

and sends a copy of its system-wide state to three other

PeerMon peers. The Client Interface thread exports the

peer’s collected system-wide state to local applications

IP TS TTL Indegree payload

130.52.62.123 5 7 4 (char *...)

Table 1: Structure of a hashMap entry.

that want to use PeerMon data.

Each PeerMon daemon stores its resource usage data

in a data structure called the hashMap. The Listener and

Sender threads update hashMap data in response to re-

ceiving or collecting newer resource information. The

Sender and Listener threads communicate using UDP/IP

sockets and the Client Interface thread communicates

with applications using TCP/IP.

3.1.1 Resource Usage Data

Each PeerMon daemon stores system-wide resource us-

age information in a data structure called the hashMap.

Table 1 shows the structure of a hashMap entry. Each en-

try in the hashMap contains information associated with

a specific machine (node) in the network. The set of in-

formation stored includes the IP and port number of the

node and PeerMon Listener thread, and the payload that

contains the resource usage data from that node. Cur-

rently, PeerMon is implemented to collect and store re-

source usage information in the payload field, but the

general structure is such that it could be modified to store

other types of data.

The time to live (TTL) field approximates the age of

the data. Its value is decremented each time stamp (i.e.

each time the Sender thread sends information to three

other peers). The Indegree field counts the number of

messages that a node has received in the latest interval

between two time steps. The time stamp (TS) field con-

tains the last time stamp when the node was directly con-

tacted from this PeerMon daemon. The TTL, Indegree,

and TS are used by heuristics to select the three peers to

send hashMap data to at each time step. The TS field is

stored locally and is not sent to other nodes. All other

hashMap data are shared with peers.

3.1.2 Sender and Listener Threads

The Sender thread periodically wakes up, collects re-

source statistics about its local node, adds them to

its hashMap, and then selects three peers to send its

hashMap data. The Listener thread is responsible for re-

ceiving hashMap entry data from other peers and updat-

ing its local hashMap with all or some of these data. The

Sender thread decrements the TTL field of each entry

each time it performs this operation. The TTL field ap-

proximates how old the resource data are for each node.

The Listener thread compares TTL fields of entries in its

hashMap and entries received from peers. If the peer data

4



has a larger TTL value, it updates the hashMap with the

peer data (i.e. this is more recent data about the node). If

the current hashMap entry’s TTL value is larger, it does

not update its hashMap with the data from the peer (i.e.

the current entry represents more recent data about the

node than the data the peer sent). Currently, the TTL

field’s value starts at 10. Experiments run on networks

of sizes 25-500 show that this value works well to ensure

both recent data and high connectivity.

We chose to have the Sender and Listener threads use

UDP/IP sockets to communicate to avoid TCP connec-

tion overheads each time peers wanted to communicate.

As long as most UDP messages are delivered, an occa-

sional dropped packet will not affect the quality of the

data in the system. Because absolute correctness of the

data cannot be guaranteed, losing an occasional packet

will have little or no effect on the system. When the

node receives other system-state messages, the window

of time during which it missed an update about a node’s

state is small. If packet loss is common, then the added

guarantees provided by TCP may be worth its higher

communication overhead.

Because UDP is used to send hashMap data, care

must be taken to ensure that loss of a single packet does

not cause a Listening thread to block forever waiting

for a lost message. To ensure this, the Sender thread

sends several independent messages containing parts of

its hashMap data to each node. Each independent mes-

sage fits into a single packet so that if a packet is dropped,

the Listener thread will never block trying to receive it; it

just receives and handles the next independent message

never knowing that it received one fewer message than a

Sender thread sent.

3.1.3 Heuristics used to select Peers

To ensure that all nodes have recent usage information

about all other nodes in the system, care must be taken in

selecting which of three peers the Sender thread sends it

hashMap data to. We developed three heuristics for se-

lecting peers that, when used in combination, do a good

job of distributing new data to all peers and of maintain-

ing a high degree of connectivity in the P2P network.

Each time the Sender thread wakes up, it applies one of

the three heuristics. The heuristics are cycled through in

round-robin order.

