conference

proceedings

© 2009 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. USENIX acknowledges all trademarks herein.

ISBN 978-1-931971-71-3

USENIX Association

Proceedings of LISA °09:
23rd Large Installation System

Administration Conference

November 1-6, 2009
Baltimore, MD, USA

Conference Organizers

Program Chair
Adam Moskowitz

Program Committee

Paul Anderson, University of Edinburgh

Paul Armstrong

Travis Campbell, AMD

Narayan Desai, Argonne National Laboratory

Ian Dotson, University of Washington

Andrew Hume, AT&T Labs—Research

Brent Hoon Kang, The University of North Carolina at
Charlotte

William LeFebvre, Digital Valence, LLC

Chris McEniry, Sony Computer Entertainment America

Mario Obejas, Raytheon

David Plonka, University of Wisconsin

Mark D. Roth, Google, Inc.

John Sellens, SYONEX

Gautam Singaraju, The University of North Carolina at
Charlotte

Nicole Velasquez, University of Arizona

Invited Talks Coordinators
Doug Hughes, D.E. Shaw Research, LLC
Amy Rich, Tufts University

Workshops Coordinator

Lee Damon, University of Washington

Guru Is In Coordinator
John “Rowan” Littell, California College of the Arts

Posters Coordinator
Gautam Singaraju, The University of North Carolina at
Charlotte

Steeering Committee

Paul Anderson, University of Edinburgh
David N. Blank-Edelman, Northeastern University
Mark Burgess, Oslo University College
Alva Couch, Tufts University

Aleen Frisch, Exponential Consulting
Xev Gittler, Morgan Stanley

William LeFebvre, Digital Valence, LLC
Mario Obejas, Raytheon

Ellie Young, USENIX Association
Elizabeth Zwicky, Consultant

USENIX Board Liaison
Alva L. Couch, Tufts University

The USENIX Association Staff

External Reviewers

Bob Apthorpe
Kenytt Avery
Lori Barfield
Matthew Barr
Lois Bennett

Bill Cheswick
Marc Chiarini
Alva Couch
Jason Faulkner
Esther Filderman
Jon Finke

Scott Francis
David Harnick-Shapiro

Peter Jansson
Gabriel Krabbe
Tom Limoncelli
Cat Okita

Dustin Puryear
Matthew Sacks
Josh Simon
Chris St. Pierre
Marc Staveley
John Stoffel
Leon Towns-von Stauber
Rudi van Drunen
Elizabeth Zwicky

LISA ’09: 23rd Large Installation System Administration Conference
November 1-6, 2009

Baltimore, MD, USA
Message from the Program Chair v
Wednesday, November 4
The Human Side of Sysadmin
Pushing Boulders Uphill: The Difficulty of Network Intrusion Recovery........ 1

Michael E. Locasto, George Mason University; Matthew Burnside, Columbia University, Darrell Bethea,
University of North Carolina at Chapel Hill

Two-Person Control Administation: Preventing Administation Faults through Duplication. 15
Shaya Potter, Steven M. Bellovin, and Jason Nieh, Columbia University

The Water Fountain vs. the Fire Hose: An Examination and Comparison of Two Large Enterprise Mail Service
IMILALIONS. .« . o o ettt ettt e e e e e e e e e e e e e e e e e e 29
Craig Stacey, Max Trefonides, Tim Kendall, and Brian Finley, Argonne National Laboratory

Thursday, November 5

Networks, Networks, Networks

Crossbow Virtual Wire: Network in a BoX oottt e e e 47
Sunay Tripathi, Nicolas Droux, Kais Belgaied, and Shrikrishna Khare, Sun Microsystems, Inc.

EVA: A Framework for Network Analysis and Risk Assessment. iiiiiienenen .. 65
Melissa Danforth, California State University, Bakersfield

An Analysis of Network Configuration Artifacts e 79
David Plonka and Andres Jaan Tack, University of Wisconsin—Madison

Security, Security, Security

Secure Passwords Through Enhanced Hashing. i 93
Benjamin Strahs, Chuan Yue, and Haining Wang, The College of William and Mary

SEEdit: SELinux Security Policy Configuration System with Higher Level Language 107
Yuichi Nakamura and Yoshiki Sameshima, Hitachi Software Engineering Co., Ltd.; Toshihiro Tabata, Okayama
University

An SSH-based Toolkit for User-based Network Servicesounii et e e 119
Joyita Sikder, University of Illinois at Chicago; Manigandan Radhakrishnan, VMware; Jon A. Solworth,
University of Illinois at Chicago

Friday, November 6

On the Fringe

Federated Access Control and Workflow Enforcement in Systems Configuration 129
Bart Vanbrabant, Thomas Delaet, and Wouter Joosen, K.U. Leuven, Belgium

CIMDIFF: Advanced Difference Tracking Tool for CIM Compliant Devices 145
Ramani Routray, IBM Almaden Research Center; Shripad Nadgowda, IBM India Systems and Technology Lab.

Transparent Mobile Storage Protection in Trusted Virtual Domains 159
Luigi Catuogno and Hans Léhr, Ruhr-University Bochum, Germany, Mark Manulis, Technische Universitt
Darmstadt, Germany, Ahmad-Reza Sadeghi and Marcel Winandy, Ruhr-University Bochum, Germany

Message from the Program Chair

Dear LISA Attendee:

Back in 1989, LISA was just a small, two-day workshop, while the conference we now call the USENIX Annual
Technical Conference was held twice a year and was known as “Summer USENIX” or “Winter USENIX.” Most of
the attendees were programmers, often researchers, but some of us were either dual-role programmer-sysadmins or
dedicated sysadmins. The papers were mostly about operating system research, but a few were clearly of interest to
system administrators: for example, Brent Callaghan had just introduced the automounter, two guys from BBN pre-
sented an implementation of dial-up IP for UNIX, people from NYSERnet had an implementation of SNMP, and
Denise Ondishko from the University of Rochester delivered her paper “Administration of Department Machines
by a Central Group.” In 1990, LISA changed from a “workshop” to a “conference,” but many LISA attendees
remained regulars at the general conference. LISA added a third conference day in 1991. By the time I went to my
first LISA, in 1994, a handful of tutorials had been added, on the Monday and Tuesday before the conference.

We’ve all come a long way since 1989. LISA is now one of USENIX’s flagship conferences, with six days of
tutorials, three days of workshops, and three days of multitrack technical sessions. LISA papers have moved from
talking about line printer systems and early implementations of what would eventually become sudo, to automated
virtual networks, high-level languages to make dealing with SELinux easier, and protection schemes for USB keys
using trusted virtual domains. Most importantly, most of the LISA attendees are dedicated, professional system
administrators rather than programmers who drew the short straw and got “taking care of the systems” added to
their regular duties.

Some things about LISA don’t change. In particular, it takes a small army of people to make the conference
happen—far too many to name or count here. Let’s just say that a quick count puts the number well over 200, and
that doesn’t include the on-site staff. This conference wouldn’t be possible without all these people. Compared to
all of them, my role as program chair is more of a figurehead and high-level organizer than anything else. As you
move about the conference, please take a moment and say “thanks” to anyone you see wearing an official badge
holder or ribbon.

Of the 38 papers submitted (or 34, depending on how you want to count them), we accepted 12. Those papers, the
full text of which appears in these proceedings, are a relatively small but significant part of the conference, and,
like those of every LISA past, represent the best research and “deep thought” about system administration today.

I encourage you to read every one of them. I also encourage you to make an effort to meet new people, to listen to
a talk or paper that covers material outside your usual interests, and to attend a LISA activity that’s new to you.
Finally, remember to have fun. After all, how many times do you get to hang out with hundreds of people who all
understand what you do for a living, who know the same acronyms you do, and who don’t think you’re weird? Take
advantage of this opportunity while you can!

Adam Moskowitz
Program Chair

Pushing Boulders Uphill: The Difficulty of Network Intrusion Recovery

Michael E. Locasto
George Mason University
mlocasto@gmu.edu

Abstract

One of the most significant unsolved problems for
network managers and system administrators is how
to repair a network infrastructure after discovering
evidence of an extensive compromise. The technical
issues are compounded by a breathtaking variety of
human factors. We present a study of three significant
compromises of a medium-scale network infrastructure.
We do so as a way to expose the difficulties — both
technical and human — inherent in intrusion recovery.
Most network users take a “secure” network infrastruc-
ture for granted. Real events show that this level of faith
is unwarranted, as is the belief that intrusions are or
can be completely repaired, especially in the absence of
research on network recovery mechanisms that explicitly
take the needs of support staff into account. We conclude
with lessons learned and some detailed suggestions for
tools that can help bridge this gap.

“Damage control is much easier when the actual
damage is known. If a system administrator doesn’t have
a log, he or she should reload his compromised system
from the release tapes or CD-ROM.”

— Firewalls and Internet Security:
Repelling the Wily Hacker [6].

1 Introduction

This paper presents a case study of the impact of so-
cial pressure, technical experience, bias, and other con-
straints on both individual and group risk assessment and
decision-making during the recovery efforts from three
significant network intrusions at a single site in March of
2007, December of 2007, and March of 2008.

Although many people enjoy the benefits of access
to information and communication through networked
systems, most take the security and reliability of these

Matthew Burnside Darrell Bethea
Columbia University UNC Chapel Hill
mb@cs.columbia.edu djb@cs.unc.edu

infrastructures (residential ISPs, workplace IT depart-
ments, the IT infrastructure of educational institutions,
etc.) for granted. Users do not often see the impact of
computer break-ins and intrusions beyond the occasional
sensational story that reaches the front page of some ma-
jor news outlet. Skilled attackers work hard not to be no-
ticed. System administrators worth their salt work even
harder to make sure intrusions are prevented. Institutions
have deep concerns about negative publicity.

As a result, users have a misguided understanding of
the frequency of such attacks and the difficulty of main-
taining and repairing a network. Users may incorrectly
assume that IT staff can fully repair the damage or harm
(think of copied intellectual property, computer cycles
used, reputations lost) caused by an attacker. Even re-
searchers in the systems security space may summarily
dismiss the task as a simple, if somewhat lengthy, system
administration job, and thus unworthy of investigation. It
is our opinion that the problem of coordinating the repair
and restoration of network infrastructures is a major un-
addressed problem that embeds a number of unanswered
research questions involving the intersection of human
factors and technical challenges.

1.1 Dual Nature of the Problem

Compromises of medium or large networked systems
(such as the infrastructure supporting a research depart-
ment, college, or university) are difficult to analyze and
respond to for a number of reasons. As a result of the di-
versity of the problem and the lack of research into meth-
ods that deal with both technical and human factors, net-
work intrusion recovery is more of an art than a science.
The state of the art often involves manually reinstalling
machines from read-only media, as the traditional text on
firewalls [6] reminds us in the quote above. Even when
this process is automated, it still resets systems to some
initial state, thus deleting valuable data that may not have
been backed up, or information that would be of some

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 1

use in a forensic investigation. At this point, we must re-
sist the temptation to treat the problem as solved by turn-
ing to some technical solution (e.g., automated network-
based OS installations, “ghosting” software, or recent re-
search on an automated process for working backward
from the attack to undo the damage caused [13, 7]). Both
technical and human factors introduce obstacles that sim-
ply executing a software application cannot overcome.

Even with the assumption that we can reliably detect
an intrusion, there are many technical issues related to
repairing a wide variety of hosts, nodes, objects, and ar-
tifacts. These issues, and the decisions necessary to ad-
dress them, are compounded by a number of human fac-
tors. The workflow we depict in Figure 1 and the issues
listed below are representative rather than exhaustive.

First, even with deep auditing information, it can be
difficult to describe the extent of an intrusion within the
context of a single system. Second, determining the ex-
tent of the damage throughout the network requires repli-
cating or extracting those conditions to widen the scope
of the detection process. Once the process of detecting
an attack and determining its scope have been accom-
plished, then the process of recovery presents an over-
whelming series of choices and possibilities. As we can
see from the incidents described later in the paper, this
process is not strictly linear. Thinking of detection as
“accomplished” rather than “ongoing” is misleading.

Planning and implementing a recovery can involve a
variety of changes to systems, hardware, applications,
and network topology. Individual systems require foren-
sics and may need to be isolated, removed, updated, or
reconfigured. Software applications may need to be re-
configured or have patches applied, which raises the twin
issues of which applications to fix in what order and what
patches to generate or obtain (and what order to apply
them). The network topology may need to change: new
routers, switches, or other equipment may need to be in-
troduced or existing equipment reconfigured. Firewall
rules may need to be introduced or modified. Existing
IDS sensors could require retuning. During this entire
process, the team must test and verify each step.

We begin to see recovery as a complicated, fluid pro-
cess. Response teams often labor under a compressed
time frame to fix as large a part of the intrusion in as short
a time as possible. The forensics process experiences
pressure to finish quickly to reduce service downtime.
The recovery team’s training and skill level, along with
the vagaries of interpersonal relationships, can constrain
what types of actions are realistic. Promotion, demotion,
hiring, or termination decisions can affect someone’s
willingness to engage in extensive recovery actions. In
addition, attacks rarely occur at convenient times; if the
incident occurs near social events or holidays, time pres-
sure can greatly increase.

Although some technical fixes may be “obvious”, both
internal (to the team) and external (i.e., the team’s cus-
tomers and employers) vested interests in maintaining
the network status quo can prevent the implementation
of these fixes. The team must be familiar with the prefer-
ences, attitudes, and biases of the user or customer pop-
ulation in order to “sell” the repair to them. Finally, the
reputations of the team, individuals, customers and users,
and institution requires careful consideration.

1.2 Contributions

This paper offers evidence that illustrates what might
otherwise be an overlooked point by information security
researchers: intrusion recovery is not a simple systems
administration task. Intrusion recovery, while a large
technical challenge, is further complicated by human—
level issues, and we highlight specific issues involved in
the incidents we describe. In addition to our analysis, we
provide the research community with three real (rather
than artificial, contrived, or based on conjecture) threat
and recovery scenarios. Intrusion recovery systems are
relatively neglected in the research literature; we believe
the community should focus on creating mechanisms
that deal with recovery as a system composed of both
humans and computer systems.

1.3 Background and Related Work

Complete technical solutions to the problem of recover-
ing from realistic intrusions in the research literature are
sparse, although both classic [25, 24, 5] and more re-
cent [23, 11] examples of post-mortem intrusion analy-
sis do exist. Spafford’s analysis [24] of the Morris Worm
and Cheswick’s annotated log of the Berferd case [5] can
be seen as catalysts for changing the way computer sci-
entists and network researchers thought about trust and
security on the fledgling Internet. The analysis of these
incidents helped spur the adoption of stronger authen-
tication mechanisms, the use of firewalls to implement
host communication policies, and research on basic au-
diting tools and intrusion sensors. Singer [23] recounts
how even a well-designed infrastructure managed by an
experienced, professional network security team can be
compromised. This latter analysis helps illustrate just
how difficult and time-consuming it can be to completely
remove an attacker from a system. In particular, the at-
tacker described in Singer’s article would repeatedly find
another avenue into the infrastructure just when the ad-
mins thought they had adjusted their security posture ap-
propriately.

The HotAdmin' project at UBC has looked at the na-
ture of the job of security administrators [10]. They com-
pare the dynamics of a centralized and distributed secu-

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

Patching
*Selection
*Deployment

Detection Local forensics

Network-wide
forensics

Re-architect

™~

7

Repair
*Determine extents
eLocate backups
*Reinstall

Figure 1: Response flow. Our attempt to define a workflow for a technical response at a high level of abstraction.
Decision trees at individual parts of this workflow can be partially hidden or incomplete with very large branching
factors. This figure belies the fluidity with which a response scenario can take place; detection, diagnosis, and reaction
do not form a strictly rigid, step-by-step process. In searching for a way to more easily visualize the relationships
between these activities, we compromised at a high level of abstraction.

rity group at an academic organization, and how the tran-
sition between the two models worked.

Much research takes a prophylactic stance: networks
and systems should be hardened before an attack occurs.
Needless to say, proactive hardening, even if it provides
strong protection mechanisms like tainted dataflow anal-
ysis [16, 26] only partly addresses the problem: the cost
of use may be high, the adoption rate low, and the “cov-
erage” of the technique (in terms of classes of attacks
defended against) narrow. To date, only memory address
space randomization [2] seems to have seen significant
deployment, but even this protection mechanism only ad-
dresses a certain class of attacks. Other efforts to deal
with intrusion recovery discuss ways to provide secure
backup, alert logging [7, 19], and audit systems [21].
Meanwhile, Kursawe and Katzenbeisser [14] argue that
the prophylactic stance is limited. They introduce a new
paradigm where computer users accomplish useful work
even though their machines are compromised.

The problem itself appears too large for a single, com-
prehensive technical solution [9]. System administra-
tors, therefore, are relegated to selecting a hodgepodge
of sensors and countermeasures to help defend their net-
works and restore order when intrusions are finally no-
ticed. The selection process is driven by a variety of
possible considerations — not just purely technical is-
sues. These considerations may range from cost and re-
source constraints on equipment and personnel to “polit-
ical” factors, personal experience, or recommendations
from friends or colleagues. These factors can exert a
powerful influence. Although neither of the following
cases apply in the incidents we describe, it is not diffi-
cult to imagine such situations. For example, a faculty
member may have had a role in developing a particular
networking technology or intrusion sensor, or an I'T com-
pany feels obligated to use only their OS or toolset.

Defending a network involves assessing risk and al-
locating resources to match the perceived threats and

costs [4]. In terms of network intrusion recovery, know-
ing that the network is at a high risk of a compromise
does not directly inform the procedures that should be in
place for repair. Instead, it may inform strategies for re-
ducing or managing risk, and little research exists on sys-
tems for managing the disaster workflow recovery once
a network is compromised.

The psychology community has spent a significant
amount of time studying and trying to understand the
process of human decision making under duress. Payne
et al. [20] provide a good overview of the research in
this area, including beliefs about uncertain events, deci-
sions made under risk and uncertainty, and frameworks
for decision behavior. Consideration of how security-
related decisions are made under stress seem to fall most
naturally into discussions about the threat model a sys-
tem operates under, as bad decisions by the system user
could increase the power of the hypothetical attacker.

Finally, as we saw in our attempts to collect informa-
tion for this case study, the human memory and recol-
lection is notoriously unreliable. The reliability of eye-
witness [27] and earwitness [3] testimony has been ex-
tensively studied by psychologists; in fact, Wells and Ol-
son [27] point out that the only scientific body of liter-
ature on eyewitness reliability exists in the psychology
space. In the computer security field, and in the context
of rebuilding complex network infrastructures and car-
rying out a number of both repetitive and complex tasks
over a long period of time, human memory is relied upon
far too much. Our case study shows that it is possible for
initial planning goals, suggestions, or objections to be
misunderstood, warped, or forgotten — leaving poten-
tially large gaps in the actual level of security achieved
after repairs complete.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 3

2 Methodology

In researching this paper, we interviewed all parties
involved in recoveries from three recent attacks on a
medium-scale network, including administrative staff
and management. We performed an email archive search,
and confirmed many of the details of the attack through
analysis of disk images from a number of the compro-
mised machines. We performed an initial debrief of the
entire IT staff and followed up more extensively with
four of the IT staff members. We have continued moni-
toring the organization’s response.

We emphasize that we do not aim to lay blame with
individuals, and we refrain from naming the people and
organization involved. Each interview subject gave us
permission to interview them and report on the process.
Our goal is to present the facts of the situation, disposi-
tion of the network, and decisions made by the staff in
as clear a light as possible as a way to motivate research
and development of tools that ease the burden on IT staff
during the process of network intrusion recovery.

One of the most significant challenges when respond-
ing to an intrusion is performing forensic analysis to de-
termine the exact impact of the attack. In the case of the
compromises we discuss here, the nature of the attacks
was such that no individual performed a single coherent
analysis. Rather, the analysis was performed piecemeal
by the various members of the IT staff, and, as such, each
had a different view of the impact of the attack. As we
discuss later, this fractured view presents the IT staff with
problems when attempting to form a coherent response.
Furthermore, it presents a problem to us as researchers.
In some cases, parties we interviewed had radically dif-
ferent timelines and analysis, even though the interviews
took place less than a month after the attacks of Decem-
ber 2007 and within the scope of the March 2008 attacks.
Where possible, conflicting statements were reconciled
through mechanical methods (email or file modification
dates) but some ambiguity remains.

3 Intrusion Incidents

The network on which we focus our attention in this
paper is the network for a mid-sized research depart-
ment at a large university. The network consists of ap-
proximately 1000 Windows, Linux, and Solaris work-
stations, as well as a number of infrastructure servers
providing DNS, DHCP, and HTTP, and several general
purpose compute clusters accessible via SSH. Approxi-
mately 150 of the workstations run Red Hat Enterprise
Linux (RHEL) AS v4. These machines are periodically
updated from two source machines using rdist. For
the purposes of load balancing, the two rdist masters
are each responsible for half of the machine population.

User authentication in this environment is centralized.
Windows machines authenticate users via Active Direc-
tory; the Linux and Solaris machines authenticate users
through NIS. At the time of these incidents, the network
employed neither a rule-based IDS like Snort nor an
anomaly sensor. As a partial result of these incidents,
the network will shortly employ a content—based network
anomaly sensor. Machines are generally not firewalled
(although most end hosts have a local firewall supplied
by their OS vendor). The network supports a research
environment with a strong tradition of open access. This
tradition supplies a political force that has precluded the
use of any form of firewall at the network edge. One
of our colleagues (not associated with these incidents)
pointed out that a firewall is merely a device for imple-
menting policy. If the policy is unclear, then the mere
presence of such a device is unlikely to help.

Over the time period covered in this case study, the
network was administered by an IT staff of three to five
people, with a single manager. This staff works indepen-
dently within the context of the larger IT organization
of the university. The IT manager is highly experienced
in managing staff and infrastructure and had previously
completed a vast overhaul and update of the infrastruc-
ture to bring some amount of order to what was an oth-
erwise disorganized physical and virtual space.

There is a high turnover, and staff members come from
widely disparate backgrounds; some are students with
little to no experience, while some are highly knowledge-
able and very experienced. The network is complex for
its size and has a number of systems, including the ac-
counting system, which remain unchanged from the late
1990s. New staff, even if highly experienced, often take
months to gain a complete understanding of the intrica-
cies of the network.

3.1 March 2007 Attack

In March of 2007, an attacker attempted to use a kernel
exploit to gain root privileges on several of the RHEL
workstations. The attack was discovered when several of
these attempts failed, raising alerts. For each machine on
which the attack failed at least once, the IT team were
able to use system logs to determine the origin of the at-
tacker and the compromised user accounts he was using
to access the machine.

