
YAF: Yet Another Flowmeter

Christopher M. Inacio

CERT

Software Engineering Institute

Carnegie Mellon University

inacio@cert.org

Brian Trammell

Communication Systems Group

ETH Zurich

trammell@tik.ee.ethz.ch

Abstract

A flow meter generates flow data - which contains infor-

mation about each connection observed on a network -

from a stream of observed packets. Flow meters can be

implemented in standalone measurement devices or in-

line on packet forwarding devices, such as routers. YAF

(Yet Another Flowmeter) was created as a reference im-

plementation of an IPFIX Metering and Exporting Pro-

cess, and to provide a platform for experimentation and

rapid deployment of new flow meter capabilities. Sig-

nificant engineering effort has also gone into ensuring

that YAF is a high performance, flexible, stable, and ca-

pable flow collector. This paper describes the some of

the issues we encountered in designing and implement-

ing YAF, along with some background on some of the

technologies that we chose for implementation. In addi-

tion we will describe some of our experiences in deploy-

ing and operating YAF in large-scale networks.

1 Introduction

Network traffic continues to grow at an exponential rate,

with global internet traffic forecast to increase 34% year-

on-year though the first half of this decade [5]. Under-

standing the uses of the network and the needs of its users

is necessary for both operations and planning, for both

business and technical reasons. The need for network

monitoring has therefore never been greater in today’s

large-scale networks. While various tools exist to aid

in this problem, network flow data represents the most

comprehensive way to get an in-depth understanding of

network activity while still leveraging a huge amount of

data reduction necessary in order to practically analyze

large-scale network traffic.

The CERT Network Situational Awareness (NetSA)

Group had previously developed the System for Inter-

net Level Knowledge (SiLK) [12] in order to address the

analysis issues in this area. The SiLK tools are designed

to support the understanding of network flow information

for both network traffic and engineering, as well as secu-

rity. SiLK provides a set of command-line tools modeled

after the standard UNIX command-line tools to analyze

the collected data. A typical SiLK workflow consists of

a query to retrieve information from a SiLK data reposi-

tory, which is then piped into a set of SiLK tools to fur-

ther process the results. The data record format for SiLK

is proprietary format, but the data fields are fundamen-

tally similar to the NetFlow v5 record, as SiLK was orig-

inally designed to process NetFlow v5 data.

However, this approach left us at the mercy of ex-

isting flow meters, such as those deployed on forward-

ing devices, to generate the flow data on which SiLK

operates. Existing solutions had various issues. Flow

meters on forwarding devices often lose flows, because

high-fidelity flow generation is rightly a lower priority

for these devices than forwarding packets. Flow meters

using unreliable transport for export also suffer from flow

loss, especially during times of high traffic load. In ad-

dition, at the time no openly available flow meter had

support for the then-emerging IPFIX [6] standard.

YAF (Yet Another Flowmeter) was designed to ad-

dress this situation. We set out to build a standards-

conformant, high-performance, bidirectional network

flow meter. Standards-conformance was important to en-

sure a long operational lifecycle and wide interoperabil-

ity. We selected the IPFIX standard, based on Cisco Net-

Flow V9, the successor to the successful de facto stan-

dard Cisco NetFlow V5 export protocol. The authors

actively participated in the standards process within the

IETF to feed our experiences in building and deploying

YAF into improving the standard itself, and continue to

do so.

Performance was of utmost concern given the scale

of the networks we needed to monitor, and the ever-

increasing link speeds of the Internet backbone and large

enterprise borders. Bidirectionality was important to en-

able analysis on both sides of a communication, as well

as to slightly increase export efficiency by eliminating

redundant information.

The result of this effort is a software tool, yaf, which

captures live packets or reads packet trace files, and ex-

ports IPFIX flows to a collector or to an IPFIX file [25].

It exports IPFIX bidirectional flows [24], and optionally

supports a set of additional Information Elements for ad-

ditional information derived from packet-level or packet

payload information, such as TCP initial sequence num-

bers or payload Shannon entropy.

YAF, in itself, is not a network analysis application

or an intrusion detection system. Instead, it is intended

as a stage in a comprehensive flow-based measurement

infrastructure, with a focus on security-relevant applica-

tions.

The rest of this paper is organized as follows. Section

2 describes network flow data, and the various protocols

in use for exporting flows, especially IPFIX, and espe-

cially as used by YAF. From there we explore the details

of the design of YAF in detail in section 3, focusing on

those choices which make YAF unique. Related work is

described in section 4. We then describe a few existing

applications of YAF in section 5, including its applica-

tion with SiLK [12] within the NetSA Security Suite and

its use in the middle tier of PRISM [11], a multi-stage

privacy-preserving network monitoring architecture.

2 Network Flow Data: Properties and Pro-

tocols

YAF exports flow data. A flow, simply stated, repre-

sents a connection between two sockets. More gener-

ally and formally, a flow is “a set of packets passing

an observation point in the network during a certain

time interval sharing a set of common properties, each

of which is the result of applying a function to packet,

transport, or application header fields; characteristics of

the packet itself; or information about the packets treat-

ment.” [6]. Specific flow export methods and proto-

cols may use more restrictive definitions than this, for

example, by constraining the set of common properties

(the flow key) or the method for selecting time inter-

vals. Flows may be unidirectional, in which case they

represent one direction of a socket connection, or bidi-

rectional, in which case they represent both directions,

or the entire interaction.

The time interval defining a flow generally spans from

the first observed packet of the flow to one of three

events: either the natural end of the flow, the idle timeout

of the flow, or the active timeout of the flow. The natural

end of the flow is determined by observing and maintain-

ing the state of the flow for connection-oriented protocols

such as TCP or SCTP. The natural end can be determined

exhaustively, completely modeling the state machine for

the transport layer protocol, or approximately, e.g. by

counting a flow as every packet between the first SYN

and the first FIN or RST observed for TCP.

The idle timeout of the flow is the longest period of

time between packets after which the flow will be consid-

ered idle; this is the natural way to expire flows in non-

connection-oriented protocols such as UDP. Idle time-

outs are generally configurable, and lead to a measure-

ment tradeoff: a short idle timeout leads to faster reac-

tion and lower state utilization during flow metering at

the expense of risking expiring flows prematurely.