The first heuristic, named ”Contact New Nodes”,

picks peers that are relatively new to the network. Since

PeerMon nodes can enter or leave the P2P network at

any time (e.g. due to node failure and restart) this heuris-

tic ensures that new nodes in the system collect system-

wide information soon after they connect the network.

The heuristic picks peers with the smallest value of:

MAX TTL−TTL+Indegree. The heuristics ensures

that nodes with a high TTL (i.e. nodes whose informa-

tion is new) and a low Indegree (nodeswho have not been

sent to recently) are selected. The heuristic results in new

peers being quickly integrated into the system; however,

its use alone can lead to P2P network partitioning.

The second heuristic, ”Contact Forgotten Nodes”, se-

lects the three nodes with the lowest TTL (i.e. nodes

that the present node has heard from least recently). The

third heuristic, ”Contact Old Friends”, is designed to en-

sure that a node cannot become permanently isolated. It

uses the TS field values to choose peers that it has not

sent data to recently.

The combination of three heuristics works well to pre-

vent network fragmentation and to allow for new nodes

to quickly become fully incorporated into the system.

4 Current Implementation of PeerMon

PeerMon is implemented in C++. It runs on the Swarth-

more Computer Science Department network of about 60

Linux 2.6/x86 machines. Our system has some hetero-

geneity in that machines have different numbers of cores

(we have 2, 4 and 8 core machines), different amounts

of RAM, and slightly different processors. All machines

are connected by a switched 1Gbit Ethernet network.

PeerMon daemons collect local resource data for CPU

load, amount of free RAM, and number of users through

the Linux /proc interface on the node on which they run.

PeerMon can be modified to collect and distribute other

data. Currently, this would require changing PeerMon

code. In the future we plan to add a programming inter-

face that would allow users to more easily change the set

of data PeerMon collects and change how it collects it.

4.1 Starting Up a PeerMon Daemon

The PeerMon executable takes several command line ar-

guments that can be used to run and configure Peer-

Mon in different ways. Figure 2 shows the command

line options that include specifying the port number for

the Listener thread, running the daemon in collector-

only mode, starting with a user-defined configuration

file, and specifying the number of seconds the Sender

thread sleeps between collecting local information and

sending its hashMap data to three peers.

When a PeerMon daemon starts-up it reads informa-

tion from a config file that contains addresses of three

PeerMon nodes. These are the first three nodes that the

Sender thread contacts to start the exchange of system-

wide resource data.

If the PeerMon daemon is started in collector-only

mode it will receive resource usage information about

other nodes, but sends ”invalid” information about itself.
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peermon -p portnum [-h] [-c] [-f configfile] [-n secs]

-p portnum: use portnum as the listen port for peermon

-c: run this peermon daemon in collector-only mode

-f conf_file: run w/conf_file (default /etc/peermon/peermon.config)

-n secs: how often daemon sends its info to peers (default 20)

Figure 2: Command line options to peermon daemon.

Other nodes, upon receiving ”invalid” data, will not in-

clude the collector node’s information in data it exports

to its local users. This allows a collector-only node to use

PeerMon data but not make itself a candidate for other

node’s use. We run PeerMon in collector-only mode on

our DNS server so that other nodes will not choose it as

a target for ssh or spawning application processes.

Each machine in our system is configured to start a

PeerMon daemon when it starts-up. Each machine also

periodically runs a cron job to detect if the PeerMon dae-

mon is still running, and if not, re-starts it.

4.2 PeerMon Data Interface

Users (clients) of PeerMon data, such as smarterSSH, ob-

tain PeerMon data by connecting to the Client Interface

thread and sending it a message requesting its hashMap

data. TCP sockets are used to connect to the Client In-

terface thread.

In our current implementation, the PeerMon daemon

also exports its hashMap data by writing it to a file on

the local file system. The PeerMon Sender thread re-

places the old contents of the file with updated hashMap

values each time it wakes up. Clients can access Peer-

Mon data by opening and reading this file. There is a

potential race condition between the reader and writer of

this file. However, because we do not plan to support the

file interface in the final version of the code, we ignore

handling the unlikely event of a read/write conflict to this

file (in practice we rarely see it). The file interface was

our initial client interface to PeerMon before adding the

Client Interface thread, and is currently used to help with

debugging of our system.