The failed attacks were not all the same, however; the
attacker was revising his methods, and there was no way
to determine if he had succeeded. The staff checked the
logs of other susceptible machines (those harboring the
same vulnerability, but showing no indication of failed
attacks). While staff could uncover no indication that the
attacker had connected to the machines, it is possible that
he altered the logs after gaining root access.

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

3.2 March 2007 Response

It is possible that the attacker never succeeded. Regard-
less, the safest response in this situation, recognized by
all members of the IT staff, would have been to reinstall
all vulnerable machines with a patched version of the
operating system. There were, however, external con-
straints that prevented this approach. The attacks oc-
curred in the middle of the semester and involved many
machines heavily used by classes. Thus, the staff needed
to carry out a solution as quickly as possible to avoid dis-
ruption to the Department’s academic mission.

Most of the systems are nearly identical, with the ex-
ception of the servers and the rdist masters. Rein-
stalling the rdist masters would have been time con-
suming and error-prone, as the rdist distribution archi-
tecture in use was archaic and proprietary, and those most
familiar with it were no longer employed.

Furthermore, reinstalling the workstations using the
rdist new-install process would have taken far too
much time, as each install generally took about a half
day, and due to network bottlenecks (much of the install
was network-based), no more than four or five machines
could reasonably be installed at any given moment.

The IT staff’s primary insight was that there were two
classes of vulnerable machines: servers and worksta-
tions. The attack required a user-level shell account on
the target machine in order to work, and the attacker had
compromised at least one or two student accounts (as in-
dicated from the logs of the failed attacks). Student ac-
counts, however, do not have access to the servers, so
the likelihood of an infection on those machines was less
than on any given workstation, as long as the staff as-
sumed that the attacker had not compromised any admin-
istrator accounts. The workstations, on the other hand,
were mostly identical, only differing in a few configu-
ration files. By isolating those files, the staff believed
they could clone workstations from other workstations
and avoid the bottleneck to the master rdist servers.

The staff shutdown each server and ran several rootkit
checkers. They also performed some manual log inspec-
tion for any indication of an attack. Seeing none, they
patched the servers and brought them back online.

The staff then performed a standard (half-day) new in-
stall on a single workstation via the master server. While
this new, clean workstation was installing, the staff used
the time to analyze workstations of many different con-
figurations to determine the minimal set of configuration
files that would differ per machine. They also burned ap-
proximately twenty Linux LiveCDs. Once the first work-
station was finished installing, the team went to each re-
maining workstation, booted to a LiveCD, and inspected
the configuration files which were to be left untouched to
verify that they contained nothing malicious.

The staff members then downloaded and ran a script
from the local intranet. This script erased most world-
writable locations on the machine (/tmp, parts of /var,
etc.). It then synchronized the remainder of the local
filesystem (with the exception of the wiped partitions and
the workstation-unique configuration files) directly from
a known-clean workstation. Staff then re-configured
and re-installed the bootloader and restarted the work-
stations.

Once the single clean workstation had been cloned,
it was possible to use the newly cloned machines them-
selves as rdist masters for other machines. For exam-
ple, by choosing masters within the same room, on the
same local switch, it allowed for a dramatic decrease in
the amount of time for the entire recovery. Note the level
of detail and manual effort involved in starting and evolv-
ing the repair and recovery process, including a heuristic
learned only through direct experience with reinstalling
machines in a localized fashion.

At this time, staff considered the problem resolved and
returned to normal day-to-day operations. However, we
saw in our interviews that some members of the staff rec-
ognized, even at the time, that they were unsure whether
the attack had been truly cleaned up. Furthermore, there
was no record keeping and no analysis or formal discus-
sions regarding installation of additional security mea-
sures such as an intrusion detection system.

3.3 December 2007 Attack

Early in 2007, four new machines arrived at the de-
partment, intended for use in high-performance graph-
ics research. Each machine was equipped with a high-
end NVIDIA graphics card. No official Linux drivers
for these graphics cards existed, so staff used unoffi-
cial drivers. In early December 2007, all four machines
stopped working. The IT staff installed updated (and now
official) graphics drivers, which solved the problem until
all four machines crashed the next day.

The staff pushed out updates to all RHEL machines
through its two rdist servers, starsky and hutch.
starksy is the primary master rdist server and hutch
is a secondary. The infrastructure accomplishes upgrades
with a two stage process. In the first stage, the ac-
tive RHEL installation on starsky is upgraded. This
live operating system is manually imaged and the image
copied to hutch. A cron job on each of these machines
pushes the upgraded image out to half of the 150 ma-
chines. The unfortunate consequence of this architecture
is that a compromise on starsky would be pushed out
automatically to the entire network. The staff installed
the updated NVIDIA driver on starsky to prevent it
from being overwritten on the graphics machines after
the next rdist.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 5

In addition to handling the NVIDIA issue, the staff
also upgraded the kernel on starsky from version
2.6.9-55.0.9.EL102.6.9-55.0.12.EL. At4 AM,
the cron job delivered the upgrade to all 150 machines.
On 10 December 2007, the staff discovered that both
starsky and hutch had crashed. The staff attributed
the failure to the recent upgrade, and investigating it was
added to the end of a long task list for one of the staff
members. Both machines crashed again on several sub-
sequent nights.

The issue was finally explored on 13 December 2007,
and the recent patches were rolled back on starsky.
That night, both machines crashed again. This was a
strong indication that the patches were not the problem,
so an attempt was made to re-upgrade starsky. The up-
grade failed when, during kernel compilation, the mkdir
command returned an error. On the morning of 17 De-
cember 2007, exploration of this error determined that
mkdir failed when attempting to create directories con-
sisting only of numeric characters. IT staff began to sus-
pect arootkit. Booting to a LiveCD confirmed that suspi-
cion: several files, including mount, had been replaced.

The hypothesis of the IT staff is that the rootkit in-
stalled by the attacker conflicted with the kernel module
of the NVIDIA driver. If the attack took place in the first
week of December, the rootkit would have been pushed
to the graphics machines, a conflict ensued, and the ma-
chines crashed. Installing the driver on starsky caused
that machine to crash too. The near-simulaneous kernel
update obscured the real issue.

3.4 December 2007 Response

Discussion and planning for the response took place in
a hallway at around 1pm on 17 December 2007. The
planning group was assembled informally and consisted
of the IT manager, three IT staff, and two authors of this
paper, who happened to be nearby.

Initial discussion surrounded disagreements on the
scale of the attack and the nature of the exposure. There
was a brief argument over whether the rdist servers
could be re-imaged and a clean install pushed out to all
machines. This idea was discarded because it was recog-
nized that all 150 machines would have to be reformatted
from scratch. Planning began on how that process would
take place, and a number of questions were raised im-
mediately. What, if any, changes should be made to the
system architecture? If changes are made, in what order,
and to which machines, should those changes be rolled
out? Who will be involved? Staffing shortages imply
that any changes beyond the simplest would take weeks
or months to put in place. How will changes affect end
users? Finals week is in progress, so taking large num-
bers of machines offline is undesirable.

Discussion immediately centered around whether the
staff should either stick with Red Hat Enterprise Linux
or move the machines to another operating system. We
note that were was no a priori reason to blame RHEL
for the intrusion, and we question whether this was an
appropriate first topic for the response team to exam-
ine. OpenBSD was proposed and discarded, primarily
due to the IT staff’s unfamiliarity with the operating sys-
tem. One member of the staff was familiar with Ubuntu,
had a working Ubuntu installation (an experiment to sup-
port a new authentication infrastructure) and argued for
this option. The IT staff has high turnover, so there
was no RHEL expert currently employed and there were
no individuals present who were capable of competently
comparing RHEL and Ubuntu. Lacking any quantitative
comparisons, no strong opposing voices emerged, and
the Ubuntu motion carried.

Discussion moved on to the user directory and authen-
tication system. The existing mechanism was based on
NIS. As we mention above, one member of the IT staff
had a pre-built LDAP server in place, so movement to
LDAP was quickly agreed upon, especially because this
provided a reason for the Ubuntu switch.

The agreement of those in the meeting was that a new
network, independent of the existing network, had to be
created, and each account had to be re-created with fresh
authentication credentials (passwords, SSH keys) in the
new network. Since it was finals week, most machines
were under heavy use. An underused 8-machine cluster
was proposed as a testbed for the deployment, and the
group agreed that that cluster should become the testbed
for the Ubuntu rollout.

Now that an overall plan was in place, the next ques-
tion was one of prioritization. Since it was possible that
the attack had been an insider attack (perhaps aimed at
gleaning final exam information), the highest priority
was to build clean Ubuntu images for the faculty. Thus,
the faculty and finals remained the first critical concerns.

The December 17 meeting then broke up, and the IT
staff began work. The first public disclosure of the attack
happened one hour later when the IT manager emailed
all faculty and PhD students informing them of the intru-
sion. All faculty passwords were to be changed.

On December 18, all PhD students teaching classes
were informed that they would have to undergo the same
procedure outlined for faculty the previous day. The de-
partment was also notified about the impending staffing
shortage; half the IT workforce were leaving for jobs
in the finance industry at the end of the year (in three
days). Faculty cell-phone numbers were requested so
staff could text message them new passwords. Installa-
tion of Ubuntu and LDAP on the test cluster began.

Students and staff then departed for the holiday break.
The IT staff returned on December 27, and a Ubuntu

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

rollout on another computer cluster began (this time, a
general-purpose lab). The next day, Solaris machines
were upgraded to Solaris 10. On January 8, all guests
and visitors were moved to the new system.

3.5 March 2008 attack

The March 2008 attack was detected by a member of the
IT staff who noticed a new account named mysqld with
root privileges on an important web server. Examining
the contents of the home directory of this account showed
several interesting files.

1. .bash_history containing what is probably a par-
tial record of the attacker’s behavior.

2. ali.txt containing the results of an NMAP scan
for port 5555 (freeciv) across a /16 network.

3. bot.pl An IRC-based bot engine.
4. dos.pl A simple denial-of-service engine.

5. xpl.c Source code for the vmsplice Linux local
privilege escalation exploit.

The mysqgld account appeared in the lastlog his-
tory, along with the attacker’s source IP address. Search-
ing for that address in the Apache web server logs indi-
cated that the attacker had repeatedly requested several
files in a directory containing a common PHP web ap-
plication, which was several revisions out of date, with
remote exploits in the wild. The attacker added a copy of
the nsTview remote web administration tool to the web
app directory, leaving it set up with the default password.

The Apache logs also indicated that the attacker had
downloaded a file he had created called secret.txt,
containing the username and password for the web ap-
plication’s MySQL database, and the IP address for the
remote host on which the database was running. Unfortu-
nately, logging was disabled on the MySQL database, so
investigations are limited in that direction. It is unknown
whether the attacker ever connected to that database, or
used one of several MySQL privilege escalation attacks
to examine any of the other databases on that server.

We do note that, given the age of the web-application
exploit, we believe that it is unlikely this is the first at-
tacker to come in through this vulnerability. Further-
more, the nsTview remote web administration tool was
using a default password, so multiple attackers may have
come in through that route.

3.6 March 2008 response

The response to the attack began by removing mysqgld
from /etc/passwd in order to disable it. The MySQL

server daemon was shut down shortly thereafter. The
owner of the vulnerable web application was then con-
tacted and it too was shut down. These responses were
performed quickly — within two hours of the attack first
being detected — and then the response turned to a policy
discussion. What architecture and policy changes need to
take place to prevent such attacks in the future? Several
alternatives have been discussed, including undertaking
a manual review of all web applications, prohibiting web
applications entirely, making patching the mandatory re-
sponsbility of users running web applications, and mov-
ing the web infrastructure to a “read-only” style web site
that is periodically refreshed from virtual machine snap-
shots. Users remain responsible for checking that their
software is patched.

4 Incident Analysis

We next highlight some of the key decisions, discuss why
they were not based purely on technical considerations,
and suggest research directions aimed at helping auto-
mate and ease the process of decision making and rea-
soning under uncertain beliefs and knowledge. Note that
our purpose is not to pass judgment on a particular deci-
sion by labeling it good or bad: the central goals of our
analysis are to observe how non-technical factors influ-
ence decisions and to highlight what kinds of technical
systems might help manage that influence.

4.1 Observations

Lesson 1: Cross-layer, anomaly-based intrusion de-
tection seems valuable for detecting stealthy attacks.
This type of detection is far more comprehensive than
system call sequence monitoring and involves the fu-
sion of alert streams from multiple levels of system
abstraction.

All three attacks were discovered manually through
symptoms and side—effects of each attacker’s activities
rather than traditional intrusion sensors like Snort or a
commercial anti-virus product. At the time, the network
did not employ a traditional network IDS, and little in the
way of automated detection beyond some syslog moni-
toring scripts, but neither was the active attack sequence
something detectable by a network intrusion detetion or
a desktop anti-virus software system. In the March 2007
attack, abnormal kernel activity prompted an investiga-
tion by an IT staff member. In the December 2007 at-
tack, crashes noticed by the Graphics research group led
to the eventual discovery of the rootkit. The March 2008
attack was noticed by an IT staff member discovering a
new privileged user account by accident — prompted by
a trouble ticket filed by a senior professor asking why
some standard mount points were failing.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 7

This situation suggests that alert and educated IT staff
and users are critical to uncovering stealthy attacks. We
acknowledge that the sample size of incidents is small
and purposefully focused on extensive intrusions (rather
than well-known worm infection attempts). This lesson
should be taken as a call to focus on creating anomaly
sensors that span multiple levels of a system. For ex-
ample, a system that correlates a user’s inability to
mount their regular partitions with anomalous network
or host traffic can help build evidence for a comprehen-
sive anomaly. The research challenge here is to move
beyond AD techniques that rely solely on various flavors
of system call sequence modeling.

Lesson 2: Staff do not have the luxury of complete
forensics.

From an end-user viewpoint, this lesson was rather
surprising at first, perhaps because we believe computer
systems to be more flexible than they are in reality. Al-
though we knew that undertaking an effective forensics
process is challenging, we were surprised at the nasty
dilemna of trying to analyze a host that one also wants to
keep running. A tension exists between short-term oper-
ational demands to keep services running and long-term
demands from the ISP to keep a network clean. Disks
and machines have to be kept in use; we suspect that
many organizations lack the luxury of taking them of-
fline for extensive cleanroom analysis. Hot swappable
and mirrored disks do offer a way to keep a machine on-
line while also looking at a snapshot of the current con-
tent, but not all organizations can afford this type of re-
dundancy for all their machines.

For example, if a critical server has been infected, the
IT staff might decide that it is more important to quickly
reinstall the server and restore normal operation than to
analyze the malware in any depth. But while operational
demands are important, the forensic analysis they pre-
clude might reveal information which ultimately proves
more critical still — perhaps it establishes that the in-
fected server also infected other servers, or it might show
that a compromised administrator account was the ini-
tial source of the intrusion, meaning that a reinstallation
alone will not solve the overall problem.

An ISP often imposes constraints on real-time analy-
sis of infected machines. IT staff may wish to analyze
an infected machine’s traffic to see if any other machines
are communicating with it (and thus might be infected).
But ISPs are often more concerned with limiting dam-
age caused by an infected host. They will sometimes
insist upon removing it from the network immediately,
especially in academic environments, where the univer-
sity is directly responsible for most hosts on the network.
Large public ISPs may be less demanding to match their
reduced liability.

Lesson 3: Visualizing a decision surface can help
inform overall strategy and planning.

After detecting an incident or intrusion, it is difficult
to immediately identify and execute the appropriate next
steps; a staff is effectively in the middle of diagnosis.
Staff may be torn between a number of actions, includ-
ing continuing diagnosis and forensic efforts, fixing the
immediate problem or small-scale symptoms of an at-
tack (turn off a particular service, unplug a particular
machine, remove a login entry from /etc/passwd),
and fixing the larger—scale symptoms or root causes of
an intrusion.

In the medium to long term, staff members needed a
system that could direct the implementation of the so-
lutions they had arrived at. To a certain extent, such a
system includes standard “trouble ticket” or issue track-
ing software. In contrast to such an “obvious” tool, the
technology that the staff actually used to plan out recov-
ery activities for the December 2007 attack included a
whiteboard and a marker. The whiteboard was inadver-
tently erased. The marker remains at large. Interestingly
enough, usability research on display—centered group ac-
tivities has found that displays are important in the plan-
ning stages of the activity, but grow progressively less
useful as the plan is enacted [12].

In the short term, staff members needed a system that
could direct planning activities by giving them a feel for
the magnitude and location of various pitfalls (whether
human or technical in nature). We suggest the concept
of a decision surface composed of process clocks (a vi-
sual representation of task complexity using an estimate
of task difficulty to shade in a graph node) as one way
to achieve this high level view of the difficulty of the ter-
rain ahead. We have found that standard decision trees
and swim-lane diagrams are not quite appropriate for this
goal, but we are left without any ready alternatives.

Decisions, and the reasons for making them, can be
difficult to articulate and defend. Describing a decision
making process can leave one lost for words — some-
times elements of the decision were based on intuition,
flashes of inspiration or emotion, a complex sequence of
data analysis, or deep contemplation and personal reflec-
tion. However hard it is to describe the process of making
a decision, we have found that visualizing the elements
of a decision is even harder. One of our main inspirations
for writing this paper was the lack of a way for our sys-
tem administrator to assess — at a quick glance — the
difficulty of the terrain ahead of her, including parts of
the decision surface where human and technical factors
would conspire to greatly increase (or even decrease!)
the complexity of the available alternatives. We have
asked a number of our colleagues for their best method
of visualizing a decision, and we have repeatedly drawn
blanks. We consulted Edward Tufte’s work? in hopes of

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

gaining some insight into visualizing the elements of in-
formation involved in a decision, but most information
visualization principles did not seem directly applicable
to this problem of visualizing a process (rather, a collec-
tion of processes).

As aresult, we are attempting to define a model for vi-
sualizing a decision surface that would take into account
the properties we observed to be important in guiding the
process of network intrusion recovery: amount of human
involvement, estimated effort for task completion, order-
ing dependencies of tasks, potential disruptions. We start
by seeking to construct what we call a decision surface:
a two dimensal plane akin to topographical maps project-
ing three dimensions onto a flat surface. The peaks, val-
leys, and plains of a decision surface convey at a glance
where difficult or complex decision points lie. Knowing
how to compose a decision surface, however, especially
in light of future attacks, is a difficult exercise.

Lesson 4: Rapidly setting and executing a diagno-
sis and recovery agenda requires an unobtrusive, per-
vasive incident recording and modeling system that
can help manage cognitive traps like availability bias
and the shortcomings of human memory. Since hu-
man memory and recall is far from perfect, multiple
points of view supply sometimes conflicting details of
attacks and do not assist efforts in forensics, auditing,
or planning for the next attack. Recovery graphs may
provide one way to encode intrusion scenarios and the
human response to them for later auditing.

The crucial first minutes after an intrusion discovery,
in which there is no complete information about the at-
tacker’s entry point(s), history of actions, short and long-
term intent, or current level of activity, hold the potential
for panic, an overwhelming amount of data to analyze,
and a paralyzed thought process. Involving too many
people in the decision—making process after a serious in-
trusion is discovered can distract the person in charge.
The hallway discussion on 17 December involved multi-
ple people, ideas, and proposals. The system administra-
tor involved with our case study achieved a certain level
of success at repairing the network only because she was
able to rapidly sift through the different proposals that
the team members articulated.

Decision making at this point should be aided by au-
tomated processes that help manage the signal-to-noise
ratio; in studies on decision—-making, the manner in
which information is organized often appears more im-
portant than simply getting increased amounts of infor-
mation [20].

Furthermore, during our interviews, we observed that
details of the attacks and the responses often differed
wildly between individuals. Individuals often disagreed
on dates — one person confused an attack from March
2007 with one from May 2006 and provided a mixture of

details from both. In other cases, individuals presented
radically different reports on which actions were taken.
Two members of the IT staff disagreed on the date and
method of detection of the December 2007 attack, while
another viewed it as a continuation of the March 2007
attack. Without a coherent view of the state of the net-
work, it is difficult for staff to make informed decisions
to guide the attack response. One suggestion is that a
staff member be tasked to record all the actions of a re-
covery process, but such a role can prove problematic for
organizations that have staff shortages and tight budgets.

Even though researchers have proposed work on at-
tack scenarios and attack trees [18, 22], relatively little
attention has been paid to analyzing the process of a re-
sponse. Automatically increasing the rate and types of
events logged after an intrusion is discovered and the re-
covery process is started can assist efforts to revise a dis-
aster recovery plan. More logging can make sure that key
decisions are clearly recorded and not subject to human
recollection of events occurring during a stressful time
of rapid change and high rates of information. This type
of recording is substantially different than ensuring that
/var/log/messages collects more OS—level events.
We propose the concept of recovery graphs to help cap-
ture and encode the sequences of events following the
start of a recovery effort.

The lack of a human-centered post-intrusion journal-
ing system suggests that research to design and develop
new systems that record human—level events, judgments,
recollections, and intentions is needed. Such systems
must interact with humans seamlessly: they cannot place
an additional burden on already-busy personnel. Catego-
rizing, tagging, and cross-referencing events and infor-
mation generated during the post-intrusion recovery pro-
cess can help form a coherent view of what has happened
and is happening to the network.

Lesson 5: Designing and maintaining a disaster
recovery plan can aid recovery efforts, but the plan
must be continuously — not periodically — updated.

The IT staff did not have a priori knowledge of what
procedures should be enacted to combat or rectify the in-
trusion or to process and prioritize information about the
incident. While the lack of a disaster recovery plan is a
major operational shortcoming, disaster recovery plans
alone are not a panacea. Like any proactive defense
method, the plan may be incomplete, outdated, or un-
likely to work given the current personnel. For example,
the IT manager in our case study faced a critical person-
nel shortage due to events unrelated to the intrusion: half
the staff was leaving for new jobs in a matter of days.

A disaster recovery plan must constantly evolve. Each
new attack, vulnerability, or patch affects the recov-
ery details. Similarly, employee turnover, improved
employee skill set, and application deployment require

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 9

modifications to the plan. The question of how often to
update the disaster recovery plan is a risk analysis and as-
sessment task that must balance the needs of the staff to
accomplish everyday system administration tasks against
spending an inordinate amount of time planning for dis-
asters that might never occur.