The active timeout of the flow is the longest lifetime a

flow is allowed to have; any flow longer after the idle

timeout will be exported, and subsequent packets ac-

counted to a new flow. This is a final backstop against

growth of the flow table.

The exact relationship between idle and active timeout

and export time is implementation-specific. For example,

active timeout can be implemented as a continuous or pe-

riodic process; the latter approach leads to some variation

in the actual active timeout in the exported data.

The following few sections describes the origin of the

IPFIX flow protocol. The discussion is organized from a

historical perspective in chronological order.

2.1 Cisco NetFlow v5

Defined by Cisco, NetFlow v5 [4] is a widely deployed

de facto standard protocol and raw storage representa-

tion for network flow data. It is based on a fixed-length

binary record format, with a fixed set of fields. This im-

plies support only for export of IPv4 flows and 16-bit

autonomous system numbers, which has led to its being

superceded in recent years by NetFlow v9 (see section

2.2), but existing repositories of flow data as well as long

replacement cycles of routers which support NetFlow v5

ensure this protocol and representation will be around for

some time.

NetFlow v5 is a unidirectional protocol, with the flow

meter sending packets via UDP to the collector. It is a

“fire-and-forget” protocol; there is no provision for up-

stream control messages or error reporting, other than

that provided by UDP itself via ICMP. This design choice

was made to minimize resource usage and state require-

ments on the flow meter, which in NetFlow v5 is assumed

to be a router.

A NetFlow v5 data stream is made up of packets, each

of which has a header followed by a number of records.

NetFlow v5 records contain start and end timestamps in

terms of the reporting line card’s uptime in milliseconds,

source and destination IPv4 address, source and desti-

nation port, protocol, type-of-service, union of all TCP

flags in the flow, input and output interface, source and

2

destination autonomous system number, and source and

destination prefix mask length.

The packet header contains the system uptime in mil-

liseconds at export, as well as the system realtime clock

at export with nanosecond resolution, which allows flow

timestamps to be expressed in millisecond resolution. It

also contains a sequence number, which is used to detect

dropped NetFlow v5 records.

2.2 Cisco NetFlow v9

Cisco NetFlow v9 [7] is the successor to NetFlow v5,

deployed to support IPv6 as well as flexible definition of

new record types. It abandons the fixed record format for

a template-based system wherein the record format is de-

fined inline. As NetFlow v9 was the base protocol from

which IPFIX was developed, the mechanisms it uses are

essentially the same as those in IPFIX, though some ter-

minology may be different; therefore, the details of this

approach will be elaborated in the following section.

While its flexible data definition makes it nonsensi-

cal to speak of a NetFlow v9 record format, and the

data exported by Cisco’s implementation of NetFlow v9

is administrator-configurable, the information commonly

provided in a NetFlow v9 record is more or less equiva-

lent to that available in NetFlow v5.

2.3 IPFIX

IPFIX is a template-based, record-oriented, binary ex-

port format. The basic unit of data transfer in IPFIX is

the message. A message contains a header and one or

more sets, which contain records. A set may be either

a template set, containing templates; or a data set, con-

taining data records. A data set references the template

describing the data records within that set. This is the

mechanism which lends IPFIX its flexibility.

Within the message, each set has a 16-bit ID in its

set header. This identifies whether the set contains tem-

plates, or data records. In the latter case, the data set

ID matches the template ID of the template which de-

scribes the records in that data set. A template is then

essentially an ordered list of information elements iden-

tified by a template ID. An information element (often

abbreviated IE) represents a named data field of a spe-

cific data type. The data types supported by IPFIX cover

the standard primitive types (e.g. unsigned32, boolean)

plus additional types for addresses and timestamps; each

data type defines an encoding. IEs are then instances of

these types, each with its own specific meaning.

IPFIX provides a registry of information elements, ad-

ministered by IANA [14], that cover most common net-

work measurement applications. This was initially de-

fined in RFC 5102 [18], and is extended both by subse-

quent IPFIX RFCs as well as by a community process

with expert review. Information elements may also be

scoped to SMI Private Enterprise Numbers; these can be

used to export information (as by YAF) not suitable for

standardization through the IANA process.

Because Templates are generally exported once per

session, the cost of self-representation is amortized over

many records. In this way, IPFIX can support a wide

variety of record formats, avoiding tying the implemen-

tation of a flow meter to a specific export data structure,

without the overhead of other representations with se-

mantic flexibility per record, e.g. XML. This extensibil-

ity allows innovation in flow metering and export, and as

such was the natural choice for YAF.

2.3.1 As exported by YAF

As shown in 2, YAF can export an extensive set of fields,

a superset of those available in earlier NetFlow ver-

sions, omitting those specific to packet-forwarding de-

vices. Many of these are IPFIX-standard fields defined in

the IANA registry, while others (those with an annotation

in the “YAF-specific” column) are enterprise-specific In-

formation Elements defined specifically for YAF.

YAF also takes extensive advantage of IPFIX’s tem-

plate mechanism to enable efficient export, as detailed in

section 3.4. As shown in the “Present when” column in

table 2, YAF exports IPv4 addresses only when the flow

is an IPv4 flow, and IPv6 addresses only when the flow

is an IPv6 flow. Reverse information elements are only

exported for flows which actually have packets in the re-

verse direction. In addition, command-line arguments

enabling various additional features of YAF at runtime

(e.g. DPI, entropy calculation, and others to be described

later in this work) cause YAF to capture that data and add

information elements to its export templates to represent

them. Each exported record contains only the informa-

tion elements it needs, with YAF selecting the appropri-

ate template at runtime, exporting it if it has not yet been

exported, and starting the export of a new Data Set if

necessary.

3 Detailed Design of YAF

YAF is designed as a bidirectional network flow meter.

At its core, it takes packet data from some source, de-

codes it, and associates the packet data with a flow. When

flows are determined to be complete, it exports them.

This is a rather simplified view, to which we will add

some more detail in the following subsections.