Although the file interface is easier for clients to use

than the TCP interface, it has two problems: the first is

the potential read/write race condition to the shared file

that could result in clients reading garbage or incomplete

data; the second, and more serious, problem is that there

is non-trivial overhead associated with re-writing the file

contents each time data are collected. With the TCP in-

terface the PeerMon daemon only exports its data when

they are being used by a client.

In the future we plan to implement a higher-level pro-

gramming interface for PeerMon clients that will hide the

underlying TCP interface in an easier to use library.

5 Example Applications that make use of

PeerMon data

The initial motivation for developing PeerMon was to

design tools that could make better load balancing de-

cisions in general purpose network systems by consid-

ering system-wide resource usage data. As a demonstra-

tion of how PeerMon data can be used for such purposes,

we developed three tools: smarterSSH; autoMPIgen, and

dynamic DNS binding based on resource load.

5.1 smarterSSH

smarterSSH is our tool for choosing the ”best” ssh tar-

get node based on PeerMon data. It is implemented in

Python and has several command line options that allow

a user to specify different criteria for ordering the ”best”

node(s) and to select different runtime options.
The following are the command line options to

smarterSSH:

-c: order nodes by CPU load

-m: order nodes by free memory

-n num: print out the best num nodes

rather than ssh into the best

-i: verbose printing mode

By default, smarterSSH orders nodes based on a com-

bination of their CPU load and amount of free RAM us-

ing the function: freeMem

1+CPUload
(1 is added to prevent divi-

sion by 0).

When run with no command line options, smarterSSH

connects to its local PeerMon daemon to obtain its

hashMap data, sorts the data based on the combination of

CPU load and free RAM, randomizes the order of equiv-

alent nodes, and ssh’s into the top node from the sorted

result. Running with command line options -c or -m

sorts the data by CPU load only or free RAM only. The

ordering functions use small delta values to place nodes

into equivalence groups so that small differences in free

RAM or CPU load are not deemed significant.

Running with command line options [-n num]

causes smarterSSH to print out an ordered list of its top

num nodes rather than ssh’ing into the ”best” node.

As an example, Figure 3 shows output from a run of

smarterSSHwith the command line options: -c -i -n

10. This run will order nodes by CPU load only, and will
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host CPU load free RAM cores

--------------------------------------

avocado 0.000 13068052 8

pimento 0.000 15828112 8

orange 0.000 2933896 4

cucumber 0.000 6291932 4

dill 0.000 5967724 4

ginger 0.000 3170436 4

marjoram 0.000 7049804 4

molasses 0.000 6881228 4

anise 0.030 14659024 8

perilla 0.020 5597020 4

Figure 3: Example output from a run of smarterSSH -c

-n 10 -i (print out the top 10 ”best” nodes as ordered by

CPU load). Eight of the nodes are equally good with a CPU

load of 0.0. anise is ranked higher than perilla because it has

8 cores vs. 4.

print out the top 10 nodes rather than ssh’ing into the top

node. In this example there are eight ”best” nodes, all

with CPU load 0.0. Each time smarterSSH is invoked, it

randomizes the PeerMon data so that the total ordering

among equal nodes varies. This means that subsequent

runs of the above command could result in a different

ordering of the first eight nodes. Randomization is used

so that multiple invocations of smarterSSHwill distribute

the load over the ”best” nodes while these new ssh’s have

not yet had time to effect system load.

5.2 Automatic MPI host file generation

autoMPIgen is another tool that uses PeerMon data to

perform load balancing in general purpose LANs. It

automatically generates MPI host files by choosing the

best nodes based on PeerMon’s system-wide resource

use data. It is written in Python and is very similar to

smarterSSH. When run, autoMPIgen interacts with the

local PeerMon daemons to obtain system-wide resource

usage information. It has command line options to allow

the user to specify how to order machines and how to

configure the resulting OpenMPI [5] hostfile 1 contain-

ing the ”best” machines.
The following are the command line options to autoM-

PIgen:

-n num: choose total num nodes

-f filename: specify the output file.