The open research question here is how personnel
changes, catalogs of personnel skill, and lists of re-
sources, sensors, countermeasures, toolsets, and inven-
tory can drive an automated (and potentially real-time)
update of the disaster recovery plan. We recognize
that this research goal is rather ambitious (some read-
ers have called it unrealistic — although existing perva-
sive recording systems [8] indicate otherwise), but we
stress that this type of problem is precisely where the re-
search gap is: little or no work in this space looks at ways
to combine both humans and computers into a cohesive
system where the computational elements are responsive,
proactive, and transparent to the human as they go about
their main tasks. In our minds, such a research direction
is new and exciting, especially in a subfield where the
bulk of the research looks at tweaking IDS parameters,
considering an endless array of new features, or slicing
up botnets in a variety of ways.

Nevertheless, the need to improvise can lead to cre-
ative solutions. For example, one of the most interesting
countermeasures taken by the system administrator in the
December 2007 attacks was to find an alternative distri-
bution channel for new login credentials. The adminis-
trator sent text messages to the bulk of the user popula-
tion with their new account password. This side chan-
nel is inexpensive (we estimate ten cents per message for
roughly one thousand users), and it served quite nicely
to distribute authentication material to users who were
physically dispersed over the winter break.

Lesson 6: Decisions about appropriate technology
shifts are driven by informal personal inclinations
rather than quantitative (or even qualitative) com-
parisons of system properties.

Making changes to a complex and corrupted infras-
tructure requires (besides a quality analysis of the intru-
sion) a good understanding of the benefits offered by se-
lecting one technology over another. For example, when
the staff discussed whether to change computing plat-
forms from RHEL to Ubuntu, the decision was made
without any point—by—point comparison of the security
benefits of either system. Although a question was raised
about whether or not Ubuntu incorporated SELinux by
default, as RHEL does, it was neglected (a symptom of
the need for a recording system). The staff expressed
comfort with Ubuntu’s package management software
and indicated that one staff member had already proto-
typed an Ubuntu system that would support stronger au-
thentication. While good package management software

can greatly ease the job of system administration, we feel
that it is not the primary or only factor in a security—
related decision. In this instance, however, the intrusion
presented an opportunity for the IT staff to increase the
security of the system.

Note that this decision represents an astoundingly
rapid shift; even though the underlying platform is Linux,
the actual delta is significant (placement of system files
and scripts, customizations and patches to the kernel,
etc.). Even such a minor shift stretches the limits of pos-
sibility; for example, deciding to switch the infrastruc-
ture to Windows or *BSD would not have been possible
in the same amount of time the RHELv4/Ubuntu shift
was accomplished.

This lesson points to the need for research into models
or techniques to help estimate or otherwise provide some
quantitative measure of how the defense posture will be
affected after choosing to implement technology X over
technology Y. Techniques like attack graphs [18, 22] and
event-correlation [17] may help by focusing attention in
important places, but at that point we need to begin the
process of helping to make recovery decisions.

In this case study, the IT staff did not perform even
a cursory examination of the release notes of the latest
versions of the operating systems under consideration.
While the circumstances and the time pressure demanded
a quick decision, it would be best if the IT staff were not
placed in such a bind to begin with. Providing systems
that automated these types of comparisons and parame-
terizing them with the details of the intrusion or incident
can assist staff efforts to make rational, informed, and
technical decisions rather than strictly intuitive ones.

We can think of at least three research directions stem-
ming from this lesson. It may be possible to use Natural
Language Processing techniques to compare the release
notes of the latest versions of two (or more) pieces of
software for items that may impact the security posture
of the organization. Second, a more realistic goal may be
to create a system that data mines bug report databases
and vulnerability mailing lists for items that are relevant
to the security of the software systems under considera-
tion. Finally, if the source of the intrusion can be traced
to a weakness in a particular software package, it may
be possible to work forward to predict other vulnerable
components in that software [15].

4.2 Where Do we Go From Here?

Accounts discussing the trapping and tracking of attack-
ers in improvised honeypots form part of the classic net-
work security literature [25, 5]. Just as these accounts re-
late the first examples of a honeypot and computer foren-
sics, the improvisation required in these early responses
forecast exactly the plight of network administrators to-

10

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

day: when faced with a real attacker, decisions must be
made quickly and accurately, and the decisions may con-
flict with the desires of other stakeholders. At the times
of these early incidents, almost no tools existed to help
trace hacker activity. Tools were improvised from the
ground up, and their descendants and offshoots have be-
come part of a standard set of tools. Now, network in-
trusion recovery faces an even larger challenge: create
a suite of tools that take into account not only the engi-
neering challenges of repairing a network, but also the
human issues surrounding this process.

We have five specific suggestions for the construction
of tools that could reasonably see use in the near term:

1. A way of visualizing complex decisions at a high
level. A decision surface could help convey terrain
information rather than just a branching factor of
standard decision trees.

2. An unobtrusive, pervasive, and real-time activity
monitor capable of efficiently and reliably record-
ing both computer events and human actions during
the recovery process.

3. A standard for encoding intrusion scenarios derived
from the data captured by the above system, includ-
ing the behavior of both human actors and computer
systems in terms of the information structures they
maintain and the sequences of actions they take.
The keys to this standard are both fidelity and porta-
bility, so that these scenarios can be run on simula-
tion infrastructures that employ, for example, differ-
ent virtual machine hosts.

4. An environment for executing, analyzing, and re-
viewing these scenarios. For this environment, we
can turn to recent work in the arena of computer
game design [1] that focuses on the simulation of
realistic crowds (rather than randomly milling zom-
bies or predictably scripted bots) for a variety of
purposes, including realistic storylines, evacuations
from buildings or transportation vehicles in a cri-
sis, and automated assessment of the usability and
ergonomics of functional living or working space.
This type of tool is useful for both post-mortem
analysis to learn from the incident and to ensure that
a recovery plan was fully enacted.

5. A toolset for automatically analyzing relevant secu-
rity properties of alternative solutions. We do not
see a panecea here; rather, it is likely that a collec-
tion of tools, each specialized to assessing the qual-
ity of a particular type of solution, is appropriate.

In each case, these tools help a team of administrators
remove guesswork and uncertainty from the process of

recovery. We also see a need for a way to input organi-
zational changes to drive changes in a disaster recovery
plan, but as we relate above, this task may prove to be too
challenging, even if we manage to cobble together some
combination of MindMap® and a trouble-ticket system.

5 Discussion

This paper has benefited greatly from both formal and
informal feedback and reviews. Here, we would like to
address some of the meta-issues and high-level concerns
that various readers have raised. Fundamentally, we see
this paper as the start of a two-pronged effort: first, to for-
mally document intrusion recovery scenarios and second,
to create systems that help support intrusion recovery ef-
forts or that streamline the process of intrusion recovery.

The most obvious shortcoming of this paper is that
we examine a single organization. It is hard to assess if
the same specific troubles affect other organizations, but
from our experience and anecdotal evidence, this similar-
ity seems to be the case, at least for academic networks
as well as some corporate networks we are familiar with.
Some readers have suggested that the nature of the net-
work itself suggests an administrative staff unconcerned
with security, and thus it provides an unreasonable orga-
nization to base a case study on. Given our direct expe-
rience with the personnel involved in these incidents, we
believe this is an unfair criticism of their efforts. Strate-
gic security adjustments are important to the staff, but
so are the day to day struggles — on a tight budget —
to keep an infrastructure with many diverse interests and
stakeholders operational. Furthermore, at least one other
system administrator purposefully and publically runs a
network without firewalls [23], like our subject network.
Therefore, we suggest that this network is in fact typical
of academic-style, open-access networks, and we do not
claim that this network is the ideal model for drawing
conclusions about, for example, a highly sensitive mili-
tary network. Nevertheless, recovering from an intrusion
remains a common problem, and the travails of the least
prepared of us can help even those who are most prepared
understand the risks they face.

We anticipate documenting new incidents as well as
incidents from other organizations. We are in contact
with the technical staff of our institutions to help broaden
the scope of this research. We intend to start an archive of
structured encodings of these scenarios. Such an archive
can support comparisons between organizations as they
respond to similar incidents and chose different tradeoffs.

We recognize that incidents similar to the ones we
cover in this paper occur every day in many organiza-
tions worldwide. Far from making the details we expose
here mundane, this reality underscores the fact that this
topic is of critical concern. Furthermore, to the best of

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 11

our knowledge, no one is documenting these incidents in
detail or examining how these details change over time.
Descriptions of these incidents in the research literature
are rare; we cited those that we could find.

Our belief is that the details of these incidents (and
how organizations recover from them) are even more re-
vealing and of as much interest as their high—level struc-
ture. Furthermore, since organizations have little incen-
tive (in fact, they have potentially large legal and finan-
cial disincentives) to share the details of these incidents,
academic research into methods of intrusion recovery re-
mains uninformed and undirected. No concretely speci-
fied collection of intrusion recovery scenarios exist, and
this lack leaves most discussions about the best way to
recover from an attack at the level of hand—waving.

Other readers have suggested a variety of areas for
further work and improvements, from performing a user
impact survey to estimating the economic impact of the
intrusions on the organization. We refrain from includ-
ing this type of analysis precisely because there are no
widely-accepted frameworks (although some nascent re-
search proposals do exist [4]) for providing realistic,
standardized estimates of costs for losses due to security
incidents. Informal industry studies often hyperinflate
their estimated costs to serve some agenda, be it market-
ing a particular security tool, the worth of their own sur-
vey, or to provide “evidence” that the problem is worth
significant public or private investment. Our goal in this
paper is simply to tease out how the technical and hu-
man complexities in specific, real-life scenarios interact
— not to provide some exotic finanical estimation instru-
ment, especially as none of the authors has any meaning-
ful training in economics.

Finally, one aspect of intrusion recovery that we did
not discuss is that of gathering forensic evidence to sup-
port criminal prosecution. The prevailing wisdom in this
area is twofold. First, many attackers tend (or appear
based on the attack source IP address) to be from juris-
dictions outside of the US; as the organization we deal
with is located in the US, it is unlikely that any such ev-
idence would have been utilized in a criminal trial. Fur-
thermore, many organizations hesitate to bring charges,
because doing so requires that the incident become pub-
lic knowledge. Neverthless, retaining log files and disk
images of compromised machines can assist efforts to
uncover a larger pattern of malicious activity. In any
event, the IT staff was far more concerned with rebuild-
ing the infrastructure and denying access to the intruder
than preserving any chain of evidence (Section 4 dis-
cusses how IT staff find themselves in a bind when it
comes to forensics).

6 Conclusion

Currently, repairing a network infrastructure after a seri-
ous intrusion is costly because cleanup is largely a man-
ual process, and the complexity of information systems
makes it difficult to automatically trace the extent of the
attack. Furthermore, the psychological and sociological
aspects of the problem are grossly understudied. Systems
involve people, and their security decisions and risk as-
sessments are often based on reasons that are not purely
technical. The purpose of this case study is not to ques-
tion whether the IT staff could have done a better job,
or if the organization should have had a more robust net-
work to begin with.

Instead, the lessons we should learn are that real se-
curity problems — those whose scope is sometimes too
large to comprehend and deal with in any single research
publication, are brushed aside as either too large to be in-
teresting, or too close to human and organizational prob-
lems to be strictly “systems” security issues. With this
case study, we hope to show that interesting possibilities
for systems security research exist. Fundamentally, we
think that human decisions should be assisted with auto-
mated methods that help filter and classify the available
information. The problem of network intrusion recovery
is a particularly thorny exercise in researching, design-
ing, and creating usable security mechanisms.

Acknowledgements

We would like to thank our shepherd, Nicole Velasquez,
for helping us resolve the issues and insightful comments
raised by the reviewers. We deeply appreciate the coop-
eration and help of the IT staff that provides the subject
of this paper. Theresa Menzel provided extensive feed-
back and anecdotal evidence from her experiences with
intrusion incident handling. Locasto is supported in part
by grant 2006-CS-001-000001 from the U.S. Department
of Homeland Security under the auspices of the I3P re-
search program. The I3P is managed by Dartmouth Col-
lege. The opinions expressed in this paper should not be
taken as the view of the authors’ institutions, the DHS,
or the I3P.

References

[1] BADLER, N., ALLBECK, J., ZHAO, L., AND BYUN, M. Repre-
senting and Parameterizing Agent Behaviors. In Proceedings of
Computer Animation (June 2002), pp. 133-143.

[2] BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R. Address
Obfuscation: an Efficient Approach to Combat a Broad Range
of Memory Error Exploits. In Proceedings of the 12th USENIX
Security Symposium (August 2003), pp. 105-120.

[3] CAMPOS, L., AND ALONSO-QUECUTY, M. L. Remembering a
Criminal Conversation: Beyond Eyewitness Testimony. Memory
14, 1 (2006), 27-36.

12

LISA "09: 23rd Large Installation System Administration Conference

USENIX Association

[4]

[5

[t}

[6

—

[7

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

CARIN, L., CYBENKO, G., AND HUGHES, J. Quantitative Eval-
uation of Risk for Investment Efficient Strategies in Cybersecu-
rity: The QUERIES Methodology. IEEE Computer (2008).

CHESWICK, B. An Evening with Berferd, in which a cracker
is lured, endured, and studied. In Proceedings of the Winter
USENIX Conference (January 1992).

CHESWICK, W. R., AND BELLOVIN, S. M. Firewalls and Inter-
net Security: Repelling the Wily Hacker. Addison-Wesley, 1994.

DUNLAP, G. W., KING, S., CINAR, S., BASRAI, M. A., AND
CHEN, P. M. ReVirt: Enabling Intrusion Analysis Through
Virtual-Machine Logging and Replay. In Proceedings of the 2002
Symposium on Operating Systems Design and Implementation
(OSDI) (February 2002).

GEMMELL, J., LUEDER, R., AND BELL, G. The mylifebits life-
time store. In ETP '03: Proceedings of the 2003 ACM SIGMM
workshop on Experiential telepresence (New York, NY, USA,
2003), ACM, pp. 80-83.

GRIZZARD, J. B., KRASSER, S., OWEN, H. L., DODSON,
E. R., AND CONTI, G. J. Towards an approach for automati-
cally repairing compromised network systems. In Proceedings of
3rd IEEE International Symposium on Network Computing and
Applications (August 2004), IEEE, pp. 389-392.

HAWKEY, K., MULDNER, K., AND BEzZNOSOV, K. Search-
ing for the Right Fit: Balancing IT Security Management Model
Trade-Offs. IEEE Internet Computing (May/June 2008), 22-30.

HILZINGER, M. Fedora: Chronicle of a Server
Break-in. http://www.linux-magazine.com/
linux-magazine_com/online/news/update_
fedora._chronicle_.of_a.server_break_in,

2009. Linux Magazine.

HUANG, E. M., MYNATT, E., AND TRIMBLE, J. P. Displays in
the Wild: Understanding the Dynamics and Evolution of a Dis-
play Ecology. In Proceedings of the 4" International Conference
on Pervasive Computing (May 2006).

March

KING, S. T., AND CHEN, P. M. Backtracking Intrusions. In
19t ACM Symposium on Operating Systems Principles (SOSP)
(October 2003).

KURSAWE, K., AND KATZENBEISSER, S. Computing Under
Occupation. In New Security Paradigms Workshop (September
2007).

NEUHAUS, S., ZIMMERMANN, T., AND ZELLER, A. Predict-
ing Vulnerable Software Components. In Proceedings of the
14th ACM Conference on Computer and Communications Se-
curity (CCS) (2007).

NEWSOME, J., AND SONG, D. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Proceedings of the 12t
Symposium on Network and Distributed System Security (NDSS)
(February 2005).

NING, P., Cul, Y., AND REEVES, D. S. Analyzing Intensive
Intrusion Alerts Via Correlation. In Proceedings of the 5th Inter-
national Symposium on Recent Advances in Intrusion Detection
(RAID 2002) (October 2002).

Ou, X., BOYER, W. F., AND MCQUEEN, M. A. A Scalable
Approach to Attack Graph Generation. In Proceedings of the
13t" ACM Conference on Computer and Communications Secu-
rity (CCS) (October 2006).

OzGIT, A., DAYIOGLU, B., ANUK, E., KANBUR, I.,
ALPTEKIN, O., AND ERMIS, U. Design of a log server for dis-
tributed and large-scale server environments.

PAYNE, J. W., BETTMAN, J. R., AND JOHNSON, E. J. Behav-
ioral Decision Research: A Constructive Processing Perspective.
Annual Review of Psychology 43 (1992), 88—131.

[21] Provos, N. Improving Host Security with System Call Policies.

In Proceedings of the 12t" USENIX Security Symposium (August
2003), pp. 207-225.

[22] SHEYNER, O., HAINES, J., JHA, S., LIPPMANN, R., AND

WING, J. Automated Generation and Analysis of Attack Graphs.
In Proceedings of the IEEE Symposium on Security and Privacy
(May 2002).

[23] SINGER, A. Tempting Fate. USENIX login; 30, 1 (February

2005), 27-30.

[24] SPAFFORD, E. H. The Internet Worm: Crisis and Aftermath.

Communications of the ACM 32, 6 (June 1989), 678-687.

[25] SToLL, C. Stalking the Wily Hacker. Communications of the

ACM 31,5 (May 1988), 484.

[26] SuH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Se-

cure Program Execution Via Dynamic Information Flow Track-
ing. SIGOPS Oper. Syst. Rev. 38, 5 (2004), 85-96.

[27] WELLS, G. L., AND OLSON, E. A. Eyewitness Testimony. An-

nual Review of Psychology 54 (2003), 277-295.

Notes

1www.hotadmin.org

2http://www.edwardtufte.com/tufte/
3http://freemind.sourceforge.net/wiki/index.

php/Main_Page

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 13

Two-Person Control Administration:
Preventing Administration Faults through Duplication

Shaya Potter, Steven M. Bellovin and Jason Nieh
Department of Computer Science
Columbia University
{spotter, smb, nieh}@cs.columbia.edu

Abstract

Modern computing systems are complex and difficult to
administer, making them more prone to system admin-
istration faults. Faults can occur simply due to mistakes
in the process of administering a complex system. These
mistakes can make the system insecure or unavailable.
Faults can also occur due to a malicious act of the system
administrator. Systems provide little protection against
system administrators who install a backdoor or other-
wise hide their actions. To prevent these types of sys-
tem administration faults, we created ISE-T (I See Ev-
erything Twice), a system that applies the two-person
control model to system administration. ISE-T requires
two separate system administrators to perform each ad-
ministration task. ISE-T then compares the results of
the two administrators’ actions for equivalence. ISE-T
only applies the results of the actions to the real sys-
tem if they are equivalent. This provides a higher level
of assurance that administration tasks are completed in
a manner that will not introduce faults into the system.
While the two-person control model is expensive, it is
a natural fit for many financial, government, and mili-
tary systems that require higher levels of assurance. We
implemented a prototype ISE-T system for Linux using
virtual machines and a unioning file system. Using this
system, we conducted a real user study to test its ability
to capture changes performed by seperate system admin-
istrators and compare them for equivalence. Our results
show that ISE-T is effective at determining equivalence
for many common administration tasks, even when ad-
ministrators perform those tasks in different ways.

1 Introduction

As computing systems become more complex, they have
also become harder to administer. From a security per-
spective, these complex systems create an environment
that is easier for rogue users, be they inside or outside

attackers, to make changes to the system that hide their
malicious attacks. For instance, Robert Hanssen, an FBI
agent who was a Soviet spy, was able to evade detection
because he was the system administrator for some of the
FBI’s counterintelligence computer systems [26]. This
allowed him to determine if the FBI had identified his
drop sites and if he was the subject of investigation [5].

Insider attacks have long been known to be very dif-
ficult to address. Most approaches involve intrusion de-
tection or role separation. However, both are ineffective
against rogue system administrators who can replace the
system module that enforces the separation or performs
the intrusion detection. This attack vector was described
over thirty years ago by Karger and Schell [13] and still
remains a serious problem.

Even if administrators can be trusted not to be mali-
cious, they must deal with software that is very compli-
cated. Mistakes can be easy to make and hard to identify
before they cause problems. These mistakes can affect
both the stability of the system and its security. A mis-
take that takes down an important service can prevent the
machine from being usable or further administered, and
can even let malicious attackers access the machine with
impunity.

There are several approaches for preventing and re-
covering from faults that creep into a system, including
partitioning, restore points, and peer review. One of the
most effective approaches is two-person control [1]. This
can be provided by having two pilots in an airplane, re-
quiring two keys for a safe deposit box, or running two
or more computations in parallel and comparing the re-
sults for a fault-tolerant computer system. We believe
this concept can be extended to address problems in sys-
tem administration by leveraging virtualization to create
duplicate environments.

Toward this end, we created the “I See Everything
Twice” [10] (ISE-T, pronounced “ice tea”) architecture.
ISE-T provides a general mechanism to clone execution
environments, independently execute computations that

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 15

modify the clones, and compare how the resulting mod-
ified clones have diverged. The system can be used in
a number of ways, such as performing the same task
in two initially identical clones, or executing the same
computation in the same way in clones with some dif-
ferences. By providing clones, ISE-T creates a system
where computation actions can be “seen twice”, apply-
ing the concept used for fault-tolerant computing to other
forms of two-person control systems. There is a crucial
difference though between our approach for using repli-
cas and replicas as used in fault-tolerant computing. Our
goal is to compare for equivalence between two replicas
that may not be completely identical, rather than simply
run two identical replicas in lock step and ensure they
remain identical.

We apply ISE-T’s principle to change the way we ad-
minister machines to provide two-person control admin-
istration. As ISE-T allows a system to be easily cloned
into multiple distinct execution domains, we can create
separate clone environments for multiple administrators.
ISE-T can then compare the separate set of changes pro-
duced by each administrator for equivalence to determine
if the same changes were made. By comparing the sets of
changes for equivalence, ISE-T improves management
by allowing it to be done in both a fail-safe and auditable
manner.

In ISE-T, we force administrative acts to be performed
multiple times before it is considered correct. Current
systems give full access to the machine to individual ad-
ministrators. This means that one person can accidently
or maliciously break the system. ISE-T’s ability to clone
an execution environment creates a new way to admin-
ister machines to avoid this problems. ISE-T does not
allow any administrator to modify the underlying system
directly, but instead creates individual clones for two ad-
ministrators to work on independently. ISE-T is then able
to compare the changes each administrator performs. If
the changes are equivalent, ISE-T has a high assurance
that the changes are correct and will commit them to the
base system. Otherwise, if it detects discrepancies be-
tween the two sets of changes, it will notify the admin-
istrators about the differences so that they can resolve
the problem. This enables fail safe administration by
enabling a single administrator’s accidental errors to be
caught, while also preventing a single administrator from
maliciously damaging the system.