First we follow a packet through the various stages

of the basic YAF workflow shown in 1, from capture

through to export. Then we examine other interesting

3

Name Present when YAF-specific

flowStartMilliseconds always

flowEndMilliseconds always

octetTotalCount always may use reduced-length encoding

reverseOctetTotalCount biflow may use reduced-length encoding

packetTotalCount always may use reduced-length encoding

reversePacketTotalCount biflow may use reduced-length encoding

sourceIPv6Address IPv6

destinationIPv6Address IPv6

sourceIPv4Address IPv4

destinationIPv4Address IPv4

sourceTransportPort always may contain ICMP type/code

destinationTransportPort always

protocolIdentifier always

flowEndReason always may contain SiLK-specific flags

silkAppLabel –applabel DPI application label

payloadEntropy –entropy Shannon payload entropy

reversePayloadEntropy biflow –entropy Shannon reverse payload entropy

mlAppLabel –mlapplabel Machine-learning app label

reverseFlowDeltaMilliseconds biflow RTT of initial handshake

tcpSequenceNumber TCP

reverseTcpSequenceNumber TCP biflow

initialTCPFlags TCP TCP flags of first packet

unionTCPFlags TCP TCP flags of 2..n
th packet

reverseInitialTCPFlags TCP biflow TCP flags of first reverse packet

reverseUnionTCPFlags TCP biflow TCP flags of 2..n
th reverse packet

vlanId –mac

reverseVlanId –mac

ingressInterface –live dag multi-IF

egressInterface –live dag multi-IF

osName –p0fprint p0f Operating System name

osVersion –p0fprint p0f Operating System version

reverseOsName biflow –p0fprint p0f reverse Operating System name

reverseOsVersion biflow –p0fprint p0f reverse Operating System version

firstPacketBanner –fpexport First forward packet IP payload

reverseFirstPacketBanner biflow –fpexport First reverse packet IP payload

secondPacketBanner –fpexport Second forward packet IP payload

payload –export-payload First n bytes of application payload

reversePayload biflow –export-payload First n bytes of reverse application payload

Table 2: Information elements in a YAF record

4

de-encapsulation

partial defrag

decode and lookup

flow modification

flush and export

libcpap
capture

DAG
capture

dumpfile

input

IPFIX
export

IPFIX
file

frag
table

flow
table

Figure 1: Basic Data Flow in YAF

aspects of YAF’s design, and additional optional features

it supports compared to other flow meters.

3.1 Recursive De-encapsulation

Packet data input can come from a variety of sources, in-

cluding libpcap dumpfiles, live capture on commodity

interfaces via libpcap as well as specialized devices

with libpcap-compatible interfaces such as Bivio and

Napatech devices, and Endace DAG cards. Each of

these sources generally yields Layer 2 and above infor-

mation; YAF then recursively unwraps encapsulations to

arrive at an IP header, possibly storing certain informa-

tion (e.g., VLAN tags or MAC addresses) for later ex-

port with the flow. In addition to the ubiquitous Ethernet

encapsulation, YAF also supports a variety of less com-

mon, carrier-use encapsulations. YAF can decode GRE,

MPLS, MPLE, PPPoE, cHDLC, Linux SLL, PPP, and

PCAP raw. Running on appropriate hardware, this al-

lows YAF to decode network information from Ethernet

to DS3 links, to OC-192 connections. Additionally, as

depicted in diagram 1, YAF can also decode odd com-

binations of encapsulation by running through the en-

capsulation phase multiple times. For example, one site

running YAF encapsulates Ethernet over MPLS. Addi-

tionally, YAF is constructed to allow new encapsulations

to be cleanly added. The decoding system requires only

minimal modification to support a new encoding. YAF

relies on the capture system to be able to identify the

base encapsulation.

3.2 Decoding

De-encapsulated packets are passed to the Layer 3 and

4 decoding layer, which extracts flow keys and counters

from the packet data. The flow key determines which

flow the packet belongs to, and in YAF consists of the tra-

ditional “5-tuple” (source and destination address, source

and destination port, protocol) as well as the IP ver-

sion number (4 or 6) if YAF is compiled for dual-stack

support. The flow key may also optionally include the

VLAN tag and, in the case of a DAG card as source,

the DAG interface number on which the packet was cap-

tured. This flow key is used for lookup in the flow table.

3.3 The Flow Table

The YAF flow table is implemented as a hashtable-

indexed pickable queue. This data structure is essen-

tially a queue paired with a hashtable. It allows random

access to any entry in the flow table via the hashtable,

but also constant access to the least-recently-seen entries,

which allows efficient timeout of idle flows. This design

evolved in part from the bin queue used in NAF [26].

The flow key calculated from the decoding stage is

looked up in the flow table’s hashtable. If no active flow

record corresponding to the flow key is found, a new

record is created. Regardless, the flow record is mod-

ified with information from the packet (e.g., counters,

payload and payload-derived information), and moved to

the head of the flow table’s pickable queue to implement

idle timeout. Active timeout is evaluated when each flow

is selected: if a packet belongs to a flow that is older than

the active timeout interval, that flow is removed from the

flow table and exported, and a new flow record is created

for the incoming packet.

From this point on, the YAF data flow operates on

flows only.

Since YAF flow records in memory are all equal size,

and they have variable lifetimes, they are allocated using

a slab allocator [3], which allows fast reuse of expired

flow records. This gives YAF additional performance

over true dynamic allocation, but still allows the flow ta-

ble to grow and shrink with variable traffic load unlike

with a statically-allocated table. However, since the slab

allocator never returns memory to the operating system,

its memory footprint will generally not be reduced dur-

ing low-traffic periods. Growth of the flow table can be

controlled by command-line options setting the idle and

active timeouts as well as the target maximum table size,

which dynamically reduces the timeouts in order to pre-

vent resource exhaustion during traffic bursts or inten-

tional denial-of-service attacks against the flow meter.

During the long transition from IPv4 to IPv6, a suf-

ficiently large and complex organization may use both

5

protocols for some time; therefore, a design goal of YAF

is to be able to support measurement of both IPv4 and

IPv6 traffic efficiently, with efficient runtime storage and

export of both IPv4 and IPv6 flows from the same inter-

face.

If YAF is compiled with IPv6 support, it will dynami-

cally create either an IPv4 or IPv6 flow table entry based

upon the protocol of the flow. IPv4 and IPv6 flows are

defined as overlaid C structures, so most of the YAF code

for handling them that does not handle flow table entry

allocation or endpoint addresses treats the two flow types

equally. From the slab allocator’s point of view, this is

like having two separate flow tables, but both IPv4 and

IPv6 flows are unified in the same pickable queue. This

feature comes at the cost of some additional memory

to store the overlaid structure and some delay in select-

ing flow type at flow creation compared to an IPv4-only

YAF, but much less memory than would be required if

IPv4 and IPv6 flows were stored in a single union data

type with enough space for the larger addresses. Efficient

template selection as in section 3.4 below minimizes ex-

port bandwidth penalty for dual-stack support.