-c: order best nodes by CPU load only

-m: order best nodes by free RAM only

(default is combination CPU and RAM)

-i: printout results to stdout

-p: include a node’s number of CPUs

in the generated hostfile

-cpus: interpret the num value from

(-n num) as number of cores

As an example, using the PeerMon data from Figure 3,

autoMPIgen run with the command line options -n 9

-c -p generates the following hostfile (the 9 best hosts

ordered by CPU load and including the core count in the

hostfile (”slots=n”)):

avocado slots=8

pimento slots=8

orange slots=4

cucumber slots=4

dill slots=4

ginger slots=4

marjoram slots=4

molasses slots=4

anise slots=8

A run adding the additional command line argument

-cpus interprets the -n 9 value to mean CPUs rather

than nodes, and generates the following hostfile (best

machines with at least a total of 9 cores):

avocado slots=8

pimento slots=8

5.3 Dynamic DNS

Our third example of using PeerMon data is to incorpo-

rate it into dynamic domain name server (DNS) bind-

ing. [1] This allows a virtual host name to be mapped

to one of the set of ”best” physical nodes where ”best”

nodes are selected based on system-wide load.

Using PeerMon data to select a set of ”best” nodes has

several benefits over BIND’s support for load distribution

that selects a host to bind to using either round-robin or

random selection from a fixed set of possible hosts. Our

solution allows for the ”best” host to be selected based on

current system resource load, thus adapting to dynamic

changes in system resource usage and resulting in better

load distribution. Our solution is also resilient to nodes

being unreachable due to temporary network partition-

ing, node failure, or to deliberate shut-down of nodes in

order to save on energy consumption during times of low

use. In BIND, if the selected host is not reachable, then

ssh hangs. Using our system, unreachable or failed nodes

will not be included in the set of ”best” targets. When a

node is reachable again, PeerMon will discover it and the

nodemaymake its way back into the set of ”best” targets.

Adding support for dynamic DNS binding using Peer-

Mon data is fairly easy if you have control over your own

domain name server. In our department we run our own

DNS server and control both the name-to-address and the

reverse address-to-name mappings for our sub-domain

(cs.swarthmore.edu.) The following is a summary

of the steps we took to add support for dynamic binding

to nodes chosen using PeerMon data:

1. Run PeerMon on our domain name server in

collector-only mode.
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2. Periodically (currently once per minute) update the

resource records for our sub-domain so that one

hostname (cslab.cs.swarthmore.edu) has

n address records associated with it (we have n set to

5). These 5 machines are selected using data from

the local PeerMon daemon.

3. Use the round-robin feature of BIND 9 to ro-

tate through the 5 addresses when queries for

cslab.cs.swarthmore.edu are made

The first step requires that PeerMon is running on po-

tential target machines in our system and on the DNS

server. We run PeerMon daemons on most of our ma-

chines (we exclude most servers and a few other ma-

chines that are designated for special use). The DNS

server runs the PeerMon daemon in collector-only mode,

which will exclude it from being a target of smarterSSH,

autoMPIgen, or any other tool using PeerMon.

The second and third step for adding PeerMon data

into the DNS records require that we first enable the dy-

namic update feature of BIND 9 by adding an ”allow-

update” sub-statement to our DNS zone configuration

file:

zone "cs.swarthmore.edu" {

type master;

file "cs.db";

allow-update {127.0.0.1;130.58.68.10;};

};

Next, a script to update DNS records based on Peer-

Mon data is added as a cron job that runs once per

minute. When run, the script first contacts its local Peer-

Mon daemon to obtain system-wide resource usage data

to determine the 5 ”best” machines. For example, sup-

pose these are currently the five best machines based on

PeerMon data:

130.58.68.41

130.58.68.70

130.58.68.162

130.58.68.74

130.58.68.148

The script next generates a file of commands for nsup-

date (part of the BIND 9 software), deleting the old

records first, and then adding new A records (an example

is shown in part (a) of Figure 4.) As a last step, the script

runs ”nsupdate” on the generated file to change the DNS

records (the results on the example are shown in part (b)

of Figure 4):

The round-robin feature of BIND will map

cslab.cs.swarthmore.edu to one of these 5

”best” nodes until the cron job runs again to change the

mapping to a possibly new set of the 5 ”best” nodes.