ISE-T leverages both virtualization and unioning file
systems to provide the administration clones for each ad-
ministrator. ISE-T is able to leverage both operating sys-
tem virtualization techniques, such as Solaris Zones [18]
and Linux VServer [20], as well as hardware virtualiza-
tion such as VMware [24], to provide each administra-
tor with an isolated environment in which to perform the
changes. ISE-T builds upon DejaView [14], leveraging

union file systems to provide a layered file system that is
able to provide the same initial file system namespace in
one layer, while capturing all the system administrator’s
file system changes into a separate layer. This enables
easy isolation of changes, simplifying equivalence test-
ing.

ISE-T’s approach of requiring everything to be in-
stalled twice blocks many real attacks. A single mali-
cious system administrator can no longer install modules
that create an intentional back-door to allow future ac-
cess into the system. Similarly, they cannot unilaterally
weaken firewall rules, nor create unauthorized accounts
to allow others into the system.

ISE-T is admittedly an expensive solution, too expen-
sive for many commercial sites. For high-risk situations,
such as in the financial, government, and military sectors,
the added cost can be acceptable if the risk is reduced. In
fact, the two-person controls are already routine in those
environments, ranging from checks that require two sig-
natures to the well known requirement of requiring two
people for any work involving nuclear weapons. How-
ever, we also demonstrate how ISE-T can be used in a
less expensive manner by introducing a form of auditable
system administration. Instead of requiring two system
administrators at all times, auditable ISE-T captures all
the changes performed by the system administrator in the
same manner it uses for equivalence testing, but instead
immediately saves it to an audit log while committing
it to the underlying system. An audit can then be per-
formed on the log to provided a higher level of assurance
that the administrator was only performing the changes
they claimed they were performing.

In a similar manner, ISE-T can be extended to train
less experienced system administrators. First, ISE-T al-
lows a junior system administrator to perform tasks in
parallel with a more senior system administrator. While
only the senior system administrator’s solution will be
committed to the underlying system, the junior system
administrator can learn from how his solution differs
from the senior system administrator. Second, ISE-T
can help train junior system administrators by being ex-
tended to provide an approver mode. In this mode, a
junior system administrator will be provided administra-
tion tasks to complete. However, instead of the changes
being committed directly, they will be presented to the
senior system administrator who can approve or disap-
prove of the changes, without being required to do the
same actions in parallel.

We have implemented an ISE-T Linux prototype with-
out requiring any source code changes to the underlying
kernel or system applications. To evaluate its ability to
do equivalence testing, we conducted a user study to de-
termine ISE-T’s ability to efficiently capture administra-
tion changes through its layered file system, as well as to

16

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

Administrative Clone #1 Administrative Clone #2

ISE-T Service

System

Figure 1: ISE-T Usage Model

compare the environments of the multiple administrators
for equivalence. Our results demonstrate that ISE-T is
effective at determining equivalence for many common
administration tasks even when administrators perform
those tasks in different ways. Furthermore, we demon-
strate that ISE-T is able to easily show the differences
that occur when the actions are not performed equiva-
lently, in what situations the actions cannot be performed
equivalently, as well as ISE-T’s ability to detect mali-
cious administration changes.

2 Usage Model

Systems managed by ISE-T are used by two classes of
users, regular unprivileged users and the privileged sys-
tem administrators who manage the machines. ISE-T
does not change how regular users interact with the ma-
chine. They are able to install any program into their per-
sonal space, as well as run any program on the system,
including regular programs and programs with special
privileges, such as setuid UNIX programs that raise
the privileges of the process on execution. This allows
regular users to execute programs such as passwd to
change their passwords.

However, ISE-T fundamentally changes the way sys-
tem administrators interact with the machine. In a reg-
ular system, when administrators want to perform main-
tenance on the machine, they will leverage their ability
to execute arbitrary programs with administrative priv-
ileges. This can be accomplished by executing a shell
with the privilege so that they can execute arbitrary com-
mands with ease, or by leveraging a program such as
sudo that will just execute the arbitrary programs itself
that way. In these systems, administrators are able to
modify the system in a direct manner, change files, and
execute programs and have those changes occur directly.

As ISE-T prevents system administrators from exe-

cuting arbitrary programs with administrative privileges,
this model cannot be directly used in a system man-
aged by ISE-T. Instead, ISE-T provides a new model as
shown in Figure 1. Instead of administering a system
directly, ISE-T creates administration clones. Each ad-
ministration clone is fully isolated from each other and
the base system. ISE-T instantiates an administration
clone for each administrator to perform the administra-
tive acts within. Once both administrators are finished,
ISE-T compares the clones for equivalence and commits
the changes if the clones pass the equivalence test. As
opposed to a regular system, where the administrator can
interleave file system changes with program execution,
in ISE-T only the file system changes get committed to
the underlying system. Therefore ISE-T requires admin-
istrators to use other methods if they require file system
changes and program execution to be interleaved on the
actual system, such as for rotating log files or to do ex-
ploratory changes in order to diagnose a subtle system
malfunction.

To allow this, ISE-T provides a new i se—t command
that is used in a manner similar to su. Instead of spawn-
ing a shell on the existing system, I se—t spawns a new
isolated container for that administrator. This container
contains a clone of the underlying file system. Within
this clone, the administrators can perform generic admin-
istrative actions, as on a regular system, but the changes
will be isolated to this new container. When the ad-
ministrators are finished with the desired administration
changes, they exit their new container’s shell, much as
they would exit a root shell; the container itself is termi-
nated, while its file system remains around.

ISE-T then compares the changes each administrator
performed for equivalence. ISE-T performs this task au-
tomatically after the second administrator exits his ad-
ministration session and notifies both of the administra-
tors of the results. If the changes are equivalent, ISE-
T automatically commits the changes to the underly-
ing base system. Otherwise, ISE-T notifies the admin-
istrators of the file system discrepancies that exist be-
tween the two administration environments, allowing the
administrators to recreate their administration environ-
ments and correct the discrepancies.

Command
ise-t new
ise-t enter
ise-t done
ise-t diff

Description

Create an administration environment
Enter administration environment
Ready for equivalence testing

Results of a failed equivalence test

Table 1: ISE-T Commands

As ISE-T only looks at file system changes, this can
prevent it from performing administrative actions that
just affect the runtime of the system. In order to han-

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 17

dle this, ISE-T provides a raw control mechanism via
the file system, as well as enabling itself to be integrated
with configuration management systems. First, ISE-T’s
raw control mechanism is implemented via a special-
ized file system namespace where an administrator can
write commands. For instance, if the administrators want
to kill a process, stop a service or reboot the machine,
those actions performed directly within their adminis-
tration container will have no affect on the base sys-
tem. Some actions can be directly inferred from the file
system. For instance, if the system’s set of startup pro-
grams is changed, by having a file added, removed or re-
placed, ISE-T can infer that the service should be started,
stopped or restarted when the changes are committed to
the underlying system. However, this only helps when
one is changing the file system. There are times when
administrators will want the services stopped or restarted
without modifying the file system of the system. There-
fore, ISE-T provides a defined method for killing pro-
cesses, stopping and starting services and rebooting the
machine using files the administrator can store on the lo-
cal file system. ISE-T provides each administrator with
a special Zadmin directory for performing these prede-
fined administrative actions.

For example, if the administrator wants to reboot the
machine, they create an empty reboot file within the
/admin directory. If both administrators create the file,
after the the rest of their changes are committed to the
system, it will reboot itself. Similarly, the administra-
tors can create a halt file to halt the machine. In addi-
tion, the Zadmin directory has kill and services
subdirectories. To kill a process, administrators create
individual files with the names of the process identifiers
of processes running on the base system that they de-
sire to kill. Similarly, if a user desires to stop, start, or
restarta init.d service, they can create a file named by
that service prefixed with stop, start or restart,
such as stop.apache or restart.apache within
the services directory to have ISE-T perform the ap-
propriate actions when the changes are committed to the
base system. The files created within the Zadmin direc-
tory are not committed to the base system; they are only
used for performing runtime changes to the system.

However, many systems already exist to manage sys-
tems and perform these types of tasks, namely config-
uration management systems, such as Icfg [2]. At a
high level, configuration management systems work by
storing configuration information on a centralized policy
server that controls a set of managed clients. In general,
the policy server will contain a set of template configu-
ration files that it uses to create the actual configuration
file for the managed clients based on information con-
tained within its own configuration. Configuration man-
agement systems also generally support the ability to run

predefined programs, scripts and execute predefined ac-
tions on the clients they are managing.

When ISE-T is integrated with any configuration man-
agement system, it no longer manages the individual
machines. Instead of the managed clients being con-
trolled by ISE-T, the configuration policy server is man-
aged by ISE-T directly and the clients are managed di-
rectly by the configuration management system. This
provides a number of benefits. First, it simplifies the
complexity of comparing two different systems, as ISE-
T can focus on the single configuration language of the
configuration management system. Second, configura-
tion system already have tools to manage the runtime
state of their client machines, such as stopping and start-
ing services and restarting them when the configuration
changes. Third, many organization are already used
to using configuration management systems; by imple-
menting ISE-T on the server side, they can enforce the
two-person control model in a more centralized manner.

3 ISE-T Architecture

To enable the two-person administrative control seman-
tic, ISE-T provides three architectural components. First,
as the two administrators cannot administer the system
directly, they must be provided with isolated environ-
ments in which they can perform their administrative
acts. To ensure the isolation, ISE-T provides container
mechanisms that allow ISE-T to create parallel environ-
ments that are based on the underlying system that is be-
ing administered. This allows ISE-T to fully isolate each
administrator’s clone environment from each other and
from the base system.

Second, we note that any persistent administrative ac-
tion has to involve a change to the file system. If the
file system is not affected, the action will not survive a
reboot. Whereas some administrative acts only affect
the ephemeral runtime state of the machine, the major-
ity of administrative acts are of a more persistent nature.
Therefore, to allow ISE-T to create two-person admin-
istrative control, the file system is a central component.
ISE-T provides a file system that can create branches of
itself as well as isolate the changes made to it. This en-
ables the easy creation of the clone containers, as well as
enabling the easy comparison of the changes performed
to both environments.

Finally, ISE-T provides the ISE-T System Service.
This service instantiates and manages the life-times of
the administration environments. It is able to compare
the two separate administration environments for equiv-
alence to determine if the changes performed to them
should be committed to the base system. ISE-T’s Sys-
tem Service performs this via an equivalence test that
compares the two administration environment’s file sys-

18

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

tem modifications for equivalence. If the two environ-
ments are equivalent, the changes will be committed to
the underlying base system. Otherwise, the ISE-T Sys-
tem Service will notify the two administrators of the dis-
crepancies and allow them to fix their environments in
the appropriate fashion.

3.1 Isolation Containers

ISE-T can leverage multiple different types of container
environments, depending on the requirements of the ad-
ministrators managing the system. In general, the choice
will be between hardware virtual machine containers and
operating system containers. Hardware virtual machines,
such as VMware [24], provide a virtualized hardware
platform that a separate operating system kernel runs on
and provides a complete operating system instance. Op-
erating system containers, such as Solaris Zones [18], on
the other hand, are just isolated kernel namespaces run-
ning on a single machine.

For ISE-T, there are two primary difference between
these containers. First, hardware virtual machines allow
the administrators to install and test new operating sys-
tem kernels as each container will be running its own
kernel. Operating system containers, on the other hand,
prevent the administrators from testing the underlying
kernel, as there is only one kernel running, that of the
underlying host machine. Second, as hardware virtual
machines require their own kernel and a complete oper-
ating system instance to be started up, they take a signif-
icant amount of time to create the administration clones.
On the other hand, operating system containers can be
created almost instantly, allowing the administrators to
quickly perform their actions. As both types of contain-
ers have significant benefits for different types of admin-
istrative acts, ISE-T supports the ability to use both. For
most actions, administrators will prefer to use operating
system containers, while still enabling them to get a com-
plete hardware virtual machine when they desire to test
kernel changes.

When ISE-T is integrated with a configuration man-
agement system, ISE-T does not have to use any iso-
lation container mechanism at all, as the configuration
management system already isolates the administrators
from the client system. Instead, ISE-T simply provides
each administrator with their own configuration manage-
ment tree and let each individual administrator perform
the changes.

3.2 ISE-T’s File System

To support its file system needs, ISE-T leverages the abil-
ity of some file systems to be branched. Unlike a regular
file system, a branchable file system can be snapshotted

at some point in time and branched for future use. This
allows ISE-T to quickly clone the file system of the ma-
chine being managed for both clone administration envi-
ronments. As each file system branch is independent, this
allows ISE-T to capture any file system changes in the
newly created branch, by comparing the branch’s state
against the initial file system state. Similarly, ISE-T can
then compare the set of file system changes from both
administration clones against each other for equivalence.

However, while a classical branchable file system al-
lows one to capture the changes, it does not allow one
to efficiently discover what has changed, as the branch
is a complete file system namespace. Iterating through
the complete file system can take a significant amount of
time, as well as place a large strain on the file system and
decrease system performance. To allow ISE-T to use a
file system efficiently, it must provide two features. First,
it must be able to duplicate the file system to provide each
administrator with their own unique and independent file
system to perform their changes on. Second, it must pro-
vide a way to easily isolate the changes each administra-
tor makes to the file system to easily test the changes for
equivalence. To meet these requirements, ISE-T creates
layered file systems for each administration environment,
where multiple file systems can be layered together into a
single file system namespace for each environment. This
enables each administration environment to have a lay-
ered file system composed of two layers, a single shared
layer that is the file system of the machine they are ad-
ministrating, as well as a layer that will contain all the
changes the administrator performs on the file system.

To support the creation of the layered file system, ISE-
T has to solve a number of file system related problems.
First, it must support the ability to combine numerous
distinct file system layers into a single static view. This is
equivalent to installing software into a shared read-only
file system. Second, as users expect to be able to inter-
act with the layered file system as a normal file system,
such as by creating and modifying files, ISE-T has to en-
able the layered file system to be fully modifiable. In a
related vein, the third problem ISE-T has to solve is that
end users should also be able to delete files that exist on
the read-only layer. However, end users should also be
able to recover the deleted files by reinstalling or upgrad-
ing the layer that contains the deleted. This is equivalent
to deleting a file from a traditional file system, but rein-
stalling the package that contains the file to recover it.

To solve these problems, ISE-T leverages union file
systems. Unioning file systems enable ISE-T to solve
the first problem as they allow the system to join multiple
distinct directories into a single directory view, as shown
in Figure 2. These directories are unioned by layering di-
rectories on top of one another. For example, when two
directories are unioned together, one directory contain-

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 19

Layer 1 f00
Layer 2 bar
Composed View foo bar

Figure 2: Unioning Namespaces

ing the file foo and the other containing the file bar,
the unioned directory view would contain both files foo
and bar. To provide a consistent semantic, most union
file systems only allow one layer, namely the topmost to
have files added to it. At the same time, if a file that al-
ready existed is modified, the union file system changes
the underlying file directly, in whatever layer of the union
it existed previously.

COW Layer bar"
FS Namespace foo bar
Composed View foo bar’

Figure 3: COW functionality

To solve the second problem, union file system can
be extended [27] to enable them to assign properties to
the layers, defining some layers to be read only while
others can be read-write. This results in a model that
borrows from copy-on-write (COW) file systems, where
a modifying a file on a lower read-only layer will cause
it to be copied to the topmost writable layer, as shown in
Figure 3. For instance, in the above example, a blank cow
writable layer can be layered on top of a read only layer
containing Foo and bar. If, in the course of usage, file
bar get modified to bar “ it will be copied up to the top
most layer before the modification occurs. When a file is
created or modified, it is written to the private read-write
layer enabling the layered file system to be differentiated
through file system changes.

This layering model also provides a semantic that di-
rectory entries located at higher layers in the stack ob-
scure the equivalent directory entries at lower levels.
Continuing the example, both layers now contain the file
bar, but only the top most layer’s version of the file
is visible. To provide a consistent semantic, if a file is
deleted, a white-out mark is also created on the top most
layer to ensure that files existing on a lower layer are

COW Layer .wo.bar
FS Namespace foo bar
Composed View foo

Figure 4: White-Out Support for Deletion

not revealed, as shown in Figure 4. Now, if the file bar
were deleted, it would not allow the bar on the lower
layer to be revealed. The white-out mechanism enables
obscuring files on the read-only lower layers, simply by
creating white-out files on the topmost layer.

ISE-T’s layered file system provides the ability for
multiple independent views of a file system to be in an
active modifiable state at the same time, while confin-
ing each view’s modifications to itself by providing each
file system with an independent COw layer. To provide
a simple example, imagine one has a directory that one
wants to branch into two distinct views. This implies that
processes operating in one view would be able to modify
the files, without the changes causing any effect in the
other view, and vice versa. This model can simply be
implemented by ISE-T with the above union file system
semantic. ISE-T creates two distinct views of the direc-
tory by creating two distinct ISE-T branched file system
mounts. Since all modifications will cause files to be
copied to the top most directory, it enables one to simply
contain each views modifications into its own space. Fi-
nally, as each COW layer isolates the changes that were
performed to each file system, ISE-T can easily deter-
mine which files it has to compare for equivalence.

3.3

ISE-T’s System Service has a number of responsibilities.
First, it manages the lifetimes of each administrator’s en-
vironment. When administration has to be performed, it
has to setup the environments quickly. Similarly, when
the administration session has been completed and the
changes committed to the underlying system, it removes
them from the system and frees up their space. Third, it
evaluates the two environments for equivalence by run-
ning a number of equivalence tests to determine if the
two administrators performed the same set of modifica-
tions. Finally, it has to either notify the administrators
of the discrepancies between their two environments or
commit the equivalent environment’s changes to the un-
derlying base system.

ISE-T layered file system allows ISE-T system’s ser-
vice to easily determine which changes each administra-

ISE-T System Service

20

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

tor made, as each administrator changes will be confined
to their personal layer of the layered file system. To de-
termine if the changes are equivalent, ISE-T first isolates
the files that it does not care about, and that will not be
committed to the base system. This is currently limited to
the administrator’s personal files in their branch, such as
shell history. Instead of just removing them, ISE-T saves
them for archival and audit purposes. ISE-T then iterates
through the files in each environment, comparing the file
system contents and files directly against each other. If
each administrator’s branch has the equivalent set of file
system changes, ISE-T can then simply commit a set to
the base system. On the other hand, if the files contained
within each branch, are not equivalent, ISE-T flags the
differences and reports to each administrator what the
differences are. The administrators can then confer with
each other to ensure that they perform the same steps, so
that they will create the same set of files to commit to the
base system.

Determining equivalence can vary based on the type of
file and what is considered to be equivalent. For instance,
a configuration file modified by both administrators with
different editors can visually appear to be equivalent, but
can differ from each other if one uses spaces and another
used tab characters. These files can be equivalent, as
they would be parsed by applications in the same man-
ner, but would be different when examined on a character
by character level. However, there are some languages
(e.g., Python) where the amount of whitespace matters;
this can have a large effect on how the script executes.
On the other hand, two files that have exactly the same
file contents can have varying meta data associated with
the file, such as permission data, extended attributes or
even the multiple types of time data associated with each
file. Similarly, some sets of files should not matter for
equivalence, such as the shell history that recorded the
steps the administrators took in their respective environ-
ments, and in general the home directory contents of the
administrator in the administration environment. ISE-T
prunes these files from the comparison, and never com-
mits them to the underlying system.

Taking this into consideration, ISE-T’s prototype com-
parison algorithm determines these sets of differences.

1. Directory entries which do not exist in both sets of
changes are differences.

2. Every directory entry that does not have the same
UID, GID, and permission set are different.

3. Every directory entry that is not of the same file
type (Regular File, Symbolic Link, Directory, De-
vice Node, or Named Pipe) are different

For directory entries that are of the same type, ISE-T
performs the appropriate comparison.

= Device nodes must be of the same type
< Symbolic links must contain the same exact path

« Regular files must have the same size and the exact
same contents

There are two major problems with this approach.
First, this comparison takes place at a very low seman-
tic level. It does not take into account simple differences
between files that make no difference in practice. How-
ever, without writing a parser for each individual con-
figuration language, one will not easily be able to com-
pare equivalence. Second, there are certain files, such
as encryption keys, that will never be generated identi-
cally, even though equivalent actions were taken to cre-
ate them. This can be important, as some keys are known
to be weaker and a malicious administrator can construct
one by hand.

Both of these problems can be solved by integrat-
ing ISE-T with a configuration management system and
teaching ISE-T the configuration management system’s
language. First, these systems simplify the compari-
son by enabling it to focus on the configuration man-
agement system’s language. Even though most config-
uration management systems work by creating template
configuration files for the different applications, these
files are not updated regularly and can be put through
the stricter exact comparison test. On the other hand,
when ISE-T understands the single language of the con-
figuration management system, it can rely on a more re-
laxed equivalence test. Second, configuration manage-
ment systems already have to deal with creating dynamic
files, such as encryption keys. A common way configu-
ration management systems deal with these types of files
is by creating them directly on the managed client ma-
chines. As ISE-T understand the configuration manage-
ment system’s language, the higher level semantics that
instruct the system to create the file will be compared
for equivalence instead of the files themselves. However,
a potential weakness of ISE-T is in dealing with files
that cannot easily be created on the fly and will differ
between two system administration environments, such
as databases. For instance, two identical database oper-
ations can result in different databases due to the saving
of a time-stamp, or the simple reordering of updates on
the database server.

4 ISE-T for Auditing

Whereas the two-person control model that ISE-T pro-
vides to system administration is useful for providing
high assurance that faults are not going to creep into the
system, its expense can make it unusable in many situa-
tions. For example, since the two-person control model

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 21

requires the concurrence of two system administrators
on all actions, it can prevent timely actions from being
taken if only a single administrator is available. Simi-
larly, whereas the two-person control model provides a
high degree of assurance for a price, it would be useful if
organizations could get a higher degree of assurance than
normal with little extra cost. To achieve these goals, we
can combine ISE-T’s mechanisms with audit trail princi-
ples to create an auditable system administration seman-
tic.

In auditable system administration, every system ad-
ministration act that is logged to a secure location so that
it can be reviewed for correctness at some point in the
future. The ISE-T System Service creates clone adminis-
tration environments for the two administrators and can
capture the state they change in order to compare them
for equivalence. For auditable system administration,
ISE-T’s mechanism can also be used. The audit system
prevents the single system administrator from modifying
the system directly, but require the creation of a cloned
administration environment where the administrator can
perform the changes before they are committed to the un-
derlying system. Instead of comparing for equivalence
against a second system administrator, the changes are
logged so that they can be used by an auditor at some
point in the future as well as immediately committed
to the underlying system. Audit systems are known to
increase assurance that malicious changes are not per-
formed, as the malicious person knows there’s a good
chance his actions will be caught. Similarly, depend-
ing on the frequency and number of audits performed, it
can help prevent administration faults from persisting for
long periods of time in the system. However, it does not
provide as high assurance a model as can be provided by
the two-person control system, as the administrator can
use the fact that his changes are committed immediately
to create backdoors in the system that cannot be discov-
ered until later.