3.4 Efficient Export and Template Selec-

tion

When a flow ends, whether through natural completion

(presently supported only through the TCP FIN hand-

shake) or idle or active timeout, it is ready for export.

Though YAF exports what is semantically one type of

data, it uses multiple IPFIX templates to maximize ex-

port efficiency. As mentioned in section 2.3, IPFIX Tem-

plates are identified by a 16-bit number. YAF essentially

uses some of these bits as flags in order to enable or

disable fields in the Template used to export each flow,

based on the flow’s characteristics. The characteristics

used for template selection are:

• whether the flow requires full-length (64-bit)

counter export, or can be represented with 32-bit

packet and octet counters (reduced-length encod-

ing)

• whether the flow is an IPv4 or IPv6 flow

• whether the flow is a biflow (it has at least one

packet in the reverse direction)

• whether the flow is a TCP flow

• whether layer 2 (MAC and VLAN) export is en-

abled

• whether the flow was captured on a DAG card, and

has DAG interface information

• whether the flow has an application label

• whether the flow has entropy information

• whether the flow has a p0f fingerprint

• whether the flow has payload, and payload export is

enabled

Compare these characteristics with the record struc-

ture in table 2.

When a record is ready to be exported, YAF selects a

template by deriving a template ID from the properties

of the flow table entry and the configuration of the YAF

instance. If this template ID corresponds to a template

that has not yet been exported, it exports the template;

if it doesn’t match the that of the last exported record, it

starts exporting a new IPFIX set.

For example, a short IPv4 UDP flow with no reverse

direction will be exported using a template containing

IPv4 address elements, no reverse elements, no TCP ele-

ments, and reduced length counters.

When a flow is exported, YAF forgets about it, and its

entry is recycled by the slab allocator.

This concludes our trip through the “normal” YAF

workflow; subsequent subsections handle YAF’s design

approach to particular caveats of flow metering, or op-

tional features supported by YAF.

3.5 Just Enough Defragmentation

IP packet fragmentation causes a problem for flow me-

tering. Some implementations of flow assembly, espe-

cially those on resource-constrained devices or on de-

vices where flow metering is a secondary, lower-priority

function (e.g., routers), simply ignore fragmentation. For

TCP or UDP, these would treat the first four bytes below

the IP layer as the source and destination port of the flow

regardless of whether the packet contained the first frag-

ment; all fragments other than the first per packet are

accounted to the wrong flows. While this may be ac-

ceptable for some applications, given the relatively low

prevalence of fragmented traffic on the Internet [21], it

presents a simple attack against any flow meter ignor-

ing fragmentation: most packets can be accounted to the

wrong flows simply by aggressive fragmentation.

At the same time, full fragment reassembly is

resource-intensive, especially when most of the informa-

tion stored and reassembled will then be discarded, as is

the case with flow key extraction from fragments.

For this reason, YAF supports just enough defragmen-

tation: a fragment table designed very much like the flow

table (i.e., using pickable queues, slab allocation, and

dynamic timeouts for defense against resource overuse)

which keeps track of the flow a fragment belongs to, and

defragments only enough payload per flow to support the

6

other features selected at runtime. Defragmentation oc-

curs between de-encapsulation and decoding.

Defragmentation is enabled by default, but can be dis-

abled at runtime to save resources (e.g., on networks

where fragmented packets are known not to be present)

or for compatibility with flow meters not supporting de-

fragmentation.

3.6 Packet Clock

YAF is designed to accept data both from live capture

as well as from files containing ordered packet traces.

For that reason, designed into the core of YAF is the

concept of the packet clock: YAF in effect “pretends”

that the current time is the timestamp of the packet it

is presently processing. This implies that timeouts are

evaluated against the data, and not against the system re-

altime clock of the machine running YAF. This is impor-

tant to ensure repeatability: that the same packet trace

processed multiple times will lead to identical output

data, as well as that YAF will produce identical data

whether from live capture or from playback.

3.7 Per-flow Payload Capture

If so configured at compile-time, YAF supports per-flow

payload capture. Payload capture is limited to the first

n bytes of each flow, configured on the command-line,

in order to provide the administrator control over YAF’s

resource consumption; payload capture can significantly

increase YAF’s requirements. Payload capture for TCP

flows provides full TCP reassembly.

Since each YAF record must fit within an IPFIX

record, and IPFIX imposes as 65515-byte content limit

on records, this maximum exportable payload is some-

what under 64kB for uniflows and somewhat under 32kB

for biflows. As well as supporting direct export of flow

payload, YAF payload capture can be used to support

entropy calculation and application identification, as de-

scribed in the following subsections.

3.8 Flow Payload Entropy

YAF can calculate the Shannon [22] entropy of the cap-

tured payload for use in understanding the nature of the

traffic within a flow. The Shannon entropy is calculated

by scanning through the first n bytes of captured payload

(the “banner”) byte-by-byte and creating a histogram dis-

tribution within a 256-entry array. The partial entropy of

each histogram value x is then summed to compute the

total entropy H as follows:

H =

255∑

i=0

xi

n
∗

log xi

log 2.0

The entropy is scaled to the range 0-255, for single

byte export, as follows:

Hexport = −1 ∗

H

8.0
∗ 256

The same operation is done for the reverse payload to

generate the reverse entropy.

This method of entropy calculation results in a mea-

sure of entropy in bits per byte (log base 2); i.e., a number

between 0 and 8 in 8-bit fixed-point representation. In

pure terms, a value of 255 would indicate a perfectly ran-

dom set of data, while a value close to 0 would indicate

an extremely redundant set of data with almost no infor-

mation content. High entropy values indicate data that is

either compressed or encrypted. Lower values likely to

indicate something such as an ASCII-based protocol, or

English text.

As a guide to the actual usage of the numbers from

YAF, values above approximately 230 indicate com-

pressed or encrypted traffic. Values centered around 140

are likely to be English text. A quirk in SSL/TLS is that

it commonly zeros its packets out before sending them.