Our implementation led to a couple difficulties that

we had to solve. First, every PeerMon daemon

must have the same ssh host key. Otherwise, when

users repeatedly ssh to cslab, each time getting a

different machine from the PeerMon list, ssh would

warn them that the host identification has changed for

cslab.cs.swarthmore.edu. We solve this prob-

lem by giving all machines running PeerMon the same

ssh host key, and distributing an ssh known hosts2 file

that reflects this fact.

The second difficulty had to do with editing DNS data

files. Because we are using dynamic DNS, a program

running on our DNS server updates our domain data files

every few minutes. A serial number in the domain data

file is used to signal the change in the zone’s data, which

means that the serial number for the zone data is be-

ing changed with each dynamic update. This poses no

problem until we need to manually edit the domain data

file (e.g., to add a new name-to-address mapping). To

solve this problem, our system administrators must first

”freeze” the zone, then make manual editing changes,

and then ”unfreeze” the zone. BIND 9’s rndc command

makes this fairly easy:

$ sudo rndc freeze

(edit the data files here, being

sure to update the serial number)

$ sudo rndc thaw

Once set up, students and faculty can ssh into

cslab.cs.swarthmore.edu and be automatically

logged into a machine with the lowest load in the sys-

tem. Because we update the mappings every minute,

and because remote ssh is not a frequent system ac-

tivity, the result will be good distribution of remote

ssh’s accross nodes in our system. Another benefit is

that users do not need to remember specific machine

names to log into our system; they simply ssh into

cslab.cs.swarthmore.edu and are placed on a

good machine.

By using PeerMon data, machines with high loads,

machines that are unreachable, or machines that have

been shutdown will be excluded from possible hosts.

This not only means that there is better load balanc-

ing using PeerMon data, but that our approach to dy-

namic DNS binding is resiliant to network partitioning

and node failures. No longer do users log in to machines

that are already heavily loaded, or try to log into a ma-

chine, only to see their ssh process timeout. A benefit for

our system administrators is less editing of the DNS data

files. If a machine is taken out for service, it is automat-

ically (within a minute or two) removed from the pool

of best-available machines, requiring no manual editing

of the DNS data files. When a machine is restarted, it

will quickly be added back into the PeerMon network
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(a) example generated file contents:

--------------------------------

update delete cslab.cs.swarthmore.edu.

update add cslab.cs.swarthmore.edu. 30 IN A 130.58.68.41

update add cslab.cs.swarthmore.edu. 30 IN A 130.58.68.70

update add cslab.cs.swarthmore.edu. 30 IN A 130.58.68.162

update add cslab.cs.swarthmore.edu. 30 IN A 130.58.68.74

update add cslab.cs.swarthmore.edu. 30 IN A 130.58.68.148

<a blank line is necessary here>

(b) results after executing nsupdate:

---------------------------------

$ host cslab.cs.swarthmore.edu

cslab.cs.swarthmore.edu has address 130.58.68.70

cslab.cs.swarthmore.edu has address 130.58.68.74

cslab.cs.swarthmore.edu has address 130.58.68.148

cslab.cs.swarthmore.edu has address 130.58.68.162

cslab.cs.swarthmore.edu has address 130.58.68.41

Figure 4: Dynamic DNS impementation details: (a) an example generated file containing update command for nsupdate; and (b)

output from running host after the script runs nsupdate.

and will automatically be a candidate target for dynamic

DNS binding.

6 Performance Results

We present results mesuring the performance of Peer-

Mon in terms of its overheads, the degree of P2P net-

work connectivity, the age of system-wide resource data,

and its scalability to larger networks. We also present

results using the tools we developed that make use of

PeerMon data to perform load balancing in our network.

Our results show that these tools significantly improve

the performance of application programs running on our

system.

6.1 PeerMon P2P Network Conectivity

and Age of Resouce Usage Data

To evaluate the connectivity of PeerMon peers, we sim-

ulated a network of 500 nodes by running 10 instances

of a PeerMon daemon process on each of 50 machines

in our lab. Each daemon was started with a time stamp

value of 5 seconds 2 (how frequently the Sender thread

wakes-up and collects and distributes usage data).