Auditable system administration needs to be tied di-
rectly to an issue-tracking service. This allows an auditor
to associate an administrative action with what the ad-
ministrator was supposed to accomplish. Every time an
administrator invokes ISE-T to administer the system, an
issue-tracking number is passed into the system to tie that
action with the issue in the tracker. This allows the audi-
tor to compare the results of what occurred with what the
auditor expects to have occurred. In addition, auditable
system administration can be used in combination with
the two-person control system when only a single ad-
ministrator is available and action has to be taken in a
more immediate fashion. With auditing, the action can be
performed by the single administrator, but can be imme-
diately audited when the second administrator becomes
available. This helps the system maintain its higher level

of assurance when immediate action has to be taken by a
single administrator.

5 Experimental Results

To test the efficacy of ISE-T’s layered file system ap-
proach, we recruited 9 experienced computer users
with varying levels of system administration experience,
though all were familiar with managing their own ma-
chines. We provided each user with a VMware virtual
machine running Debian GNU/Linux 3.0. Each VM was
configured to create an ISE-T administration environ-
ment that would allow the users to perform multiple ad-
ministration tasks isolated from the underlying base sys-
tem. Our ISE-T prototype uses UnionFS [27] to provide
the layered file system needed by ISE-T. We asked the
users to perform the eleven administration tasks listed in
Table 2. The user study was conducted in virtual ma-
chines running on an IBM HS20 eServer blade with dual
3.06 Ghz Intel Xeon CPUs and 2.5GB RAM running
VMware Server 1.0. These tasks were picked as they are
indicative of common administration tasks, as well as in-
cluding a common way a malicious administrator would
create a back-door in the system for himself.

Each task was performed in a separate ISE-T con-
tainer, so that each administration task was isolated from
the others, and none of the tasks depended on the re-
sults of a previous task. We used ISE-T to capture the
changes each user performed for each task in its own file
system. We were then able to compare each user against
each other for each of the eleven tasks, to see if they per-
formed equivalent modifications or where their modifi-
cations differed.

For every test, ISE-T prunes the changes that were
done to remove files that would not affect equivalence
since they would not be committed to the underlying
file system, as described in Section 3.3. Notably, in our
prototype, ISE-T prunes the /root directory which is
the home directory of the root user, and therefore would
contain differences in files such as .bash_history
amongst others that are specific to how they went about
performing the task. Similarly, ISE-T prunes the /var
subtree to remove any files that were not equivalent. For
instance, depending on how an administrator would ad-
minister the system and what tools one would use, differ-
ent files would be created, for instance a cache of pack-
ages downloaded and installed via the apt-get tool
versus being downloaded and installed manually. The
reasoning behind this pruning is that the Zvar tree is
meant as a read-write file system for per-system usage.
Tools will modify it; if different tools are used, differ-
ent changes will be made. However, one cannot prune
the entire directory tree as there are files or directories
within it that are necessary for runtime use and those

22

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

Category Description Result
Upgrade entire system via package manager Equivalent
Software Installation | Install official Rdesktop package Equivalent
Compile and install Rdesktop from source Equivalent
. Install SSH Daemon from package Not Equivalent (Not Desired)
System Services - -
Remove PPP package using package manager | Equivalent
Edit machine’s persistent hostname Equivalent
. . Edit the inetd.conf to enable a service Not Equivalent (Not Desired)
Configuration . - -
Add a daily run cron job Equivalent
Changes - -
Remove an hour run cron job Equivalent
Change the time of a cron job Equivalent
Exploit Create a backdoor setuid root shell anywhere | Not Equivalent (Desired)

Table 2: Administration Tasks

changes have to be committed to the underlying file sys-
tem. Therefore, only those changes that are equivalent
were committed, while those that are different were ig-
nored. ISE-T also prunes the /tmp directory as the con-
tents of this directory would also not be committed to the
underlying disk. Finally, due to the UnionFS implemen-
tation, ISE-T also prunes the whiteout files created by
UnionFsS if there is no equivalent file on the underlying
file system. In many cases, temporary files with random
names will be created; when they are deleted, UnionFS
will create a whiteout file, even if there is no underly-
ing file to whiteout. As this whiteout file does not have
an impact on the underlying file system, it is ignored.
On the other hand, whiteout files that do correspond to
underlying files and therefore indicate that the file was
deleted are not ignored.

5.1 Software Installation

For the software installation category, we had the users
perform three separate tests that demonstrated differ-
ent ways administrators install software into the system.
These tests were to demonstrate that when multiple users
install the same piece of software, as long as they install
it in the same general way, the two installations will be
equivalent.

To demonstrate this, the users were first instructed
to install the rdesktop program from its Debian pack-
age. Users could choose to download the package by
hand and install it via dpkg, they could use apt-get
to download it and any unfulfilled dependencies, or use
the aptitude front end amongst many ways to per-
form this task. Most users decided to install the package
via apt-get, but even those who did not made equiva-
lent changes. The only differences were those in pruned
directories, demonstrating that installing a piece of pre-
packaged software using regular tools will result in an
equivalent system.

Second, the users were instructed to build the rdesk-
top program from source code and install it into the sys-
tem. In this case, multiple differences could have oc-
curred. First, if the compiler would create a different
binary each time the source code is compiled, even with-
out any changes, one would have a more difficult time
evaluating equivalence. Second, programs generally can
be installed in different areas of the file system, such as
/usr versus /usr/local. In this case, all the testers
decided to install the program into the default location,
avoiding the latter problem, while also demonstrating
that as long as a the same source code is compiled by the
same toolchain, it will result in the same binary. How-
ever, some program source code, such as the Linux ker-
nel, will dynamically modify their source during build,
for example to define when the program was built. In
these cases, we would expect equivalence testing to be
more difficult as each build will result in a different bi-
nary. A simple solution would be to patch the source
code to avoid this behavior. A more complicated solution
would involve evaluating the produced binary’s code and
text sections with the ability to determine that certain text
section modifications are inconsequential. Again, in this
case the only differences were in pruned directories, no-
taby the Zroot home directory to which the users down-
loaded the source for rdesktop.

Finally, we had the users upgrade the Debian stable
system with all pending security updates. This was a
more complicated version of the first test, as multiple
packages were upgraded. Although differences existed
between the environments of the users, the differences
were confined to the /var file system tree and depended
on how they performed the upgrade. This is because De-
bian provides multiple ways to do an upgrade of a com-
plete system and those cause different log files to be writ-
ten. As they all installed the same set of packages, the
rest of the file system, as expected, contained no differ-
ences.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 23

5.2 System Services

Our second set of tests involved adding and removing
services: the users were instructed to install the ssh ser-
vice and remove the PPP service. These tests were an
extension of the previous package installation tests and
were meant as a demonstration of how one would auto-
matically start and stop services, as well as a demonstra-
tion of files we knew would be different and therefore
fail equivalence testing.

For the first test, we instructed the users to install the
SSH daemon. This test sought to demonstrate that ISE-
T can detect when a new service is installed and there-
fore enable it when the changes are committed. This
is demonstrated by the fact that in Linux systems, a
System-V init script has to be added to the system to
enable it to be started each time the machine boots. If
the user’s administration environment contains a new init
script, ISE-T can automatically determine that the ser-
vice should be started when this set of administration
changes are committed to the base system. This test also
sought to demonstrate that certain files are always go-
ing to be different between users if created within their
private environment. This is demonstrated by the fact
that the SSH host key for each environment is different.
This is because it is created based on the kernel’s ran-
dom entropy pool that will be different for each user and
therefore will never be the same if created in separate en-
vironment. A way to solve this would be not to create it
within the private branch of each user, but instead have
it be created after the equivalent changes are committed,
for instance, the first time the service’s init script is exe-
cuted.

For the second test, we instructed the users to re-
move the PPP daemon. This test sought to demonstrate
that there are multiple ways to remove a package in a
Debian system and depending on the way the package
is removed, the underlying file system will be differ-
ent. Specifically, a package can either be removed or
purged. When a package is removed, files marked as
configuration files are left behind, allowing the packages
to be reinstalled and have the configuration remain the
same. On the other hand, when a package is purged, the
package manager will remove the package and all the
configuration files associated with it. In this case, the
user’s chose different ways to remove the package, and
ISE-T was able to determine the differences for those that
chose to remove or purge it.

5.3 Configuration Changes

Our third set of tests involved modifications to config-
uration files on the system and involved six separate
tests. These tests could be subdivided into three cate-

gories. The first category was composed of simple file
configuration changes. We first instructed the users to
modify the host name of the machine persistently from
debian to iset, which is accomplished by editing the
/etc/hostname file. As expected, as this configura-
tion change is very simple, all user modified the system’s
hostname in the exact same manner, allowing ISE-T to
determine that all the systems were equivalent.

Next, we instructed the users to modify the
/etc/inetd.conf file to enable the discard ser-
vice. In this case, as the file is more free-form, their
changes were not exact, and many were not equiva-
lent. For example, some users enabled it for both TCP
and UDP, while some users enabled it for TCP alone.
Also, some users added a comment, while others did not.
Whereas the first change is not equivalent, the second
change should be considered equivalent, but this can-
not be determined by a simple diff; one needs the abil-
ity to parse the files correctly to determine that they are
equivalent, an ability our ISE-T prototype does not have.
However, ISE-T was able to clearly report the differences
that existed between the environments of users who per-
formed this administration task differently.

The second set of tests involved setting up and remov-
ing cron jobs and was composed of three tests. First,
we provided the users with a script in /root that we
instructed them to install in the system in a manner so
that it will be executed daily. In Debian there are two
ways to have a cron job execute daily. The best way is
to simply place the script in the Zetc/cron.daily
directory, as all the programs located within it are exe-
cuted once a day. On the other hand, a user could use
the /etc/crontab file and instruct it exactly what
time each day to execute the program. We were look-
ing for users to place the file in Zetc/cron.daily
which the large majority did; but one user who per-
haps was not used to Debian modified /etc/crontab
directly. Again, ISE-T was able to detect the differ-
ence when it existed and report the discrepancy. Simi-
larly, we instructed users to remove a cron job that ran
hourly. The cron job’s script was already located in
/etc/cron._hourly and not in crontab. All users
deleted it from the /etc/cron.hourly directory,
even the user who modified /etc/crontab in the pre-
vious test. Finally, we had an entry in /etc/crontab
that executed a cron job at 4:35 AM every day, and in-
structed the users to change it to 5:35 AM. As expected,
all users performed the same set of changes by modifying
the Zetc/crontab file.

5.4 Exploit

In our final test, we asked the users to create a backdoor
shell into the system. This test demonstrates that ISE-

24

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

T will detect when one of the two system administrator
makes a rogue administration change to the system, as
the other administrator will not have made that same ad-
ministration change. We did not specify how or where
the shell should be created, and left it up to the user. The
users created setuid shells in many different locations,
some as “dot files” to be hidden from a normal 1s listing,
and some just setuid existing shells. In all cases, as none
of the users made this rogue modification in the same
manner, ISE-T was able to detect the rogue changes as a
difference that existed between all the environments.

6 Related Work

Two-person control mechanisms are known to provide
high levels of assurance [22]. Multiple examples exist
with regard to nuclear weapons. For instance, to launch
a nuclear weapon, two operators must separately confirm
that launch orders are valid and must turn their launch
keys together to launch the missiles. In fact, every sen-
sitive action concerning nuclear weapons must be per-
formed by two people with the same training and author-
ity [3, Chapter 2]. The same notion is applied in many
financial settings: banks will require two people to be
involved in certain tasks, such as opening a safe-deposit
box [25], and companies can require two people to sign
a check [8] over a certain threshold. This makes it much
more difficult for a single person to commit fraud.

However, as far as we know, this mechanism has never
been applied directly to system administration. In the
Compartmented Mode Workstation (CMW), the system
administration job is split into roles, so that many tra-
ditional administration actions require more than one
user’s involvement [23]. These demarcation of roles
were first pioneered in Multics at MIT [12]. Similarly,
the Clark-Wilson model was designed to prevent unau-
thorized and improper modifications to a system to en-
sure its integrity [4]. All these systems simply divided
the administrators’ actions amongst different users who
performed different actions. This differs fundamentally
from the traditional notion of two-person control where
both people do the same exact action.

More recently, many products have been created to
help prevent and detect when accidental mistakes occur
in a system. SudoSH [9] is able to provide a higher level
of assurance during system administration as it records
all keystrokes entered during a session and is able to re-
play the session. However, while sudosh can provide an
audit log of what the administrator did, it does not pro-
vide the assurances provided by the two-person control
model. Even if one were to audit the record or replay it,
one is not guaranteed to get the same result. Although
auditing this record can be useful for detecting acciden-
tal mistakes, it cannot detect malicious changes. For in-

stance, a file fetched from the Internet can be modified.
If the administrators can control which files are fetched,
they can manipulate them before and after the sudosh
session. ISE-T, on the other hand, does not care about
the steps administrators take to accomplish a task, only
the end result as it appears on the file system.

Part of the reason accidental mistakes occur is that
knowledge is not easily passed between the experienced
and inexperienced system administrators. Although sys-
tems like administration diaries and wikis can help, they
do not easily associate specific administration actions
with specific problems. Trackle [6] attempts to solve
this by combining an issue tracker with a logged con-
sole session. Issues can be annotated, edited and cross-
referenced while the logged console session logs all ac-
tions taken and file changes and stores them with the is-
sue, improving institutional memory. Although this can
help prevent mistakes from entering the system due to
enabling the less experienced system administrators from
seeing the exact same steps a previous administrator took
to fix a similar or equivalent issue, it does not prevent
mistakes from entering and remaining in the system, nor
does it prevent a malicious administrator from perform-
ing malicious changes.

ISE-T’s notion of file system views was first explored
in Plan 9 [17]. In Plan 9, it is a fundamental part of the
system’s operation. As Plan 9 does not view manipulat-
ing the file system view as a privileged operation, each
process can craft the namespace view it or its children
will see. A more restricted notion of file system views
is described by loannidis [11]. There, its purpose is to
overlay a different set of permissions on an existing file
system.

Finally, a common way to make a system tolerant of
administration faults is to leverage the semantic of file
system versioning, as it enable you to rollback to a con-
figuration file’s previous state when an error was made.
Operating systems such as Tops-20 [7] and VMS [15] in-
clude native operating system support for versioning as
a standard feature of their file systems. These operating
systems employ a copy-on-write semantic that involves
versioning a file each time a process changes it. Other
file systems, such as VersionFS [16], ElephantFS [19],
and CVFS [21] have been created to provide better con-
trol of the file system versioning semantic.

7 Conclusions

ISE-T applies the two-person control model to system
administration. In administration, the two-person control
model requires two administrators to perform the same
administration act with equivalent results in order for the
administration changes to be allowed to affect the sys-
tem that is being modified. ISE-T creates multiple paral-

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 25

lel environments for the administrators to perform their
administration changes and then compares the results of
the administration changes for equivalence. When the
results are equivalent, there is a high assurance that sys-
tem administration faults have not been introduced into
the system, be they malicious or accidental in nature.

We have implemented an ISE-T Linux prototype that
creates parallel administration environments where sep-
arate administrators can perform changes, while not hav-
ing administration rights on the machine itself. Our re-
sults from a user study demonstrate that many common
administration tasks will result in equivalence when per-
formed by isolated administrators without any commu-
nication between them. This demonstrates that the two-
person control model can be applied to system adminis-
tration by simply analyzing the results of the file system
changes that occur in the environments created for the
two administrators.

Acknowledgements

Paul Anderson, Andrew Hume, our paper shepherds, and
Matthew Barr provided many helpful comments on ear-
lier drafts of this paper, especially in the area of config-
uration management. This work was supported in part
by NSF grants CNS-0426623, CNS-0717544, and CNS-
0914845,

References

[1] US DOD Joint Publication 1-02, DOD Dictio-
nary of Military and Associated Terms (as amended
through 9 June 2004).

[2] P. Anderson. LCFG: A Practical Tool for System
Configuration. Usenix Association, 2008.

[3] A. B. Carter, J. D. Steinbruner, and C. A. Zraket,
editors. Managing Nuclear Operations. The
Brookings Institution, Washington, DC, 1987.

[4] D. D. Clark and D. R. Wilson. A Comparison of
Commercial and Military Computer Security Poli-
cies. IEEE Symposium on Security and Privacy,
0:184, 1987.

[5] Commission for Review of FBI Security Programs,
William Webster, chair. Webster Report: A Review
of FBI Security Programs, Mar. 2002.

[6] D.S. Crosta, M. J. Singleton, and B. A. Kuperman.
Fighting Institutional Memory Loss: The Trackle
Integrated Issue and Solution Tracking System. In
Proceedings of the 20th Large Installation Sys-
tem Administration (LISA 2006) Conference, pages
287-298, Washington, DC, Dec. 2006.

(7]

(8]

(9]

[10]
[11]

[12]
[13]

[14]

(18]

[16]

[17]

[18]

[19]

Digital Equipment Corporation.
guide, Jan. 1980.

Tops-20 user’s

M. S. Elmaleh. Nonprofit fraud prevention.
http://www.understand-accounting.
net/Nonprofitfraudprevention.html,
2007.

D. Hanks. Sudosh. http://sourceforge.
net/projects/sudosh/.

J. Heller. Catch-22. Simon and Schuster, 1961.

S. loannidis, S. M. Bellovin, and J. Smith. Sub-
operating Systems: A New Approach to Appli-
cation Security. In SIGOPS European Workshop,
Sept. 2002.

P. Karger. Personal Communication, May 2009.

P. A. Karger and R. R. Schell. MULTICS Security
Evaluation: Vulnerability Analysis. Technical Re-
port ESD-TR-74-193, Mitre Corp, Bedford, MA,
June 1977.

O. Laadan, R. Baratto, D. Phung, S. Potter, and
J. Nieh. DejaView: A Personal Virtual Computer
Recorder. In Proceedings of the 21" ACM Sympo-
sium on Operating Systems Principles (SOSP), Oct.
2007.

K. McCoy. VMS File System Internals.
Press, 1990.

Digital

K. Muniswamy-Reddy, C. P. Wright, A. Himmer,
and E. Zadok. A Versatile and User-Oriented Ver-
sioning File System. In Proceedings of the Third
USENIX Conference on File and Storage Technolo-
gies (FAST 2004), pages 115-128, San Francisco,
CA, Mar./Apr. 2004. USENIX Association.

R. Pike, D. L. Presotto, K. Thompson, and
H. Trickey. Plan 9 from Bell Labs. In Proceedings
of the Summer 1990 UKUUG Conference, pages 1-
9, London, UK, July 1990. UKUUG.

D. Price and A. Tucker. Solaris Zones: Operat-
ing System Support for Consolidating Commercial
Workloads. In Proceedings of the 18th Large In-
stallation System Administration Conference, Nov.
2004.

D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C.
Veitch, R. W. Carton, and J. Ofir. Deciding When to
Forget in the Elephant File System. In Proceedings
of the 17th ACM Symposium on Operating Systems
Principles (SOSP), Dec. 1999.

26

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

[20] S. Soltesz, H. Potzl, M. e. Fiuczynski, A. Bavier, [24] VMware, Inc. http://www.vmware .com.
and L. Peterson. Container-Based Operating Sys- _ .
tem Virtualization: A Scalable, High-Performance ~ [22] Wilshire State Bank. Safe deposit boxes.

Alternative to Hypervisors. SIGOPS Operating https://ww.wilshirebank.com/
System Review, 41(3):275-287, 2007. public/additional_safedeposit.asp,
2008.

[21] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and))
G. R. Ganger. Metadata Efficiency in a Compre- ~ [26] D. Wise. ~ Spy: The Inside Story of how the
hensive Versioning File System. In Proceedings of FBI’s Robert Hanssen Betrayed America. Random

the 2nd USENIX Conference on File and Storage House, 2002.
Technologies, Mar. 2003 [27] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.

[22] P. Steinand P. Feaver. Assuring Control of Nuclear Quigley, E. Zadok, and M. N. Zubair. \ersa-
Weapons. University Press of America, 1987. tility and Unix Semantics in Namespace Unifica-
[23] J. S. Tolliver. Compartmented Mode Worksation ESE.ZOAOES:M Transactions on Storage, 2(1):1-32,

(CMW) Comparisons. In Proceedings of the 17th
DOE Computer Security Group Training Confer-
ence, Milwaukee, Wi, May 1995.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 27

The Water Fountain vs. the Fire Hose: An Examination and

Comparison of Two Large Enterprise Mail Service Migrations
Craig Stacey, Max Trefonides, Tim Kendall, Brian Finley
Argonne National Laboratory

Abstract

Mail administrators will inevitably face a situation where they will need to migrate their users from one server to
another, not infrequently migrating to a different service altogether. In 2008, two divisions of Argonne National
Laboratory found themselves needing to migrate their users from disparate divisional mail servers to a central, insti-
tutional Zimbra Collaboration Server. Each group approached the situation from a different direction, driven by
different motivations, timelines, and external forces; each ultimately achieved its goal, one more smoothly than the
other. The first migration was driven by a high sense of urgency resulting in a “fire hose” approach, an en masse
move followed by a grand switchover; the second migration was a more measured “water fountain” approach, taking
in lessons learned during the first migration. Examining the processes, decisions, and tools used in each conversion
yields a roadmap of successes and pitfalls that should prove useful to any systems administrators facing a similar
task, regardless of the timeline within which they must work.

1. Overview

Argonne National Laboratory is served by a central IT
services division, the Computing and Information Sys-
tems (CIS) division. As well, many of the program-
matic divisions have their own IT staffs of varying
sizes. This paper focuses on the work of the IT support
groups from two of those divisions, the Mathematics
and Computer Science division (MCS) and the Materi-
als Science Division (MSD).

CIS offers services, including e-mail, to any of the divi-
sions at Argonne. Until 2008, this e-mail service was
provided solely as Microsoft Exchange. In mid-2008,
Argonne began offering a choice between Exchange
and Zimbra Collaboration Suite.

Prior to this migration project, both MCS and MSD ran
their own e-mail services rather than using the central
mail services for varying reasons that will be detailed
below. MCS and MSD each maintains its own IT sup-
port groups, providing a number of services besides e-
mail. Diagrams detailing the flow of mail to these divi-
sions both before and after this migration are included
in the appendices.