This leads to extremely low numbers often indicating an

SSL/TLS encrypted flow.

3.9 Application Labeling

YAF can analyze the banner on each flow that it captures

in order to recognize the protocols above layer 4 in cap-

tured flows, and to label each flow with the application it

is running. Labeling runs at flush-and-export time (i.e.,

once the flow payload is known to be complete). YAF in-

dependently evaluates each direction of a biflow during

labeling. Application labeling is designed to be transport

port neutral in recognizing the protocol being used; how-

ever, port information is used as a hint to which protocol

match to attempt first, for efficiency purposes. For ex-

ample, if YAF has captured a biflow from two hosts with

ports 5238 and 80, YAF will attempt to match HTTP first,

due to the presence of port 80 in the flow. Application la-

beling is first match wins; in the example above, the flow

would be labeled HTTP and labeling would stop.

YAF application labeling currently recognizes the fol-

lowing protocols: HTTP, SSH, SMTP, Gnutella, Ya-

hoo Messenger, DNS, FTP, SSL/TLS, SLP, IMAP, IRC,

RTSP, SIP, RSync, PPTP, NNTP, TFTP, MySQL, and

POP3. Additional protocols are actively being added.

Areas of future work include an experimental integration

of the OpenDPI project [16], including the capabilities

of that engine as a plug-in. Additionally, it is possible

for users to add some recognizers for some simple proto-

cols simple by text editing a configuration file, which is

described below.

7

3.9.1 Implementation Details

YAF uses multiple mechanisms for protocol recognition.

For some network protocols, e.g. DNS, YAF includes a

shared library written in C which can decode the struc-

ture of the DNS packets. The DNS protocol uses a well-

formatted binary structure making the tests for determin-

ing a valid DNS packet relatively easy in C. Additionally,

when exporting the extended packet details as in 3.9.2,

the C library has the added advantages of handling the

binary fields easily. In addition for cases like DNS imple-

menting name “decompression” is also relatively easy.

Conversely, other protocols, such as SMTP, IMAP, and

SIP, are ASCII or UTF-8 based protocols; these lend

themselves instead to textual analysis based on regular

expressions. YAF provides a method for defining label-

ing of these protocols based on the widely used PCRE

engine [13]. This provides two distinct mechanisms for

protocol recognition within YAF. This creates an advan-

tage of allowing application labeling to be applied using

two different mechanisms for the two different types of

protocols. Another advantage of using a regular expres-

sion system is that it allows easy in-the-field experimen-

tation, without recompiling anything, to find new proto-

cols.

In order to illustrate how the recognition system is

configured, a small sample of the application labeler con-

figuration file is shown:

HTTP

label 80 regex HTTP/\d\.\d\b

SSH

label 22 regex ˆSSH-\d\.\d

SMTP

label 25 regex (?i)ˆ(HE|EH)LO\b

DNS

label 53 plugin dnsplugin \

dnsplugin_LTX_ycDnsScanScan

The structure of the entries is keyword label fol-

lowed by the port number. This port number is used as

both the label that YAF will put into the record it pro-

duces as the output record as well as the port number for

hinting based on the source and destination ports. The

next keyword is either regex for a regular expression

based rule or plugin for a C-callable plugin. In the

case of the regex expression, everything beyond the

regex keyword will be interpreted as the regular ex-

pression.

The C plugin requires a set of functions to be defined

and a standard naming convention to be used. There are

11 functions to be defined required of every plugin, and

optionally, a twelfth function used for the deep packet

inspection. These functions are defined in the source file

yafhooks.c. Advanced users of YAF may also be ca-

pable of implementing a YAF extension in this way.

As previously mentioned the label which YAF applies

is defined as the primary port number on which the appli-

cation is expected to be seen. This is also used at runtime

to determine the most likely matching application for a

given flow, based on the source and destination ports of

the flow. If there is no match, the rules are evaluated in

order, which allows performance tuning by ordering the

rules in the order of their expected precedence on the net-

work. However, regular expression-based flow labeling

still presents a performance risk, and users should take

care that regular expressions are kept simple in order to

minimize negative impact on performance.

3.9.2 Extended Application Information Export

YAF can export extended information about a large num-

ber of protocols in its application labeling capability.

Many of these fields are relatively innocuous and detail

the general workings of the network and its protocols.

However, some fields may contain sensitive information.

Depending on jurisdiction, captured payload data or data

derived from payload capture may be considered Person-

ally Identifiable Information (PII), such that turning on

these features may require special handling of the flow

record output.

As previously mentioned, the recently released YAF

1.2 can identify via deep packet inspection (DPI) the

following protocols: HTTP, SSH, SMTP, Gnutella,

Yahoo Messenger, DNS, FTP, SSL/TLS, SLP, IMAP,

IRC, RTSP, SIP, RSYNC, PPTP, NNTP, TFTP, Teredo,

MySQL, and POP3. In addition to identifying those pro-

tocols, YAF may (or may not) export extended informa-

tion depending on the various protocols. YAF will cur-

rently export extended information about the following

protocols: HTTP, SSH, SMTP, FTP, IMAP, RTSP, SIP,

and DNS. Futhermore, we collect user name type infor-

mation in SMTP, FTP, IMAP, and SIP.

As an example of the extended information collected,

we will consider a single protocol, SIP [19]. For SIP

messages, YAF will optionally capture, identify, and ex-

port the following fields: the Via, Max-Forwards,

To, From, Contact, and Content-Length head-

ers, as well as the SIP method.

3.10 Performance

YAF was designed and developed with the goal of build-

ing a high-performance flow meter, while still maintain-

ing a cleanliness of design allowing future maintainabil-

ity and extensibility. Performance is measured through-

out development and maintenance using profile-based

measurement tools such as Shark and Instruments on the

Mac OS X development platform.

8

YAF’s performance depends as well upon the perfor-

mance of the underlying fixbuf IPFIX library, since IP-

FIX transcoding on export is a significant portion of

the work YAF does. fixbuf is also designed to be a

high-performance IPFIX implementation, operating on

in-memory buffers containing messages and records, and

exploiting natural alignment of data structures in order

to speed the rearranging and copying from application

internal data structures to IPFIX records on the wire.