P2P network connectivity is computed as the average

number of nodes contained in each daemon’s hashMap

divided by the total number of nodes in the network. A

connectivity of 1 means that every node in the network

has current information about every other node in the net-

work. For networks up to size 500, we consistently saw

connectivity values above 0.99.

Figure 5: Average message age across all nodes in the network
for various network sizes.

In addition to connectivity, we computed the average

age of hashMap data for different sizes of networks. Fig-

ure 5 shows the results. For a network of size 50, the

average age of data is about 3 iterations (roughly 15 sec-

onds old). The average message age increases with the

size of the network. For a network size of 500, the av-

erage age of a message is about 5 iterations (roughly 25

seconds old).

Additionally, we ran experiements to help us deter-

mine a good value for the number of peers that the Sender

thread should send to each time it wakes-up. We ran ex-

periements of different numbers of send-to peers on a

network of 500 nodes. The results, in Figure 6(a), show

that that as the number of peers increases (x-axis) the
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average message age decreases (y-axis). However, Fig-

ure 6(b) shows that as the number of peers increase, the

PeerMon network load increases linearly.

Picking a good number of peers to send to each time

step involves acheiving a good balance between main-

taining newer data and good P2P network connectivity

and maintaining low messaging overheads. Our results

indicate that a send-to value of 2 is too small, result-

ing in older resouce usage data and potentially less than

full connectivity. A send-to value of 4 results in an av-

erage data age of about 22 seconds with 100% connec-

tivity; however, nearly 150 Kb/s of data are sent from

each node in the network. Based on our results, we chose

3 peers as producing a good balance between achieving

low data age (about 25 seconds on average), high connec-

tivity (around 99.5%), and moderate network bandwidth

usage (about 120 Kb/s).

(a) Average Message Age

(b) Network Bandwidth Use

Figure 6: Average message age (a) and bandwidth used (in

Kb/s) (b) on each node for different send-to values on a network

of 500 nodes.

6.2 PeerMon Scalability

To evaluate how well PeerMon scales to larger-sized sys-

tems, we ran multiple instances of PeerMon on each of

55 machines in our system to simulate systems of larger

Figure 7: The average additional CPU load per PeerMon host

for different sized networks (Numbers of Nodes). The results

show a basically fixed-size per-node CPU load as the PeerMon

network increases.

sizes. We ran experiements with 1, 2, 4, 10, 20, and 40

PeerMon daemons per real machine to simulate LANs of

size 55 to 2,200 nodes. For these experiments we used

the default 20 second rate at which the Sender thread

sends to three of its peers. We ran a script on ourmonitor-

ing server to periodically get MRTG [14] data to obtain

a trace of five minute averages of network, memory and

CPU load for every machine in our network. In order to

ensure that our results for different sized systems were

comparable, we ran experiments over a weekend when

our system was mostly idle so that PeerMon was the pri-

mary load on the system. The data collected from each

of the physical 55 machines in our network were divided

by the number of PeerMon daemons running per host to

obtain the per-node values for the larger systems that we

simulated.

Figure 7 shows CPU load per PeerMon node and

Figure 8 shows the amount of free RAM per PeerMon

node for different sized networks. Both per-node CPU

load and per-node RAM use stay relatively fixed as

the network size increases. As the system-size grows,

each PeerMon node has a larger hashMap data structure.

However, the amount of memory storage and CPU pro-

cessing that this data structure requires is so small that

the overheads for a network of 2,200 nodes are equiv-

alent to overheads for a network of 55 nodes. These

results show that neither RAM nor CPU use will limit

PeerMon’s scalability to larger sized LANs.

Figure 9 shows the number of bytes sent and received

per second per PeerMon node for different sized net-

works (from 55 to 2,200 nodes). The amount of net-

work traffic remains very small as the size of the net-

work grows. On the 2,200 node PeerMon network each

10



Figure 8: The Amount of Free RAM (in MB) per PeerMon host

for different sized networks. These data show that PeerMon

uses little RAM space, and that the amount it uses per node

stays fixed as the size of the network grows.