MCS consists of nearly 200 researchers, programmers,
students, and visitors, with another 250 external col-
laborators. The division is home to several hundred
workstations, three large clusters, and other high-
performance computing resources. Aside from manag-
ing this diverse group of resources, the group also pro-
vides standard IT services such as web, mail, data stor-

age, backup, and networking services. Management of
these resources and services is handled by a single IT
organization, the MCS Systems team, comprising 10
individuals with varying skill sets and specialties, as
well as anywhere from 1 to 4 undergraduate students
each summer, depending on workload and availability
of interesting projects.

MSD is the focal point for research in materials science
at Argonne National Laboratory and consists of over
200 researchers, students and staff. The MSD IT Op-
erations group supports this division, providing support
for over 200 workstation and several small clusters.
MSD IT Operations also provides standard IT services
similar to those provided by the MCS Systems team.
The IT Operations team comprises 3 full time employ-
ees and 2 part time co-op students.

2. Mathematics and Computer Science Di-
vision (The Fire Hose)

MCS ran its own mail services, with user mailboxes
provided by Cyrus IMAP on an AIX server with 6 TB
(available) of fibre channel attached storage, an installa-
tion that was set up in 1998. Approximately 500 user
mailboxes were active at the time of this migration,
with another 200 lying dormant as their owners for-
warded their mail elsewhere, totaling approximately
450 GB of mailbox data.

In this section, the process is described from the per-
spective of the MCS Systems team, with a summary of
the CIS perspective at the end.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 29

2.1. MCS Decision Process

The existing mail system was showing its age. In 2006,
MCS began the process of evaluating an upgrade path
for mail services. Ultimately, we decided to go with the
same approach we'd been using for the past § years;
mailbox services provided by Cyrus, though instead
using a Linux server since our AIX expertise was lack-
ing.

While we try to avoid these situations, an extended pe-
riod of limited funding, staffing changes, and an over-
committed IT staff resulted in systems and services
getting replaced only when they broke or failed to meet
the existing need. As this server was generally rock
solid, it was often overlooked, and its replacement was
not considered an urgent matter.

While testing and implementation plans were being put
into place, we became aware of a growing desire within
our user community for shared calendaring and other
collaboration tools. We entered into a joint trial of the
Zimbra Collaboration Server (ZCS) with CIS, with
MCS's focus being the calendaring component.

Several months later, the mail upgrade project was
stalled as a result of other emergencies; however, the
Zimbra pilot was going well. Realizing that the ZCS
service inherently provides mailbox services, we re-
evaluated our mail server upgrade plan.

Our decision to continue to provide our own mail serv-
ices was driven by a number of factors, but one of the
main motivators was that we needed to be in control of
the data and service. When something goes wrong, our
users expect us to be able to fix it, and fix it quickly.
The prospect of outsourcing our mail services and leav-
ing our IT staff unable to directly support it did not ap-
peal to either the IT staff or management. To an out-
sider, this may seem simply territorial, and there is cer-
tainly some truth to be found in that thinking.
However, historically, the relationship between the or-
ganizations that would become MCS and CIS had its
rough patches. MCS management preferred a nimble
set of services focused solely on advancing its research,
and many saw CIS as slow, bureaucratic, and control-
ling. Overcoming this prejudice was not an easy task,
but this seemed an opportune time to try.

By virtue of the fact that the Zimbra experiment in CIS
was in its pilot stage, coupled with the fact that MCS
was its largest user base, MCS systems administrators
were given administrative access to the service. After
confirming that this access would be continued in the

production-level service, we decided to make Zimbra
the mailbox service for the division.

We note that the scope of this migration was limited
specifically to user mailboxes. MCS was not going to
cease providing mail services; we still ran Majordomo-
based mailing lists (which would be converted to mail-
man lists later in the year), as well as trouble ticket sys-
tems for ourselves and other groups, and virtual domain
services. Therefore our solution needed to be able to
support our remaining the primary Mail Exchanger for
the domains we controlled, sending user-bound mail to
the central service. This Zimbra solution fit the bill
nicely.

Work on the conversion began in earnest as our mail
server was continuing to show its age. For instance, the
release of Mac OS 10.5 brought with it a new version of
Mail, which many of our users use. This new version
handled offline IMAP actions in a slightly different
fashion from previous versions, and it was a way that
seemed to cause our version of Cyrus IMAP to choke.
This resulted in repeated error messages to the users
and an ever-growing list of queued actions, as each
failure caused a new copy of the offline action to be
queued. As one can imagine, this situation got less and
less bearable as time went on. Additionally, large mail-
ings could bring the service to a crawl, and we were
entering into a time of year when drafts of proposals
would regularly be sent to large distribution lists.
While it may not be the most efficient way of collabo-
rating on a document, e-mailing Word and PowerPoint
documents is certainly the most prevalent method
among our users. Most significantly, as errors would
occur and failures became increasingly frequent with
the advancing age of the server, we felt we were in-
creasingly in danger of losing mail.

2.2. MCS Migration Plan and Implementa-
tion

Problems with our existing server notwithstanding, we
had what was fundamentally a simple problem — find a
way to move messages from one IMAP server to an-
other. We did a fair amount of research to locate the
existing tools that could accomplish this move, since
something of our own construction would likely be too
much effort for what should fundamentally be a solved
problem. Based on this web research, consensus in the
community seemed to be that using imapsync [Lamiral]
would be the most reliable method of accomplishing
this migration. Likewise, Zimbra’s own recommenda-
tions in migrating to a new server recommended this

30

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

path of action [Zimbra]. In using this tool, however, we
had to consider the limitations of our setup:

* The old mail server (cliff) was being pushed to
its limits already; therefore our migration
could not be too aggressive on the server.

* Because imapsync uses the IMAP protocol, it
requires us to know the users’ passwords on
both systems. While we could set their pass-
words on the new Zimbra server, since they
were not yet using it, we could not know their
passwords on the existing IMAP server, as it
was NIS-bound and using their regular work-
station passwords.

We circumvented the first problem by limiting our-
selves to two concurrent syncs — testing indicated this
was an acceptable load. The password problem was
more complex, but our situation allowed us to employ a
creative workaround. Because our mail server was NIS-
bound, we attempted to use a local /etc/passwd entry on
the machine, allowing us to login with our system
password, and allowing the users to login with their
NIS passwords as a fallback. Alas, this did not work on
our version of AIX, but it did give us the idea that
solved the problem. We could create entries for a
“ghost” user on the mail server with the same UID and
path as the real user that used our system password. At
the same time, our script would modify the flat mail-
boxes file that Cyrus used to map mailboxes.

After testing confirmed our scripts were doing the right
things, we ran the migration process day and night over
a period of weeks. Various pitfalls were encountered
along the way because of a number of situations our
testing did not predict, such as disks filling up, net-
works going down, and previously undetected corrup-
tion in mailboxes.

Throughout the entire migration process, this corruption
in mailboxes posed a significant challenge, as there was
no predictable method to discover the corruption until
we tried traversing the mailbox structure and reading
individual messages; indeed, the messages appeared to
be normal in any index of a mailbox, and the problems
appeared only when the messages would be read. The
most common corruption seemed to be in the oldest
mailboxes; indeed, some employees had mail archives
dating back into the late 1990s. While this in and of
itself should not have caused a problem, the errors
seemed to be caused by the varied (and no doubt inter-
esting) lives these messages led. Some originated on
the precursor to the mail system we were replacing

(Sun OS 4.14’s Mail with Sendmail and qpopper).
These messages were stored in a monolithic mbox file,
POPped off the server by the user into their e-mail cli-
ent of choice, then later reimported into the Cyrus
server via IMAP. Our most plausible theory is that
changes in header format and attachment handling is
what caused Cyrus to fail on loading these messages, as
almost all of the corrupt messages were messages from
Exchange users with attachments. These messages
would have to be removed from the inbox by hand.
Happily, while the IMAP clients seemed to fail on
transferring or reading the messages, they were gener-
ally capable of deleting the messages; only a small
handful of messages required a file-level delete and
mailbox reindex.

Ultimately, it became clear that the IMAP-only method
of syncing was not going to solve this problem; it was
simply too slow. Connections were timing out on large
mailboxes, resulting in incomplete data syncs. Also, the
problems on cliff were steadily getting worse, and it
became clear we needed an aggressive schedule for the
migration. We came to the realization that our beloved-
yet-overworked “little engine that could” was on the
verge of switching from “I think I can” to “I think I'm
done.” As such, the slow-and-steady approach was
beginning to look like it was a bigger risk than charging
forward. It was the end of February, and an organiza-
tion-wide maintenance window was scheduled for the
weekend of April 26 and 27. We chose this weekend
for the migration as most services would be down al-
ready, and users would expect a loss of service over
that weekend.

Our second pass at moving the data involved getting the
raw mailbox data onto the new server via rsync, using
Zimbra’s command line tools on the server to import
the data into user mailboxes, and then using imapsync
to synchronize the flags on the mailboxes with their
counterparts on the old server.

To ensure we did not bring the main Zimbra server’s
network to a crawl during our data sync, we synced to a
development server with the intention of mounting the
disk on the production server for the import. As is be-
coming evident to the reader, things rarely worked out
the way we planned them, and this was no exception.
The initial sync of the data took an excruciatingly long
time, though we were hopeful the import into the pro-
duction server would be a much quicker operation,
since the slowness of cliff would be out of the equation.
Alas, the nature of the SAN defeated us; it turned out
both the rsync and the mailbox import were I/O bound,

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 31

and our development server’s SAN was not as robust as
the primary storage on the production server.

Our self-imposed April 26 deadline was fast approach-
ing, and our progress was indicating we would probably
finish the initial data sync the day before we were to
switch over. The IMAP syncs were alphabetical by user
name, and this estimate was based on progress through-
out the alphabetical list of usernames. Astute readers
should be able to predict the next pitfall we hit — our
largest mailbox was one of the last ones alphabetically.
On average, our user mailboxes were several hundred
megabytes, with users rarely crossing into the gigabyte
range. This particular user had a mailbox of over 20
GB. We realized we would have to handle this mailbox
out of band if we were to meet our deadline, and we
started syncing it and other large mailboxes concur-
rently, outside the automated process.

On the morning of April 26, it was evident that the sync
would not be finished. Because the outage window had
already been announced, we plowed ahead and at-
tempted to finish the migration, figuring a day for the
heavy work and all of Sunday to finish and tie up loose
ends.

We turned off all incoming mail and started the final
sync of user mailboxes with imapsync, which would
capture any messages that arrived since the initial sync,
along with setting the message flags for the users. This
script ran throughout the day as we set up the new rules
on our SMTP relays to direct mail to the correct serv-
ers. Because the old mail server would still be process-
ing Majordomo mailing lists, we had to detect whether
mail was for a user or mailing list and route it accord-
ingly. By Saturday night, things seemed to be progress-
ing well, and our spot checks on mailboxes looked
okay, except message flags did not seem to be getting
set correctly.

On Sunday, it became clear what was going wrong; the
“ghost” user on the old server had full access to the
user’s mailboxes but did not share the message flags,
and all messages were seen as “new”. (We later sur-
mised that even though there was a single copy of each
Cyrus indexing file per mailbox, that file was storing a
set of flags for each username that accessed the mail-
box, as opposed to each UID; thus, all messages were
“New” to the ghost user.) Because the mail system was
now down, we uncoupled cliff from NIS and used only
the local /etc/passwd file, allowing us to use the user’s
real mailbox with our system password. This strategy
solved the message flag issue, but we became aware of
another issue. The script calling imapsync was sup-

posed to be nondestructive; messages deleted on the old
server should not be deleted on the new server. Because
of a misreading of the configuration, however, this was
not the case, and messages were being purged from the
new mailboxes in some cases. In theory, such purging
should not have mattered. However, perceptive readers
will remember we flipped the switch on delivery of new
messages on Saturday morning. Hence, any new mail
delivered to the new mailbox was being deleted as soon
as that user’s sync was run.

Also, because of mailbox corruption on the old server, a
handful of users had their mailboxes emptied on the
new server. We needed to reconstruct these mailboxes
from backups, or in some “friendly user” cases (i.e.,
fellow sysadmins), the users restored their own mail-
boxes from their local backups.

The migration was not yet complete, but users were
getting anxious. By 7:00 Sunday evening, users whose
accounts we had deemed to be fully migrated were al-
lowed into their new mailboxes. Surprisingly, this did
not go poorly. In fact, the feedback we received during
this “early access” period helped us in later diagnoses.
From what we were hearing, we could determine that in
most cases, where the user’s mailboxes were small, the
migration was a success. However, for users with large
or complexly organized mailboxes, it became apparent
rather quickly that the migration was not complete. En-
tire years’ worth of mail were missing from the mail-
boxes of some users who kept large archives.

By Monday morning, it was clear we had much more
work to do to finish the migration. We announced to
the users that we had reason to suspect the migrated
mailboxes were not complete and that we would instead
implement an approach whereby new mail continued
arriving at the new mail server, and users would mi-
grate their own mail via their mail clients, with help
from the IT support staff where required.

This manual user-initiated sync took place over the next
two months in a gradual process, with most users being
completely migrated by mid-May. In part we were able
to accomplish this migration by announcing that the old
server would be shut down at the end of May. As
someone wise beyond his years once said, “Announce
the demise of the old [system] well in advance of really
discontinuing it” [Evard94].

In the cases of users with large or deeply nested folder
hierarchies, we engaged in a great deal of “hand-
holding” to guide them through the process. Unfortu-
nately, these users tended to be among the less technical

32

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

savvy in the division, and as such the workload in that
handholding was significant. Also, as outlined below,
some mailboxes could not be migrated at all without
some server-side tweaks.

We emphasize that the MCS users were marvelously
patient throughout this process. Indeed, a key in main-
taining this level of patience was proper communica-
tion. As noted in Tom Limoncelli’s AT&T Network
migration, a high level of communication and status
updates will make the users feel more a part of the
process (and less a victim of it) [Limoncelli97].

2.3. MICS Pitfalls and Lessons Learned

With each approach we devised, the plan seemed fool-
proof on paper, and at each step of the way, something
popped up proving us wrong. The list of things that
went wrong reads like a proof of “Murphy’s law.”

The combination of imapsync and our aging mail server
were incapable of moving the mailboxes. In fact,
IMAP itself had great difficulty in handing some of the
user mailboxes. Often, users would archive mail into
folders they would never again look at. As these fold-
ers grew in the number of messages contained therein,
some reached a size that would make it impossible to
access them over an IMAP client; as the old mail server
struggled to stat the files, the connection would time
out. To get around this situation, we would manually
break up the mailboxes into smaller folders, reindex the
folder, and begin anew.

The rsync of the mailbox data was restarted numerous
times because of failing disks, high CPU loads, and
network outages. In some cases these syncs had been
running uninterrupted for days before crashing. With
each restart, we lost precious time as file systems were
compared.

The misconfiguration of imapsync in our migration
script was a significant pitfall. By using imapsync in-
correctly and losing messages, we undid a significant
portion of the work that was accomplished. Human
error is going to happen in any venture driven by hu-
mans and can be easily compounded by late, stress-
filled nights that follow long, stress-filled days. In
short, a simple typo of a flag was a devastating blow to
both our progress and morale. A second set of eyes on
these scripts would have gone a long way toward solv-
ing this problem.

Numerous restarts in various parts of this project
plagued us. In the period between January 3 and April

25, we started from “square one” five times after a pre-
vious plan of action proved unworkable. Instead of hav-
ing 4 months to migrate, we effectively had 2 weeks.
This time constraint ramped up our stress levels, know-
ing that delaying the move could only exacerbate the
situation, living in fear of the old mail server falling
over.

All of the work we did to move the data from the old
server to the new server was ultimately abandoned.
This was, perhaps, the hardest blow to our collective
psyche. The “brass ring” throughout this process was
our knowing we’d done all the heavy lifting for our
users, and they’d not have to deal with the migration
themselves. Instead, not only did we go through a tre-
mendous effort, but it was for naught.

Because a significant source of angst in this process
was the lack of documentation, we continue to ensure
we do not run into this in the future. Much of the old
system was simply undocumented, existing only in the
head of the previous mail administrator — clearly not a
sustainable method of operating. We have ramped up
our efforts in documenting processes and configura-
tions, and we’ve ensured that more administrators are
involved in the operation and configuration of the serv-
ers, avoiding the single-point-of-knowledge problem
we typically faced.

The biggest contributing factor to our problems with
this migration was related to the age of the hardware,
operating system, and software of our production mail
server. Combined with poor documentation, this left us
with an aging mail system that for years had generally
performed well with little intervention, and nothing but
fading institutional memory on how to repair or tweak
it. And, as is the case with any stable rock in a dy-
namic ecosystem, it had acquired roots and tendrils
embedded in it that we are to this day still trying to dis-
engage.

As noted in Section 2.1, the root cause of the age of this
system was its generally working as expected during a
period of time where only “squeaky wheels” got the oil.
Economizing on hardware by holding off upgrades can
often seem prudent, and sometimes unavoidable, but it
almost certainly leads to an inflated TCO in the longer
run. Tallying the amount of work hours involved in
extricating a long used and encrusted system from a
reasonably complex environment would be an interest-
ing exercise. Following a long-term plan for regular
retirement and refreshing of hardware would have gone
a long way toward mitigating much of our problems.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 33

A technical factor in this process was the Cyrus IMAP
mailbox database. This monolithic flat text, single-file
database used by the version of Cyrus IMAP that we
were running proved to both hamper and help our mi-
gration. We were hampered because the file was frag-
ile, had a rigid format dependent on tabs, spaces, and
sorting (requiring a different sorting than provided by
AIX’s sort command), and was prone to corrupt the
mail stream when things went wrong. It helped because
we had an easily scriptable way to insert the systems
users in order to be able to get access to the users' mail-
boxes, by ensuring the “ghost user” was either the first
or last alphabetically (i.e. “aaaaaaaa” and “zzzzz777”).

In Section 2, we mentioned that we had 500 active ac-
counts and an additional 200 that were later determined
to be dormant, resulting in our moving 40% more users
than we needed to. We gave thought to indentifying the
unused mailboxes prior to migration, so as to avoid the
work of moving users who no longer existed. A small
amount of effort was put to this task, but we soon called
it off as we discovered most of these users had very
small mailboxes, and weeding them out from the proc-
ess would be more work than simply migrating every-
one wholesale. With a slower approach, it’s more
likely we would have taken the time to cull these un-
used accounts prior to a move — it was largely a deci-
sion based on the time left and the level of effort avail-
able.

We point out that, over time, our account and resource
expiration policies have been disabling and deleting
these mailboxes, and almost all have been removed
with little work on our behalf.

The next time we have to perform a migration of mail-
boxes, we’ll be far more likely to employ the process
we ended up using after all other plans failed. We
would choose a cutover date when all new mail will be
delivered to the new server, and allow users to migrate
their own mail with help from IT support before an
announced deadline wherein the old mail server would
be shut off.

While we certainly engaged in testing, we failed to
properly identify the edge cases. In some cases we
chose what we expected to be difficult mailboxes on
which to audition new migration methods, yet we had a
knack for choosing examples that, while certainly large
and well aged, were problem free. A better sampling
for our testing would have gone a long way to identify-
ing many of the pitfalls in advance of our migration
deadline.

When coming up with our migration plan, CIS recom-
mended we employ a more staged rollout. We opted to
go “all-in” as we did not feel we had the luxury of the
time required to engage in such a migration. Of course,
the irony of this situation is the mail server we were
convinced was going to fall over at any moment stayed
up through the manual migration process. In fact, it
was finally retired in August of 2009.

It’s also important to consider that our group tries to
make things as seamless for our users as possible, and
all of our research indicated we would be able to ac-
complish this migration with little to no user impact.
Aside from updating their mail client configurations,
the only change our users were supposed to notice was
a faster and more reliable mail service. We have cer-
tainly learned that this was too lofty a goal in the given
circumstances.

2.4. CIS Challenges and Participation in the
MCS Migration

From the CIS perspective, Zimbra had been very suc-
cessful as a pilot service, but we had no true experience
running Zimbra as a production service, or with any
significant data or user load. Going from a dozen giga-
bytes of mail to trying to appropriately scale the system
to instantly take on roughly half a terabyte of mail data
and 500 users was a cause of some concern, and a bit of
a challenge.

Zimbra allows for separation of disk volumes for per-
formance and cost reasons. CIS provisioned the pro-
duction system with separate volumes for redo logs,
primary mail store, and secondary mail store, among
others. Mail flow into the system, including messages
added via IMAP, first land in the redo logs, then the
primary mail store. A weekly scheduled Zimbra HSM
process then migrates old mail from the primary mail
store to the larger secondary mail store on lower-
performance, less expensive disk.

One unanticipated effect of the “fire hose” approach
was the need to closely monitor volume consumption
on these separate volumes; in particular the redo log
and primary mail store volumes, neither of which was
intended to be able to completely contain the amount of
data being transferred during the MCS migration.

As the redo log volume filled up, it was necessary to
manually invoke an incremental backup using Zimbra's
self-backup facility. The Zimbra self-backup facility
allows for atomic point in time restores, and does so by
replaying appropriate bits from the redo-logs, which it

34

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

copies to a backup volume during incremental backups.
As the primary mail store filled up, it was necessary to
preemptively invoke the Zimbra HSM facility. Fortu-
nately, message age persisted in the migrated mail,
therefore allowing this process to work.

The HSM process, as the solution to the primary mail
store filling up, was fairly easy to identify. It just made
sense, we already understood how it worked, and had
intended it for this purpose, just not on this schedule.
On the other hand, we had no prior experience with the
redo logs growing out of hand. Previously, the already
scheduled daily incremental backups automatically
handled them, so we had no prior need to pay them any
notice — it just worked. This is a good example of the
challenges of accurately modeling behavior of a system
at scale in a small or simulated environment.

CIS wasn't too concerned about high load placed on the
Zimbra server during the MCS migration, as they were
the first production user base to migrate. In other
words, if the migration caused performance issues, they
would be affecting only themselves. This was a luxury
that future groups making the migration would not be
able to have.

3. Materials Science Division (The Water
Fountain)

MSD ran an iPlanet mail server on a Sun server with
approximately 120 mailboxes including service ac-
counts. A majority of the mailboxes were active at the
time of migration, as MSD had been doing some house
cleaning to keep adequate free space. At the start of
migration there were over 190 GB of mail.

In this section, the migration process is described from
the perspective of the MSD IT Operation group.

3.1. MSD Decision Process

The current MSD IT operations staff had inherited an
aging Sun e-mail server that was getting more costly to
maintain. Maintenance contracts and the cost of adding
additional storage were cost prohibitive because of the
age of the server. Additionally, as the existing server
had been installed and operated by administrators no
longer with the division, there was a lack of expertise
with this install.