Subject to the capabilities of the underlying capture

device, YAF is tested for performance using various car-

rier line speeds and encapsulations during live capture.

It is tested on Ethernet systems from 100Mbit to 10Gbit,

and on optical carrier lines from OC-3 to OC-192, using

generated traffic from a dedicated load generator.

YAF is designed to perform well on generic PC hard-

ware running most UNIX variants as well as Apple OS

X. For many types of links, a capable PC will be suf-

ficient. YAF is also tested and tuned to run on various

custom capture systems including Endace DAG capture

cards and Bivio appliances. A future release of YAF will

also be developed with specific enhancements for Napat-

ech capture cards.

4 Comparing YAF to Other Flowmeters

The name Yet Another Flowmeter plays on the old

UNIX-community joke of prefixing the nth instance of

a particular type of tool “Yet Another x”; however, we

designed YAF to meet a combination of requirements

that were at the time not generally available: we needed

high performance, easy extensibility of both the output

record format and the flow-level measurement capabili-

ties, and compliance to an emerging standard to ensure

a long operational lifetime. Here we compare YAF to

existing flow meters, or flow-meter-like systems.

4.1 Software NetFlow Meters/Exporters

While there is a wide variety of both free and commercial

software designed to operate as NetFlow collectors and

analyzers, there is a smaller number of available NetFlow

meter/exporters, which generate flow data from packet

data and export via NetFlow or IPFIX. Two popular ex-

amples are softflowd [15] and nProbe [8].

softflowd does semi-stateful assembly of flows

and export via NetFlow v5 and v9; a related tool

pfflowd uses the OpenBSD packetfilter flow table in-

stead. It supports raw capture from libpcap only. It

was designed to be fast and simple, and as such supports

none of YAF’s flexibility or advanced features. Develop-

ment appears to have been inactive since 2006.

nProbe is an “all-in-one” tool for handling flow data

as part of the nTop [9] network measurement suite. One

of the features it provides is flow generation and export

from packet data. Its feature set is much more com-

parable to YAF’s: it supports IPFIX export, high-speed

collection from dedicated capture cards such as Endace

DAG and Napatech devices, and protocol inspection . In

addition, it does a few things YAF doesn’t: operating as

an IPFIX Mediator to translate older NetFlow versions

to IPFIX, and storing flow data directly into MySQL or

sqlite databases, for example. Development is active as

of summer 2010.

YAF and nProbe have to some extent been devel-

oped in parallel; features showed up in one or another

at roughly the same time, and the authors indeed tested

the interoperability the underlying IPFIX export imple-

mentation as early as 2006. However, in contrast to YAF,

while nProbe is published under the GNU GPL, it is not

generally freely available, with source download behind

a donation paywall and limited mirroring of older ver-

sions.

4.2 Argus

Argus [17] is a flow meter and analysis toolkit in a single

set of tools. While Argus does contain a set of powerful

analysis tools, similar in some ways to SiLK, that is be-

yond the scope of this paper. Instead, here we focus on

its flow measurement and export protocol type.

Argus is designed to measure bidirectional flows in the

network control plane. In order to complete that task,

Argus will attempt to merge relevant control plane in-

formation into a control flow via its monitoring points

independent of the link types monitored. For example, if

the goal is to monitor a high-performance cluster system

using Infiniband, Argus can monitor the control plane on

the cluster as well as the external link running an Eth-

ernet or optical carrier connection. In addition to moni-

toring both of those links, Argus will attempt to match a

DNS query on the external link with activity on the In-

finiband connection.

Argus is unique in its fundamentally “philosophically”

different approach to flow metering. While Argus at-

tempts to merge and relate flow information at the sensor

from related flows, YAF and most other flow sensors at-

tempt to capture the flow information in an IPFIX stan-

dard way and allow the back end analysis tools, such as

SiLK or others, find the relationships among the various

flows.

Argus also has a proprietary “sensor-centric” export

protocol in contrast to IPFIX and its predecessors, and

provides flexibility at the record level as opposed to the

informaiton element level. Argus “clients” (collectors)

initiate connections to the sensor and pull flow data off

the sensor.

Each approach has its pros and cons. In our appli-

9

cations, flow meters are generally deployed in environ-

ments where inbound connections are forbidden, and

where software maintenance is often difficult; meters

must be stable and not change very often; therefore, we

prefer to centralize the harder correlation work, and any

analysis which may see further innovation, while keep-

ing the edge fast and stable, and the bandwidth from the

edge to the data center as small as practical.

4.3 sflow

sflow [23] is a protocol which takes a different approach

to the same problems solved by flow collection and anal-

ysis. The key design decision here is that attempting full

flow assembly on high rate packet data requires too many

resources, and for many applications (e.g., traffic matrix

generation) sampled packet data is sufficient. Despite the

“flow” in the name, sFlow is not a flow metering or ex-

port technology: it simulates flows with packet sampling.

There is a free reference implementation, as well as sup-

port in nTop in addition to switches and routers from a

variety of manufacturers [20].

4.4 Netflow, Flexible NetFlow, and other

router-based approaches

The key difference between YAF and flow metering pro-

cesses running on routers is one of application: NetFlow

and related technologies run as secondary processes on

routers, and as such an important design consideration

is that packet forwarding performance must not be im-

peded by flow metering. This leads to reduced data fi-

delity during peak traffic times, as the router allocates

its limited resources to forwarding instead of monitoring.

When high data fidelity in flow metering is a primary re-

quirement, such as for security, flow meters such as YAF

can be used on a switch span port or optical tap to offload

the task from the router.

A key difference between YAF and Flexible NetFlow

is that, although both utilize the template functionality

in IPFIX or NetFlow V9, YAF uses it only for export

efficiency while Flexible NetFlow uses it for flow key

flexibility: it exports different record types, aggregating

packets into flow records on other than the traditional

flow key. In this way it is more akin to YAF followed

by aggregation operations in SiLK, or NAF [26].

5 Applying YAF

YAF was initially released in 2006, although it was

marked as an alpha-quality release for quite some time.

The YAF 0.7 release of August 2007 market the first re-

lease ready for operational deployment. Since then, YAF

has been adopted by several organizations as their main

software flow meter platform, and has been in produc-

tion use for quite some time. YAF is still used in the ex-

perimental side of network flow analysis as well. In the

following two sections we will describe our experiences

using YAF for those various purposes.