Figure 9: The average Network load per PeerMon host for dif-

ferent sized networks. The data are the average Mbits/second

sent and recieved per node. The data show that although there

is a slight increase in network bandwidth used per node as the

PeerMon network size increases, the amount used per node is

still a small fraction of the total bandwith available to the node.

PeerMon daemon uses less than 0.16Mbits/second on its

1 Gbit connection. However, there is an increase in the

amount of data each PeerMon daemon sends to its three

peers as the network grows (the number of peers sent to

by each PeerMon daemon is constant, but the size of each

message grows with the number of nodes). On a 55 node

network, each PeerMon deamon’s hashMap has at most

55 entries. On a 2,200 node network, each hashMap can

contain up to 2,200 entries. Each time the Sender thread

wakes up and sends its hashMap contents to three peers,

the total number of bytes sent to each peer grows with

the size of the network.

Even for a network with 2,200 nodes, our results show

that PeerMon adds very little network overhead and that

its network use scales well to the types of systems for

which it was designed. However, the data show some

added network costs as the size of the network grows.

The decision for each PeerMon daemon to send its full

HashMap contents works well for the systems we are

targeting, but it could become a bottleneck if PeerMon

were to be deployed on a system with tens or hundreds

of thousands of nodes. In this case, its design may need

to be changed so that each peer exchanges only partial

hashMap contents.

Our results show that PeerMon scales well to large-

sized systems of the type we are targeting. It adds only

negligable amounts of network, RAM, and CPU load to

the system.

6.3 Results Using smarterSSH and autoM-

PIgen on Application Workloads

The initial motivation for developing PeerMon was to

implement tools that could distribute user and program

load in general purpose networked systems. Therefore,

as a way to evaluate this use of PeerMon data, we ran ex-

periments using smarterSSH and autoMPIgen to select

the best nodes on which to run sequential and parallel

MPI applications.

The experiments were run during a time when our

system was heavily used so that there was variation in

system-wide resource usage. For some experiments we

additionally ran artificial workloads on some nodes to en-

sure more variation in resource usage across nodes. For

these experiments, we needed to ensure some variation in

resource usage, because if all nodes are basically equal, a

randomly chosen node will be just as good as one chosen

based on PeerMon’s system-wide resouce usage data.

We evaluated the results of running different applica-

tions in the network using smarterSSH and autoMPIgen

to select the nodes on which to run the applicaiton. We

found significant improvements in application runtime

when using our tools. The results were consistent across

a broad range of tests.
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For each experiment we compared runs of a bench-

mark program using smarterSSH or autoMPIgen to pick

the ”best” node(s) to runs of the benchmark on randomly

selected nodes (representing no use of PeerMon data).

For the smarterSSH runs, we tested all three node order-

ing criteria (CPU only, RAM load only, and both). We

ran each benchmark 200 times, doing 50 tests of random

selection and 50 tests of each of the three smarterSSH

ordering criteria. We interleaved the runs of each test so

that the results would be equally affected by changes in

system load over the course of the experiement.

Our first benchmark is a memory intensive sequential

program that allocates a 2.8 GB array of integers and

then iterates over the array elements ten times, modifying

each array element as it goes. By reading and writing ar-

ray values with each iteration, we ensure that if the entire

array does not fit in available RAM, the application will

trigger swapping on the node, which will significantly

increase its total execution time.

The ”Memory” column in Table 2 lists speedup val-

ues of using smarterSSH over randomly chosen nodes.

The results show that the run time using smarterSSH

with CPU load ordering is not significantly different

from random (speedup value of 0.87) 3 However, the

two smarterSSH runs that use RAM load to select the

”best” node perform significantly better than randomly

selected nodes (speedup values of 4.62). The speedup

value of 0.87 for CPU, although not significantly differ-

ent than random, does show that picking nodes based on

CPU load alone for this benchmark will not necessarily

result in good choices. Since this is a memory inten-

sive benchmark, it makes sense to choose nodes based

on their RAM load.