MSD IT Operations was relatively new department to
MSD, as IT support had been handled by an Argonne
division that had been dissolved. Despite having a new
IT staff, the division had inherited an aging IT infra-

structure built and maintained by another group. Be-
cause of this older infrastructure MSD wanted to ex-
plore the possibility of using the CIS e-mail systems,
yet we were apprehensive about relinquishing control.
The division is accustomed to having its services run by
a support group whose only responsibility is their own
division. Bearing this in mind, we did give some con-
sideration to bringing a new e-mail server online. But
since we had so many other infrastructure problems to
deal with, we felt the benefit far outweighed the conse-
quences of migrating e-mail services to CIS. Addition-
ally, using CIS e-mail gave us the advantage of using
Argonne’s central Active Directory authentication, as
MSD users were tired of having several different
authentication methods.

Since MSD had a large Mac OS user base, moving to
CIS Exchange servers was not our first choice because
of the various issues Mac OS users can have with con-
necting to Exchange. (Historically, the laboratory’s
Exchange server did not interact well with Entourage.
This problem was solved after our migration was fin-
ished.) At this time we became aware of the CIS Zim-
bra pilot project and started a dialog with CIS and MCS
regarding migrating to Zimbra. After MSD completed
initial testing and conversations with both the Zimbra
lead and the MCS lead, MSD joined MCS on the Zim-
bra pilot test. This was in the early spring of 2008, but
unfortunately several other more urgent projects needed
attention, delaying the start of planning of the migration
until late July 2008. It was during this pilot test that
MCS performed its migration. After the process was
complete, the MSD administrators met with our MCS
colleagues to discuss their process.

Since other commitments by IT staff had delayed work
on the migration, we, too, started to feel a sense of ur-
gency. We had two factors influencing our deadline;
our maintenance contract on the Sun server was expir-
ing in late 2008, and our SSL certificate would expire
shortly after that. MSD did not want to incur the cost
of renewing either of them, knowing the service was
bound for decommissioning. Also, during a recent di-
visional review, there were many large e-mail attach-
ments going back and forth among the users, resulting
in one weekend where mail delivery came to a near
standstill because of lack of storage space. Even after
the review, it was a struggle to keep 10 GB free on the
mail store.

Because divisional administrative support staff and
senior management need to collaborate with others in
the laboratory, a decision was made to migrate these

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 35

users to the central Exchange server. Otherwise, all
MSD users were to be migrated to the Zimbra server.

3.2. The Plan and the Pitfalls

Once we decided to use Zimbra as our primary server,
new employees received accounts on the Zimbra serv-
ice. Initially this was limited to postdocs, since Ar-
gonne’s Zimbra service was still technically in the pilot
phase. With the installation of ZCS 5.0, it was officially
moved to production status, and we started adding all
new employees’ mailboxes to the Zimbra server. This
relieved some of the storage issues on the current MSD
mail server, allowing MSD IT operations to work out
the remainder of the migration planning without quite
so much urgency.

MSD looked at using imapsync; but after meeting with
MCS and discussing the problems they had with it, do-
ing an all-at-once approach was ruled out. Among the
several reasons not to use imapsync was the need to
know the user’s password; MSD would not have access
to user’s AD account password for the Zimbra e-mail
accounts. Furthermore, from a general customer satis-
faction perspective, doing one user at a time was far
more appealing, as we could start with a few users and
test the migration process, hammering out any issues.
Other reasons included the experience of some of our
IT staff with e-mail migrations from previous positions
at other organizations that employed expensive third
party tools to perform a behind the scenes migration.
Based on this experience, MSD IT knew we would
most likely end up touching every workstation anyway.

The process we settled on was a new feature available
in Zimbra, the import component of the web interface.
We used this tool because it off-loaded the migration
from the client to the server. Thus, the migration proc-
ess did not tie up the user’s workstation during the
move, which was especially beneficial when dealing
with older machines or a large mailbox migration.
Since the Zimbra Web Client (ZWC) allowed users to
add and check external POP and IMAP accounts, we
had the user log into the ZWC and add the user’s old
MSD account. This approach caused the Zimbra server
to import all the user’s mail completely as a server-side
action, regardless of whether the user is logged in on
the ZWC. During the mail import MSD changed the
primary e-mail alias to point to the Zimbra server. Once
the account had fully loaded in the web interface, we
then moved and arranged the folders or contents of
folders to the Zimbra account’s mailbox tree to mirror
the old MSD folder structure. Once completed, we de-

leted the old account from the ZWC and set up the
user’s e-mail client to access the new account.

During the migration MSD encountered some users that
were off-site a vast majority of the time. To assist these
users, MSD wrote up documentation on how to do their
own migration. Additionally, some users preferred to
do their own migration because it provided an opportu-
nity to cleanup their e-mail.

After MSD started doing several migrations a day, the
Zimbra server started to slow tremendously, affecting
other division as well. Migrations were halted while the
Zimbra team investigated. After finding the root cause
was Zimbra’s indexing of attachments, we decided to
turn off this feature for the time being. With attachment
indexing off, migrations were much faster, even with
heavy e-mail users (5 GB+ mail boxes), and there was
no impact on other users’ experience with the system.
This issue did not arise during the MCS migration, be-
cause no other users were interactively using the service
during their migration, so the high machine load was
not noticed.

Rather than simply moving alphabetically through the
mailboxes, scheduling was done with some considera-
tion to the user’s mailbox size: we started with the
smaller mailboxes to make sure the process was work-
ing. Once the process was established and server con-
cerns were addressed, we based the schedule primarily
on the user’s convenience. We scheduled it in batches
and tried to get as many done in one batch as possible.

With any migration like this, one must address setting
user expectations accurately on access to the old data.
MSD established a policy that a user’s old e-mail ac-
count would remain accessible for 7 days after the mi-
gration but only through the web interface. After 7 days
the password on the mail account was changed; after 30
days the account was deleted from the server. This pol-
icy was largely adhered to except in some instances
requiring us to set up access to an old MSD mailbox
because something was not migrated or we missed
changing an e-mail alias.

Another hurdle was some users were having e-mail
addressed to the fully qualified divisional e-mail ad-
dress (user@division.anl.gov) instead of the main Ar-
gonne alias (user@anl.gov). In the setup that existed at
the time, any mail sent to user@msd.anl.gov would be
directed to Argonne’s mail gateway, then handed off to
our own mail server; and as long as that server was still
in the migration process, that setup had to be main-
tained. Since migrated users simply had their @anl.gov

36

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

alias directed to their new Zimbra mailbox, they would
not experience this problem, but these users who had
distributed their internal MSD address needed their old
e-mail account kept active longer while they alerted
their senders and mailing lists. Other difficulties were
the occasionally corrupted e-mail message on the old
MSD mail server, as this would stop the Zimbra mail
import. Once the corrupted e-mail message was deleted,
the mail import would function as expected.

As a side-benefit of this migration, it allowed us to per-
form some account cleanup. MSD identified users who
had retired but were still using their MSD mail account,
as well as users who were forwarding their mail to out-
side services, a discouraged-but-within-policy practice.

We used the mail migration as an opportune time to
update many systems to the latest versions of their e-
mail client and web browser. For consistency purposes
we used the Firefox web browser to perform the migra-
tion, but in this process we found some users still were
using Firefox 1.0, a long-outdated version.

3.3. MSD Pitfalls and Lessons Leaned

MSD IT, with the insight gained by the MCS migration
experience, was able to create a more controlled migra-
tion process. Our biggest hurdle was sticking to the
plan: specifically, scheduling each user, keeping track
of migrations, and following through with all users.
Adhering to this last step proved problematic, because,
once we had all but a few the users migrated, we let
other issues take priority and the last of the migrations
took a back seat. Unlike MCS, we thought our e-mail
server running with a light load would last awhile. De-
spite our migration going generally smoother than
MCS’s, we were not immune to the assumption that
would be proven quite demonstrably wrong.

Of this handful of accounts on the old server, most were
service accounts, not used by any particular user.
However, we did have two user accounts left. One was
a former division director who proved difficult to
schedule. Since he was moving to Exchange, his migra-
tion required more coordination with CIS, as their Ex-
change administrators would need to assist in the mi-
gration. We also had a user we thought had been mi-
grated to another division’s e-mail server because he
had been transferred to that division, but who turned out
to still be using our old server. At the time we were
getting ready to start migrating these account, our aging
(and now unsupported) Sun server crashed in spring
2009. Since another division was involved, we com-
bined efforts to bring the server back up. But the server

had experienced nearly catastrophic failure; the data
drives were intact, but we had no access to them with-
out spending considerable time and money.

Fortunately, the former division director had a local
cached copy of most of his e-mail, and we were able to
use this for the migration. Unfortunately, the other user
accidently deleted his locally cached copy, and we were
unable to recover all of his older e-mail. We are still
exploring our options for recovery, but the server is still
offline. We quickly recreated most of the service ac-
counts, but we are still finding some as we continue to
review mail logs.

We’ve learned to follow through on our tasks and see
them to completion. Also, we will do a better job con-
firming that work we think is done actually is done.
Moreover, documentation can be improved, and prop-
erly documenting which service accounts we’ve created
and what they’re used for will help us a great deal down
the road.

3.4. CIS Challenges and Participation in the
MSD Migration

From the CIS perspective, the MSD migration was
much more straightforward than the MCS migration.
MSD engaged CIS early in their process. Based on ex-
perience gained from the MCS migration, and new fea-
tures available in Zimbra that MCS helped explore and
test, CIS was able to work with MSD to create a migra-
tion plan that worked well for them and minimized the
impact on the Zimbra service and on MSD by spreading
the migration out over time.

Both MCS and MSD handled their own migrations,
engaging CIS when necessary. After the initial planning
phases, the MSD migration was much more hands off
for CIS. The one exception was the attachment index-
ing issue mentioned above.

CIS imposes no limits on mailboxes in our Exchange
and Zimbra services and allows individual messages as
large as 100 MB. Some of the components of mail sys-
tems work well with smallish messages but exhibit
strain when processing large messages. At the time of
the MSD migration, the attachment indexing process
was a multithreaded Java process that had issues han-
dling large attachment sizes. The net result was a dra-
matic increase in load on the system, both for CPU and
disk, resulting in the Zimbra server being so slow it was
almost unusable. Upon identifying the offending proc-
ess, we disabled attachment indexing via a simple
check box in the Zimbra admin GUI, and migrations

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 37

were able to resume. We note, for Zimbra's sake, that
there is a new facility that can be selected for attach-
ment indexing that is proving to better handle large
attachments, and is resulting in a consistently lower
system load.

4. Conclusions

Hindsight is, of course, 20/20, and one can easily look
at both migrations and conclude that it’s obvious what
to do and what to avoid. Of course, every situation is
different, and a careful examination of what went
wrong and why can often lead to insights on how to
avoid similar pitfalls when one is pushed down a simi-
lar path. In this section, we look at what each of the
divisions took away from the process, having seen the
results from each other’s migration.

4.1. MCS

In many ways, performing an e-mail migration like this
is not unlike performing a number of other types of
migrations in the IT world, whether it’s physically
moving a datacenter, or implementing a new network
topology, or deploying a new authentication scheme. In
other ways, however, they can be vastly different, and
it’s in recognizing these differences that we can make
better choices. Outside influences, customer demands,
and occasionally the laws of physics can get in the way
of how we expect things to play out.

MCS would obviously opt for a more measured ap-
proach in future migrations. The plan employed by
MSD holds great appeal; however, two important fac-
tors exist. First, this option was not available on the
version of Zimbra the lab was running at the time of our
migration. Second, testing on our old mail server indi-
cated that this implementation would not have worked
for much the same reason imapsync failed; an aging
server combined with enormous mailboxes results in
timeouts and dropped connections.

Instead, time permitting, a well-documented and user-
driven migration would be our likely course of action
when undertaking a migration of this size. As in the
prior-cited Tenwen paper, we would build the new sys-
tem separate from the old one, move the users’ delivery
to the new system, and help them move their old data to
it on their own schedule, within the constraints of our
ability to maintain and run that old system. After a
well-publicized and finite period of time, we would
decommission the old system [Evard94].

As a service organization, it is always an admirable
goal to inconvenience one’s users as little as possible,
but there are situations, such as this, where it’s simply
not attainable. A side benefit of a user-driven migration
is an increased likelihood that users will be more selec-
tive as to which data must be maintained — our users
can be notoriously bad at pruning unneeded data, result-
ing in just the sort of bloat that led to some of the issues
we faced.

However, time is not always flexible, and when faced
with an immovable deadline, one sometimes has no
alternative but to jump in with both feet and try to solve
the problem to the best of one’s ability. If one abso-
lutely had to do a migration like this, our implementa-
tion plan could have worked with better parameters,
though it would by no means be the preferred solution.
Certainly, a longer outage window and fewer false
starts would have helped, but significant user input
would still be required because of the corruption in the
data being moved. Aggressive scanning of the mail-
boxes using IMAP tools could have identified these
problems well in advance and allowed us to repair or
remove the troublesome data well in advance. Like-
wise, we could have front-loaded the heavy work by
migrating the heaviest users first, rather than the easily
scriptable alphabetical method. Indeed, when it became
evident that certain users had disproportionately large
mailboxes, we hand-started syncs on their mailboxes
outside the automated process.

We note that in no way were the pitfalls and encum-
brances the fault of the targeted mail server software or
the server itself. We believe we would have faced these
challenges regardless of the chosen path, largely be-
cause of the age of the existing mail server, and its in-
ability to handle the volume of mail we were moving.

4.2. MSD

MSD’s biggest issue was with actually completing the
project. This left us with several loose ends we needed
to deal with in crisis mode when the Sun server
crashed, as opposed to a controlled shutdown of the old
server.

The server crash notwithstanding, MSD would defi-
nitely use the same basic method again if faced with
another similar migration, albeit with better follow-
through. This user-centric migration allowed a lot of
buy-in from the most important IT customer — the end
user. It reduced the potential lost productivity of the
scientist if a one-shot migration had been done. It was
labor intensive for MSD IT Operations, but the benefit

38

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

of reaching out to the user on an individual basis re-
duced call volume and follow-up issues. Also, we were
able to resolve most issues in a timely manner, instead
of trying to deal with several dozen users at once.

4.3. Avoiding Disaster

Many papers have been written describing IT moves,
including the already cited [Evard94, Limoncelli97], as
well as [Schimmel93, Cha98], dealing with moves and
migrations both physical and virtual. Every move is
different; each comes with its own pitfalls. Every time a
group undertakes a project of such magnitude, there
exists the opportunity to achieve both fantastic suc-
cesses and extraordinary failures. The right steps taken
beforehand can tip the scales more in favor of the for-
mer. Included in the appendices is the premigration
checklist that we can now construct from our experi-
ences, and would have dearly loved to have read prior
to beginning the project.

Author Biographies

Craig Stacey is a full time computer geek, part time
stand-up comic, aspiring photographer and writer, pas-
sionate beer enthusiast, and frequent wearer of pants.
He is also the IT manager for the Mathematics and
Computer Science Division at Argonne National Labo-
ratory and longs to spend more time doing system ad-
ministration and less time doing paperwork. His e-mail
address is stace@mcs.anl.gov, and he is fond of mon-
keys and robots.

Adam Max Trefonides has been a UNIX Systems Ad-
ministrator for many years. Prior to holding his current
position as a senior systems administrator in the
Mathematics and Computer Science Division at Ar-
gonne National Lab he was responsible for the team
that, among many other duties, took care of the central
e-mail systems at the University of Chicago, (in other
words e-mail was his fault). Prior to working for the
computers he was a cross-country trucker, carpenter,
welder, sculptor and unemployment recipient. He main-
tains his trucker license for when the Internet fad ends.
His e-mail address is maxadam@mcs.anl.gov.

Tim Kendall is a systems administrator and the primary
Mac specialist in the Materials Science Division at Ar-
gonne National Laboratory. He loves Science Fiction of
all types and was a professional photographer for 18
years before switching to IT. He helps run the Two

Way Street Coffee House that has been in operation
since 1970 presenting live folk music every Friday
night. His e-mail address is tkendall@anl.gov.

Brian Elliott Finley is the deputy manager of Unix,
storage, and operations for the Computing and Informa-
tion Systems division at Argonne National Laboratory
and is the lead on the Argonne Zimbra project. He
holds a number of technical certifications and has cre-
ated, maintained, or otherwise contributed to several
open source software projects, including SystemImager
and WiFi Radar. Mr. Finley lives in Naperville, IL, US
with his wife, four children, one large dog, and a toad.
He can be reached at finley @anl.gov.

Acknowledgments

This work was supported by the Office of Advanced
Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-ACO02-
06CH11357.

References

[Cha98] Lloyd Cha et al., “What to Do When the Lease
Expires: A Moving Experience,” in Proceedings of the
Twelfth Systems Administration Conference (LISA
"98), pp- 168-174, Boston, MA, 1998

[Evard94] Rémy Evard, “Tenwen: The Re-engineering
of a Computing Environment,” in 1994 LISA Proceed-
ings, pp. 37-46, San Diego, CA, 1994

[Lamiral] imapsync, Gilles Lamiral
http://www linux-france.org/prj/imapsync/

(developer),

[Limoncelli97] Tom Limoncelli, “Creating a Network
for Lucent Bell Labs Research South,” in 11th Systems
Administration Conference (LISA '97) Proceedings, pp.
123-140, San Diego, CA, 1997

[Schimmel93] John Schimmel, “A Case Study on
Moves and Mergers”, in Seventh System Administra-
tion Conference (LISA ’93), pp. 93-98, Monteray, CA,
1993

[Zimbra] Zimbra Wiki, “Mail Migration instructions,”
http://wiki.zimbra.com/index.php?title=Mail_Migration

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 39

Appendix: Suggested Premigration checklist

As noted in Section 4.3, this is the checklist MCS should have used, constructed from the experi-
ences gained from not using such a checklist.

Two months prior to migration

1. Inform users of the migration plan. Encourage data clean-up. Make clear and obvious the
date the new service will begin.

2. Ensure user mailboxes are free of corruption. Aggressively scan mailboxes for errors us-
ing IMAP protocols. Instruct users on methods to test for problem mailboxes, including
deleting problem messages.

3. Archive inactive mailboxes, and take them offline.

4. Compare list of active mailboxes with log files to identify users who are not logging in to
check mail. Flag potentially inactive accounts, attempt to notify owners.

5. Identify exceptionally large mailboxes and work with owners to identify actual user
needs and expectations — perhaps the mail client is configured to never empty the trash,
for example.

One month prior to migration

Repeat items 1 through 5.

Go over potentially inactive account list from step 4, identify those actually inactive (eg,
owner unreachable), and archive them.

Identify all accounts to be migrated, and create them on new server.

Ensure new account creation process is creating mailboxes on existing server and new
server.

10. Hold training session with users demonstrating migration procedure.

Lex AR

One week prior to migration

11. Repeat items 1 through 5.

12. Ensure all accounts to be migrated are ready for service.

13. Hold another training session demonstrating migration procedure.

14. Ensure adequate availability for IT staff on migration day and the days that follow.

15. Post mail client configuration instructions so users can be ready for the switch. Adjust
centrally managed mail client configurations.

One day prior to migration

16. Reiterate new service date very publicly. Post signs, and website announcements, send e-
mails.

17. Ensure configuration instructions for mail clients are trivially available, trivially locat-
able, and correct.

18. Re-ensure IT staff availability.

Migration day

19. Buy lunch for the IT staff.
20. Implement migration plan.

40

LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Appendix: MCS Migration Scripts and Configuration Files

imapsyncbatch.sh - used to launch imap sync sessions between cliff and Zimbra, this file lived
on a third host named “owney” as cliff’s SSL implementation was too old to open encrypted
IMAP sessions to the Zimbra server. This is the version that contains the errant “-- delete2” that
resulted in deletions from the Zimbra folders. stagel.mcs.anl.gov was the temporary hostname
for the Zimbra mailboxes during migration.

#!/bin/bash

USER1="zzzzzzzz"

USER2=$1@stagel.mcs.anl.gov
HOST1=cliff.mcs.anl.gov

HOST2=zimbra.anl.gov

DATE="date "+%Y-%m-%d_ %H:%M:%S""
EXCLUDE="Trash|Viral"

SPLIT1=20

PASSl=/root/migration scripts/cpass
PASS2=/root/migration scripts/zpass
logfile=/sandbox/zzzzzzzz/log/S$l-imapsync.log

userlog=/sandbox/zzzzzzzz/log/imapsync.log

cd /sandbox/zzzzzzzz/tmp
echo ‘pwd® >> $logfile
Begin IMAPSync

echo "" >> S$logfile

echo "----------————- " >> $logfile
echo "IMAPSync started for $1 SDATE" >> $logfile

echo "" >> Suserlog

echo "----------————- " >> Suserlog

echo "IMAPSync started for $1 SDATE" >> Suserlog
echo "Settings: Excluding: SEXCLUDE, $SPLIT1 messages per" >> $logfile
echo "" >> S$logfile

echo "Starting $USER2 at S$DATE" >> S$logfile
echo "" >> S$logfile

imapsync \

--nosyncacls --syncinternaldates \

--nofoldersizes \

--splitl $SPLIT1 \

--exclude $EXCLUDE \

--hostl $HOSTI1 \

--userl $USERI \

--passfilel S$PASS1 \

--portl 993 \

--host2 $HOST2 \

--user2 S$USER2 \

--passfile2 S$PASS2 \

--port2 993 \

--ssll \

--ssl2 \

--noauthmd5 \

--delete2 \

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 41

--buffersize 8192000 \

--regextrans?2 's/"Journal$/Journal-old/i' \
--regextrans?2 's/”Briefcase$/Briefcase-old/i' \
--regextrans?2 's/”Calendar$/Calendar-old/i' \
--regextrans2 's/”“Contacts$/Contacts-old/i"' \
--regextrans2 's/”Notes$/Notes-old/i' \

>> $logfile

echo "$DATE Finished $USER2" >> S$logfile

echo "" >> $logfile

need some sanity checks here?

echo "" >> $logfile

echo "IMAPSync Finished for $1 S$DATE" >> $logfile

echo "--—--"--"------- " >> $logfile
echo "" >> Suserlog

echo "-—--—---mmm oo " >> Suserlog

echo "IMAPSync Finished for $1 S$DATE" >> Suserlog

linker-forward.sh - used to create /var/imap/mailboxes file on cliff with ghost users. This ver-
sion traverses the alphabet from a to z, linking the user being synced with the ghost user
“aaaaaaaa.” The script needed to maintain the sorting and whitespaces contained within the
existing file. As noted at the bottom, this script directly calls the above “imapsyncbatch.sh” on
owney via an SSH session. The end of that SSH session allows this script to increment to the next
user. A similar script, linker-reverse.sh, performed a similar job, albeit from 7 to a, linking the
user being synced to the “zzzzzzzz” ghost user.