5.1 YAF and the Security Suite

SiLK [12] is designed to allow very large scale collec-

tion and analysis of network flow data. It provides a set

of command-line tools modeled after the standard UNIX

command-line tools (e.g. sort(1), uniq(1), cut(1)) to ana-

lyze the collected data. A typical SiLK command-line to

query a SiLK data repository is then piped into another

set of SiLK tools to further process the results. The data

record format for SiLK is a proprietary format, but the

data fields are fundamentally similar to the NetFlow v5

record, as SiLK was originally designed to process Net-

Flow v5 data.

Large SiLK deployments include one with more than

50 geographically distributed sensors monitoring every-

thing from DS3 to 10 gigabit Ethernet links. In this case,

YAF is run on one of two types of sensors: one a Linux-

based PC server with an Endace DAG card installed, for

monitoring a DS3 link; the other a Bivio 7500 series ap-

pliance using multiple blades to listen to a 10 Gigabit

Ethernet link.

Each deployed sensor sends data back to a centralized

data center via secure, encrypted connection. At that data

center, each record from the sensors is collected, tagged,

and stored onto a large SAN system for analysis by var-

ious analysis groups. This system collects many tens

of gigabytes of flow data per day, allowing analysts to

see the large-scale picture of network activity occurring

across the largest of enterprise networks.

A typical configuration for a PC with an Endace card

installed is to have YAF start at system boot. For this pur-

pose, YAF includes a set of startup scripts that can be in-

stalled on a typical Linux system to manage YAF. These

scripts start YAF via the included airdaemon utility,

which ensures that YAF will restart on abnormal shut-

down due to hardware issues. YAF then typically exports

via IPFIX to a local instance of the rwflowpack pro-

cess, part of the SiLK packing system. rwflowpack

then packs the received IPFIX record into a SiLK format,

and then compresses the records to make them smaller

still. After the records are fully compressed to an aver-

age of about 15 bytes per flow, rwflowpack passes the

records to rwsender for transmission back to the data

center.

YAF’s enhanced flow metering has been applied in

production in combination with SiLK in order to solve

operational problem. As a simple example, flows con-

taining traffic running on nonstandard ports can be de-

10

tected simply by enabling application labeling, then run-

ning an rwfilter query to compare the application la-

bel (exported in the silkAppLabel information ele-

ment) with the ports in the flow. Enhanced information

can also be applied to inventory problems: DNS support

has been used to identify and patch DNS servers vulner-

able to the Kaminsky [10] exploit.

5.2 PRISM: Data Reduction in a Multi-

Stage Monitoring Architecture

YAF was also deployed in 2010 as part of the inte-

grated trial of the European Union Seventh Framework

PRISM [11, 2] project at a regional network service

provider in Italy. The aim of the PRISM project is to

apply semantically-aware access control, a multi-stage

monitoring architecure, aggressive data reduction, and

data protection and anonymisation techniques to enable

privacy-aware and privacy-preserving network monitor-

ing. The PRISM architecture is split into front-end (FE)

components which observe a packet stream and reject

packets unlikely to be of interest, back-end (BE) com-

ponents which further reduce, analyze, and store data

received from the FE, and beyond-the-back-end (BBE)

components.

A key insight of the PRISM project is that data reduc-

tion, such as reducing a packet stream down to a flow

stream early in the monitoring pipeline, removes poten-

tially privacy-relevant information; in the case of flow

data generation, the elimination of payload data signifi-

cantly reduces the potential privacy impact of the content

in the observed data stream.

YAF was used as one of the data reduction compo-

nents in the back-end of the integrated trial for a Skype-

detection application. In this scenario, higher levels of

privilege (e.g., a network administrator debugging a spe-

cific connection issue for a customer) would allow full

dissection of the Skype traffic from one host to another,

using a packet-based Skype analyzer [1] beyond-the-

back-end, while a lower level of privilege (e.g., a junior

administrator preparing a report on the volume of Skype

traffic on the network) would use a flow-based method,

reducing the fidelity of data seen beyond the back-end.

The PRISM access control system would automatically

select the correct reduction component based upon the

privilege and purpose of the request.

In this deployment, YAF was used as a straight flow

meter - payload inspection and capture were specifically

disabled. YAF was invoked on libpcap dumpfiles gen-

erated by the capfix utility developed as part of the

PRISM project, which provides for the framing of packet

traces in IPFIX/PSAMP, and configured to export to a

snack instance beyond the back-end, which in turn gen-

erated a list of Skype connection events used to count

distinct hosts running Skype.

YAF was selected for this application due in large

part to the effortlessness of integration. PRISM had se-

lected a data plane based entirely on IPFIX early in de-

velopment, in order to maximize the potential to leverage

off-the-shelf standards-compliant components within the

PRISM architecture. When the project decided on a

split packet/flow based approach to Skype traffic anal-

ysis, YAF was an obvious choice for the flow meter, and

its selection reduced the implementation of this stage of

the data plane to simply writing a little glue.

6 Availability

YAF is distributed by the Software Engineering Institute

as free software under a dual-license system. The gen-

eral public may download YAF (and all of the Network

Situational Awareness team’s software, including SiLK)

from

http://tools.netsa.cert.org

under the terms of the GNU General Public License ver-

sion 2. The US government maintains separate rights in

the software, and may use the software under the terms

of the Government Purpose License Rights of DFARS.

Support for building and using YAF and all the Network

Situational Awareness tools is available by sending email

to

netsa-help@cert.org

YAF should work on most flavors of Unix, and is de-

veloped and tested on Mac OS X, Linux, FreeBSD,

OpenBSD, and Solaris.

7 Acknowledgments

The authors would like to express their deep gratitude

to the members of the Network Situational Awareness

team at CERT for helping build and support YAF, es-

pecially Emily Ecoff, Michael Duggan, and Tony Ce-

bzanov. Funding and support for the development of

YAF has come from the United States Department of De-

fense, which supports the Software Engineering Institute

as a federally funded research and development center.

References

[1] ADAMI, D., CALLEGARI, C., GIORDANO, S., PAGANO, M.,

AND PEPE, T. A real-time algorithm for Skype traffic de-

tection and classification. In 9th International Conference on

Wired/Wireless Networking (Sept. 2009).