Our second experiment uses a primarily CPU inten-

sive benchmark consisting of an openMP implementa-

tion of Conway’s Game of Life (GOL) [6]. The bench-

mark program runs on a single machine. It consists of

a two threaded process that computes the Game of Life

on a 512x512 grid for 1000 iterations. The column la-

beled ”OpenMP GOL” in Table 2 presents the speedup

values obtained using smarterSSH vs randomly select-

ing a node. Our results show that speedup is significant

for all three smarterSSH runs, with the combination or-

dering criterion performing slightly better than the others

(speedup of 2.29).

The final benchmark program is an OpenMPI imple-

mentation of the Game of Life 4. We ran the benchmark

on a 10000x10000 grid for 30 iterations. The program

consists of 8 MPI processes that are distributed across 8

different nodes in our system. The implementation pro-

ceeds in rounds where processes must synchronize with

the others before starting the next round. As a result, the

runtime is determined by the slowest process. autoMPI-

gen was used to automatically generate the MPI hostfiles

Node Benchmark

Ordering Memory OpenMP GOL MPI GOL

CPU 0.87 1.63 1.27

Memory 4.62 2.19 1.78

Both 4.62 2.29 1.83

Table 2: Speedup over random selection of machines using

each heuristic on all three of the benchmarks. Cursive entries

are not significantly different from random selection.

for the runs using PeerMon data.

For these experiments we ran a CPU intensive pro-

gram on 9 of the 50 nodes to create imbalances in CPU

load across machines in our system (18% of the ma-

chines in our network have a high CPU load). Using

randomly selected nodes, there is a 85.7% chance that

each trial would include one of the nine machines run-

ning our CPU intensive program. For the autoMPIgen

runs, these 9 nodes should not be selected.

The speedup values are shown in the ”MPI GOL” col-

umn in Table 2. The results show autoMPIgen runs per-

forming significantly better than random node selection.

Ordering nodes based on both CPU load and RAM load

results in the best performance (speedup of 1.83).

Our benchmark tests show that using PeerMon data to

select good nodes based on CPU load and RAM load re-

sults in applications performing significantly better than

when run on randomly selected nodes. In the worst case,

ordering nodes by CPU load does not perform signifi-

cantly worse than random. A knowledgeable user should

be able to predict which ordering criterion is most useful

for her program based on whether the program is more

CPU-intensive or more memory-intensive. However, our

results demonstrate that for all the benchmarks ordering

nodes using the combination of CPU load and RAM load

works best. This is likely due to the fact that all programs

require a certain amount of both CPU time and RAM

space to execute efficiently. Based on these performance

results, we use a combination of CPU and RAM load as

the default ordering criteria in smarterSSH and autoM-

PIgen.

7 Conclusions

Our results show that PeerMon is a low overhead sys-

tem that quickly provides accurate system-wide resource

usage data on general purpose LAN systems. Its peer-

to-peer design scales well to large sized systems and is

fault tolerant. Our example applications that use Peer-

Mon data (smarterSSH, autoMPIgen, and dynamic DNS

binding based on system load) demonstrate that PeerMon

data can be very useful for implementing load balancing

applications for systems that do not have centralized con-
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trol of resource scheduling. Our benchmark studies show

significant improvement in application performance us-

ing PeerMon data to make good choices about process

placement in the system. PeerMon provides a system-

wide data collection framework that can be used by

higher-level tools that implement management, schedul-

ing or other monitoring activities.

Future directions for our work include: investigat-

ing, collecting, and using other system-wide statistics in

PeerMon; investigating scalability and security issues as-

sociated with supporting PeerMon running on multiple

LANs; and further investigating ways in which PeerMon

data can be used to improve individual application per-

formance in general purpose LANs. Additionally, we

plan to implement an interface to PeerMon clients that

is easier to program than the current TCP interface. Our

current plan is to implement a library interface that would

hide the low-level TCP socket interface. We also plan to

implement better support for extensibility by adding an

interface to allow users to more easily change the set of

system resources that are monitored by PeerMon.
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Notes

1autoMPIgen currently generates OpenMPI hostfiles, but could be

easily changed to output hostfile formats for any MPI implementation.
2We think 5 seconds is too frequent for normal deployment, but it

allowed us to run our experiments more quickly
3Significance testing was done using the Mann-Whitney U test.
4http://myitcorner.com/?page id=2, by Tomasz Gebarowski
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