[2] BIANCHI, G., TEOFILI, S., AND POMPOSINI, M. New direc-

tions in privacy-preserving anomaly detection for network traffic.

In NDA ’08: Proceedings of the 1st ACM workshop on Network

data anonymization (New York, NY, USA, 2008), ACM, pp. 11–

18.

11

[3] BONWICK, J. The slab allocator: an object-caching kernel mem-

ory allocator. In USTC’94: Proceedings of the USENIX Summer

1994 Technical Conference on USENIX Summer 1994 Technical

Conference (Berkeley, CA, USA, 1994), USENIX Association,

pp. 6–6.

[4] CISCO SYSTEMS, INC. Cisco IOS Netflow Introduction.

http://www.cisco.com/go/netflow. [Accessed 19

August 2010].

[5] CISCO SYSTEMS, INC. Hyperconnectivity and the Approaching

Zettabyte Era. Cisco VNI White Paper, June 2010.

[6] CLAISE, B., BRYANT, S., LEINEN, S., DIETZ, T., AND TRAM-

MELL, B. Specification of the IP Flow Information Export Pro-

tocol. RFC 5101 (Proposed Standard), Jan. 2008.

[7] CLAISE, B., SADASIVAN, G., VALLURI, V., AND DJERNAES,

M. Cisco Systems NetFlow Services Export Version 9. RFC

3954 (Informational), Oct. 2004.

[8] DERI, L. nprobe – netflow/ipfix network probe.

http://www.ntop.org/nProbe.html, Oct 2006.

[Accessed 9 August 2010].

[9] DERI, L., AND SUIN, S. Effective traffic measurement using

ntop. IEEE Communications Magazine (May 2000), 138–143.

[10] DOUGHERTY, C. R. ”Vulnerability Note VU#800113

multiple DNS implementations vulnerable to cache poison-

ing”. http://www.kb.cert.org/vuls/id/800113,

2009. [Accessed 27 July 2010].

[11] FP7 PRISM PROJECT. PRIvacy-aware Secure Monitoring.

http://www.fp7-prism.eu. [Accessed 6 August 2010].

[12] GATES, C., COLLINS, M., DUGGAN, M., KOMPANEK, A.,

AND THOMAS, M. More netflow tools for performance and se-

curity. In LISA ’04: Proceedings of the 18th USENIX conference

on System administration (Berkeley, CA, USA, 2004), USENIX

Association, pp. 121–132.

[13] HAZEL, P. PCRE - Perl Compatible Regular Expressions.

http://www.pcre.org.

[14] INTERNET ASSIGNED NUMBERS AUTHORITY. IP

Flow Information Export (IPFIX) Information Elements.

http://www.iana.org/assignments/ipfix/.

[15] MILLER, D. softflowd - fast software netflow probe.

http://www.mindrot.org/projects/softflowd,

Oct 2006. [Accessed 9 August 2010].

[16] OPENDPI. http://www.opendpi.org. [Accessed 6 Au-

gust 2010].

[17] QOSIENT, LLC. Argus: Auditing Network Activity.

http://www.qosient.com/argus/. [Accessed 19 Au-

gust 2010].

[18] QUITTEK, J., BRYANT, S., CLAISE, B., AITKEN, P., AND

MEYER, J. Information Model for IP Flow Information Export.

RFC 5102 (Proposed Standard), Jan. 2008.

[19] ROSENBERG, J., SCHULZRINNE, H., CAMARILLO, G., JOHN-

STON, A., PETERSON, J., SPARKS, R., HANDLEY, M., AND

SCHOOLER, E. SIP: Session Initiation Protocol. RFC 3261 (Pro-

posed Standard), June 2002. Updated by RFCs 3265, 3853, 4320,

4916, 5393, 5621, 5626, 5630.

[20] SFLOW.ORG. sflow products - network equipment.

http://www.sflow.org/products/network.php,

2010. [Accessed 9 August 2010].

[21] SHANNON, C., MOORE, D., AND CLAFFY, K. C. Beyond folk-

lore: observations on fragmented traffic. IEEE/ACM Trans. Netw.

10, 6 (2002), 709–720.

[22] SHANNON, C. E. A mathematical theory of communication. Bell

System Technical Journal 27 (Jul and Oct 1948), 379–423,623–

656.

[23] STEENBERGEN, R. A. sflow – why you should use it and like

it. In 39th Meeting of the North American Network Operator’s

Group (NANOG 39) (Feb 2007).

[24] TRAMMELL, B., AND BOSCHI, E. Bidirectional Flow Export

using IP Flow Information Export. RFC 5103 (Proposed Stan-

dard), Jan. 2008.

[25] TRAMMELL, B., BOSCHI, E., MARK, L., ZSEBY, T., AND

WAGNER, A. Specification of the IP Flow Information Export

File Format. RFC 5655 (Proposed Standard), Oct. 2009.

[26] TRAMMELL, B., AND GATES, C. NAF: the NetSA Aggregate

Flow Tool Suite. In 20th USENIX Large Installation System Ad-

ministration Conference (LISA ’06) (Dec 2006), pp. 221–231.

12

http://www.cisco.com/go/netflow
http://www.ntop.org/nProbe.html
http://www.kb.cert.org/vuls/id/800113
http://www.fp7-prism.eu
http://www.pcre.org
http://www.iana.org/assignments/ipfix/
http://www.mindrot.org/projects/softflowd
http://www.opendpi.org
http://www.qosient.com/argus/
http://www.sflow.org/products/network.php

	Introduction
	Network Flow Data: Properties and Protocols
	Cisco NetFlow v5
	Cisco NetFlow v9
	IPFIX
	As exported by YAF

	Detailed Design of YAF
	Recursive De-encapsulation
	Decoding
	The Flow Table
	Efficient Export and Template Selection
	Just Enough Defragmentation
	Packet Clock
	Per-flow Payload Capture
	Flow Payload Entropy
	Application Labeling
	Implementation Details
	Extended Application Information Export
	Performance
	Comparing YAF to Other Flowmeters
	Software NetFlow Meters/Exporters
	Argus
	sflow
	Netflow, Flexible NetFlow, and other router-based approaches
	Applying YAF
	YAF and the Security Suite
	PRISM: Data Reduction in a Multi-Stage Monitoring Architecture

	Availability

	Acknowledgments