#!/bin/ksh -x

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

/root/migration scripts/linker-forward.sh
created by maxadam@mcs.anl.gov 3/2008
modified by stace@mcs.anl.gov 4/2008

with input from many quarters

This script prepares cliff for migrating a user to zimbra.
It is designed to work in tandem with linker-reverse.sh,

to add parallelprocessing.

What it does:

Generates the userlist

Moves a link to a commented version of /etc/inetd.conf in
place and refreshes imapd in order to halt any new imap
connections.

Cleans the aaaaaaaa user out of the /var/imap/mailboxes file
and copies the file to a working copy

Creates the symlink for the aaaaaaaa user that points to the
mail directory

Backs up the mailboxes file, appending the current username
Copies the modified mailboxes file into place

Re-enables imap

Runs imapsyncbatch on owney with S$Suser as the single argument

over ssh

log=/var/log/linker-forward.log

lock=/root/migration scripts/locked

if

[! -f $log]1; then

42

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

touch $log

fi
for 1 in “grep user /var/imap/mailboxes | awk '{print $1}' | awk -F . '{print $2}'| sort -u |
egrep -v “aaaaaaaa | egrep -v “zzzzzzzz ; do
while [-f $lock]; do
sleep 20
done

touch $lock
inetdpid="ps -ef | grep '[ilnetd' | awk '{ print $2 }'°

echo "“date "+%Y-%h-%d@%H:%M:%S"" Linking mailboxes for user ${i} to zzzzzzzz" >> $log
if [! -f "/etc/inetd.conf.off"™] 2>&1 >> $log; then
echo "/etc/inetd.conf.off does not exist or is not an ordinary file! exiting." >> $log
exit 1
elif [! -f "/etc/inetd.conf.on"] 2>&1 >> $log; then
echo "/etc/inetd.conf.on does not exist or is not an ordinary file! exiting." >> $log
exit 1
elif [! -L "/etc/inetd.conf"™] 2>&l1 >> $log; then
echo "/etc/inetd.conf is not a symlink or does not exist! Exiting." >> $log
exit 2
else echo " 'date "+%Y-%h-%d@%H:%M:%$S"" Halting imapd" >> $log

rm /etc/inetd.conf
In -sf /etc/inetd.conf.off /etc/inetd.conf
kill -HUP $inetdpid

echo "'date "+%Y-%h-%d@%H:%M:%S"" imapd halted" >> $log
cp /var/imap/mailboxes /var/imap/mailboxes.backup-forward
fi
echo " 'date "+%Y-%h-%d@%H:%M:%S"" Making links for ${i}" >> $log
egrep -v “user.zzzzzzzz /var/imap/mailboxes > /var/imap/mailboxes-f.${i}
egrep "default S{i} " /var/imap/mailboxes | \
sed s/"user.${i}/user.zzzzzzzz/ | \
sed s/"default S{i} "/"default 22222227 "/ >> /var/imap/mailboxes-f.${i}
if [! -s /var/imap/mailboxes-f.${i}] ; then
echo "“date "+%Y-%h-%dE%H:%$M:%S"" Abort, empty mailboxes file" >> $log

rm /etc/inetd.conf
In -sf /etc/inetd.conf.on /etc/inetd.conf
kill -HUP $inetdpid

exit 3

rm -f /var/spool/imap/user/zzzzzzzz
1n -sf /var/spool/imap/user/${i} \
/var/spool/imap/user/zzzzzzzz
if ! /bin/ls -1 /var/spool/imap/user/zzzzzzzz | grep ${i} 2>&1 >> $log ; then
echo "'date "+%Y-%h-%d@%H:%M:%S"" Abort, link bad" >> $log
rm /etc/inetd.conf
In -sf /etc/inetd.conf.on /etc/inetd.conf
kill -HUP $inetdpid

exit 4
fi
echo "'‘date "+%Y-%h-%d@%H:%M:%S"" Links made" >> $log
echo " 'date "+%Y-%h-%dQ@%H:¥M:%S"" Copying mailboxes-f.${i} to mailboxes" >> $log
if [-s /var/imap/mailboxes-f.${i}] ; then
cp /var/imap/mailboxes-f.${i} /var/imap/mailboxes
else

echo "“date "+%Y-%h-%d@%H:%$M:%S"" Abort, empty mailboxes file" >> $log

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 43

rm /etc/inetd.conf
In -sf /etc/inetd.conf.on /etc/inetd.conf
kill -HUP $inetdpid

exit 5

fi

echo " 'date "+%Y-%h-%d@%H:%M:%S"" Attempting to restart imapd" >> $log

if [! -f "/etc/inetd.conf.off"™] 2>&1 >> $log; then
echo "/etc/inetd.conf.off does not exist or is not an ordinary file! exiting." >> $log
exit 1

elif [! -f "/etc/inetd.conf.on"] 2>&l1 >> $log; then
echo "/etc/inetd.conf.on does not exist or is not an ordinary file! exiting." >> $log
exit 1

elif [! -L "/etc/inetd.conf"] 2>&l1 >> $log; then

echo "/etc/inetd.conf is not a symlink or does not exist! Exiting." >> $log

exit 2
else echo " 'date "+%Y-%h-%d@%H:%M:%$S"" Restarting imapd" >> $log
rm /etc/inetd.conf
In -sf /etc/inetd.conf.on /etc/inetd.conf

kill -HUP $inetdpid
echo " 'date "+%Y-%h-%d@%H:%M:%S""
fi

imapd restarted" >> $log

sleep 1

echo " 'date "+%Y-%h-%d@%H:%$M:%S""
rm $lock

ssh -t zzzzzzzz@owney.mcs.anl.gov /root/migration scripts/imapsyncbatch.sh ${i}

done

Starting imapsyncbatch for ${i} on owney" >> $log

/varlimap/mailboxes snippet - head and tail of the /var/imap/mailboxes generated by the scripts
above. Recall that, at the filesystem level, the ghost users’ spool directories would be symlinks to

the actual users’ directories.

user.aaaaaaaa default aaaaaaaa lrswipcda
user.aaaaaaaa.Quarantine default aaaaaaaa lrswipcda
user.aaaaaaaa.SPAM default aaaaaaaa lrswipcda
user.aaaaaaaa.Viral default aaaaaaaa lrswipcda
user.aaaaaaaa.sent-mail default aaaaaaaa lrswipcda
user.aammar default aammar lrswipcda

user.aammar.Drafts default aammar lrswipcda

[...]

user.zzhang default zzhang lrswipcda

user.zzhang.Drafts default zzhang lrswipcda
user.zzhang.Quarantine default zzhang lrswipcda
user.zzhang.SPAM default zzhang lrswipcda
user.zzhang.Trash default zzhang lrswipcda
user.zzhang.Viral default zzhang lrswipcda
user.zzhang.sent-mail default zzhang lrswipcda

USer.zzzzzzzz default zzzzzzzz lrswipcda
user.zzzzzzzz.Quarantine default zzzzzzzz lrswipcda
user.zzzzzzzzZ.SPAM default zzzzzzzz lrswipcda
user.zzzzzzzz.Viral default zzzzzzzz lrswipcda
user.zzzzzzzz.sent-mail default zzzzzzzz lrswipcda

44 LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

Appendix: Mail Routing Diagrams

Mail from
Internet

MCS Mail
relay/routing/
scanning
cluster

ANL Mail
relay cluster

MCS Mail and List
Server

Mail routing
cluster

Divisional Mail
servers

ANL List Server ANL Exchange

ANL Zimbra

Figure 1 - Mail flow before migration project

Mail from
Internet

MCS Mail
routing
cluster

ANL Mail
relay cluster

MCS List Server

Mail routing
cluster

Divisional Mail
servers

ANL List Server ANL Exchange

ANL Zimbra

Figure 2 - Mail flow after migration project

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference

Disclaimer — Non printing

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclu-
sive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of the Government.

46 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Crossbow Virtual Wire: Network in a Box

Sunay Tripathi, Nicolas Droux, Kais Belgaied, Shrikrishna Khare
Solaris Kernel Networking, Sun Microsystems, Inc.

Abstract

Project Crossbow in OpenSolaris is introducing new
abstractions that provide virtual network interface cards
(VNICs) and virtual switches that can have dedicated
hardware resources and bandwidth assigned to them.
Multiple VNICs can be assigned to OpenSolaris zones
to create virtual network machines (VNM) that provide
higher level networking functionality like virtual routing,
virtual load balancing, and so on. These components can
be combined to build an arbitrarily complex virtual net-
work called virtual wire (vWire) which can span one or
more physical machines. vWires on the same physical
network can be VLAN-separated and support dynamic
migration of virtual machines, which is an essential fea-
ture for hosting and cloud operators.

vWires can be reduced to a set of rules and objects
that can be easily modified or replicated. This ability is
useful for abstracting out the application from the hard-
ware and the network, and thus considerably facilitates
management and hardware upgrade.

The administrative model is simple yet powerful. It
allows administrators to validate their network architec-
ture, do performance and bottleneck analysis, and debug
existing problems in physical networks by replicating
them in virtual form within a box.

Keywords: Virtualization, Virtual Switches, VMs,
Xen, Zones, QoS, Networking, Crossbow, vWire,
VNICs, VNM.

1 Introduction

In recent years, virtualization[2][3][7] has become main-
stream. It allows the consolidation of multiple services
or hosts on smaller number of hardware nodes to gain
significant savings in terms of power consumption, man-
agement overhead, and data-center cabling. Virtualiza-
tion also provides the flexibility to quickly repartition

computing resources and redeploy applications based
on resource utilization and hardware availability. Re-
cently these concepts have enabled cloud computing[6]
to emerge as a new paradigm for the deployment of dis-
tributed applications in hosted data-centers.

The benefits of virtualization is not only in consoli-
dation and capacity management. With virtualization,
the operating environment can be abstracted[14][18] and
decoupled from the underlying hardware and physical
network topology. Such abstraction allows for easier
deployment, management, and hardware upgrades. As
such focus has shifted towards multiple forms of net-
work virtualization that do not impose a performance
penalty[23].

Project Crossbow in OpenSolaris offers high perfor-
mance VNICs to meet the networking needs of a vir-
tualized server that is sensitive to network latency and
throughput. Crossbow leverages advances in the network
interface cards (NICs) hardware by creating hardware
based VNICs which offer significantly less performance
penalties. The VNICs have configurable link speeds,
dedicated CPUs, and can be assigned VLAN tags, pri-
orities, and other data link properties. Crossbow also
provides virtual switches to help build a fully virtualized
layer-2 network.

The VNICs can be created over physical NICs, link
aggregations for high availability, or pseudo NICs to
allow the administrator to build virtual switches inde-
pendently from any hardware. Networking functionality
such as routing and packet filtering can be encapsulated
in a virtual machine or zone with dedicated VNICs to
form virtual network machines. These virtual network
machines can be deployed on virtual networks to pro-
vide layer-2 and layer-3 networking services, replacing
physical routers, firewalls, load balancers, and so on.

With all the virtualized components Crossbow pro-
vides, an administrator can build an arbitrarily complex
virtualized network based on the application needs and
decouple it from the underlying physical network. The

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 47

resulting virtual network is called virtual wire. The
vWire can be abstracted as a set of rules such as band-
width limits, and objects such as VNICs and virtual
switches, that can be combined, modified, or duplicated
with ease and instantiated on any hardware. Crossbow
allows migrating not just the virtual machine but entire
virtualized network.

The functionality provided by Crossbow is part of the
core OpenSolaris implementation, and does not require
add-on products or packages.

In this paper we describe the main components of the
Crossbow architecture from the perspective of a system
and network administrator. We will introduce the new
system and networking entities that are used for virtu-
alizing the networking resources and for controlling the
QoS at various granularities. We describe these entities
with an emphasis on the simplified administration model
by showing how they can be used as independent fea-
tures, or as building blocks for the creation of vWires.
In the examples section, we explore how Crossbow basic
components can be used to build fully functional virtual-
ized networks and new ways to do QoS. System admin-
istrators can also use the vWire to create a Network in
a box to do performance, functionality, and bottleneck
analysis.

2 Issues In Existing Models

The current methods of network virtualization are based
on VLANS that are typically configured on the switches.
This model is not very flexible if a VLAN tag is assigned
to a virtual machine and the virtual machine needs to be
migrated due to resource utilization needs. An adminis-
trator needs to manually add the virtual machine’s VLAN
tag to the switch port corresponding to the target ma-
chine. Protocols such as GVRP[13] and MVRP[17] are
available for doing this dynamically. However, these pro-
tocols are not supported on a large number of switches.
The sharing of the common bandwidth between vir-
tual machines also becomes an issue[9], as the current
generation of switches offers fairness only on a per port
basis. If the same port is shared by multiple virtual ma-
chines, any one of those virtual machines can monopo-
lize usage of the underlying physical NIC resources and
bandwidth. Host-based fairness or policy based sharing
solutions impose significant performance penalties and
are really complex to administer. They typically involve
the creation of classes, the selection of queuing models,
jitters, bursts, traffic selectors, and so on, all of which
require an advanced knowledge of queuing theory.
Virtual networks that are created by using the existing
VLANSs and QoS mechanisms are prone to errors in the
event of configuration changes or workload changes. The
connectivity and performance testing is based on home

grown solutions and requires expensive hardware based
traffic analyzers. Often, there are heavy performance
penalties and non-repeatable performance that depends
on interactions with other virtual machines of different
virtual networks.

This document will show how Crossbow can move
VLAN separation and enforcement into the host and
allow virtual machines to migrate without requiring
changes to the physical network topology or switches. It
will also show how VNICs can be associated with a link
speed, CPUs, and NIC resources to efficiently and con-
veniently provide fair sharing of physical NICs. VNICs
and virtual switches can be combined to build virtual net-
works which can be observed and analyzed by using ad-
vanced operating system tools such as DTrace.

3 Crossbow Virtualization Components

This section discusses the various Crossbow components
that enable full virtualization, from virtualizing hardware
resources such as NICs to building scalable vWire and
network in a box.

3.1 Virtual NICs

‘When a host is virtualized, the virtual environment must
provide virtual machines (VMs) connectivity to the net-
work. One approach would be to dedicate one NIC to
each virtual machine. While assigning dedicated NICs
ensures the isolation of each VM’s traffic from one an-
other, this approach defeats one of the main purposes of
virtualization, which is to reduce cost from the sharing
of hardware. A more efficient and flexible option is to
virtualize the hardware NICs themselves so that they can
be shared among multiple VMs.

Crossbow provides the concept of the VNICs. A
VNIC is created on top of a physical NIC, and multiple
VNICs can share the same physical NIC. Each VNIC has
a MAC address and appears to the system as any other
NIC on the system. That is, VNICs can be configured
from the IP stack directly, or they can be assigned to vir-
tual machines or zones.

Crossbow can also assign dedicated hardware re-
sources to VNICs to form hardware lanes. Most mod-
ern NIC hardware implementations offer hardware clas-
sification capabilities[10][20][12] which allow traffic for
different MAC addresses, VLANSs, or more generic traf-
fic flows to be directed to groups of hardware rings or
DMA channels. The Crossbow technology leverages
these hardware capabilities by redirecting traffic to mul-
tiple VNICs in the hardware itself. The redistribution of
traffic reduces network network virtualization overhead
and provides better isolation between multiple VNICs
that share the same underlying NIC.

48

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

In Crossbow VNICs are implemented by the OpenSo-
laris network stack as a combination of the virtualized
MAC layer and a pseudo VNIC driver. The virtualized
MAC layer interfaces with network device drivers under
it, and provides a client interface for use by the network
stack, VNICs, and other layered software components.
The MAC layer also implements the virtual switching
capabilities that are described in Section 3.3. The VNIC
driver is a pseudo driver and works closely with the MAC
layer to expose pseudo devices that can be managed by
the rest of the OS as a regular NIC.

For best performance, the MAC layer provides a pass-
through data-path for VNICs. This pass-through allows
packets to be sent and received by VNICs clients with-
out going through a bump-in-the-stack, and thus min-
imize the performance cost of virtualization. To as-
sess the performance impact of VNICs, we measured
the bi-directional throughput on a testbed consisting of
5 clients firing packets at a single receiver (quad-core,
2.8GHz, Intel-based machine) through a 10 Gigabit Eth-
ernet switch. The measured performance of a VNIC with
dedicated hardware lanes was the same as the perfor-
mance of the physical NIC with no virtualization[24].

A side-effect of that architecture is that it is not pos-
sible to directly create VNICs over VNICs, although
VNICs can be created on top of other VNICs indirectly
from different OS instances.

Crossbow VNICs have their own dedicated MAC ad-
dresses and as such, they behave just like any other phys-
ical NIC in the system. If assigned to a virtual machine or
zone, the VNIC enables that virtual machine to be reach-
able just like any other node in the network.

There are multiple ways to assign a MAC address to a
VNIC:

Factory MAC address: some modern NICs such as
Sun’s 10 Gigabit Ethernet adapter[20] come from
the factory with multiple MAC addresses values al-
located from the vendor’s MAC address organiza-
tionally unique identifier (OUI). VNICs can be as-
signed one of these MAC addresses if they are pro-
vided by the underlying NIC.

Random MAC address: A random MAC address can
be assigned to a VNIC. The administrator can ei-
ther specify a fixed prefix or use the default prefix.
Crossbow will randomly generate the least signifi-
cant bits of the address. Note that after a random
MAC address is associated with a VNIC, Crossbow
makes that association persistent across reboots of
the host OS. To avoid conflicts between randomly
generated MAC addresses and those of physical
NICs, the default prefix uses an IEEE OUI with
the local bit set. There is currently no guarantee
that a randomly generated MAC address does not

conflict with other MAC addresses on the network.
This functionality will be delivered as part of future
work.

Administratively set MAC Address: If the adminis-
trator manages the set of MAC addresses of the vir-
tual machines or zones, he/she can supply the com-
plete MAC address value to be assigned to a VNIC.

VNICs are managed by dladm(1M), which is the
command used to manage data links on OpenSolaris.
Section 4.1.1 describes in details VNIC administration
with the dladm (1M) command. A VNIC appears to
the rest of the system as a regular physical NIC. It
can be managed by other existing built-in tools such as
ifconfig (1M), or by third-party management tools.

VNICs have their own statistics to allow real time and
historical analysis of network traffic that traverse them.
Section 4.3 describes VNIC statistics and their analysis.

Last but not least, the traffic going through VNICs can
be observed by existing tools such as snoop (1M) . Cap-
turing packets going through VNICs is similar to observ-
ing the traffic on a physical switch port. That is, for a
particular VNIC, only the broadcast and multicast traffic
for the VLAN IDs associated with the VNIC, as well as
the unicast traffic for the VNIC MAC address, are visible
for observation.

3.2 Configurable Link Speeds

Transport protocol implementations will attempt to use
the bandwidth that is made available by the underlying
NIC[4]. Similarly, multiple VNICs defined on top of the
same underlying NIC share the bandwidth of that NIC.
Each VNIC will attempt to use as much as it can from
the link’s bandwidth. Various undesirable behaviors can
ensue from this situation:

e A transport or a service can be an active offender —
Some transport protocols are more aggressive than
others. For example a UDP sender will not throttle
its transmission rate even if the receiver cannot keep
up with the received traffic. On the other hand, pro-
tocols like TCP will slow the sender down if needed.
Such differences in behavior can lead to a VNIC
for UDP traffic consuming more of the underlying
bandwidth than other VNICs that are used for TCP.

e A client virtual machine can be a passive target of
an external attack — In a virtualized setup where
a hardware node is used to host virtual machines
of different customers, one or more of those cus-
tomers can become a victim of a denial of service
attack[15][16]. The virtual machine for one cus-
tomer can end up using most of the link’s capacity,

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 49

effectively diminishing the performance of all the
virtual machines that share the same NIC.

e Some VMs may have different bandwidth needs
than others — The bandwidth of a NIC should be par-
titioned between VNICs to satisfy the requirements
of the VMs. In some instances customers could be
charged a premium if a larger share of the band-
width is allocated to them. An uncontrolled or even
egalitarian sharing of the resources might not nec-
essarily be the desired behavior.

With the dladm(1M) command, Crossbow allows
the link speed of data links to be specified through link
properties. Configuring the link speed is the equivalent
of setting a maximum bandwidth limit on the data link.
This property can be configured explicitly by the admin-
istrator, or it can be set from the host OS of a virtualized
environment when the VNIC for a virtual machine is cre-
ated, as shown in Section 4.2 below.

3.3 Virtual Switching

When multiple VNICs are created on top of a physi-
cal NIC, the MAC layer automatically creates a virtual
switch on top of that NIC. All VNICs created on top of
the physical NIC are connected to that virtual switch.
The virtual switch provides the same semantics as a
physical switch. Figure 1 shows the mapping between
physical NICs and switches and their virtual equivalent
in Crossbow. Note that multiple VNICs can be created
on different physical NICs. In such cases, each physi-
cal NIC will be assigned its own virtual switch. Virtual
switches are independent, and there are no data paths be-
tween them by default.

3.3.1 Outbound Packet Processing

When a packet is sent by a client of a VNIC, the virtual
switch will classify the packet based on its destination
MAC address. The following actions are taken depend-
ing on the result of that classification:

e If the destination MAC address matches the MAC
address of another VNIC on top of the same physi-
cal NIC, the packet is passed directly to that VNIC
without leaving the host.

o If the MAC address is a broadcast MAC address, a
copy is sent to all VNICs created on top of the same
physical NIC, and a copy is sent on the wire through
the underlying NIC.

e If the MAC address is a multicast MAC address,
a copy of the packet is sent to all VNICs which
joined the corresponding MAC multicast group, and

1 1
| | | 1
! 1 i ! host1 host2
E host1 ! ! host2 E VM VM
Y W A W A 3

' N SR, S

i v . v i v v
| \ H !
i PNICT |1 || PNIC2 | VNIC1 | | VNIC2
! Lo !
\ 1 1

1 1

1 1

]]

1 1

1 1

]]

1 1

1 1

1 1

1 1

1 1

1 1

1 1

physical switch ! !
A : i :
S (R,]

1

\

switch switch

Figure 1: Mapping between physical and virtual switches

a copy is sent through the underlying NIC. The
MAC virtual switch maintain a list of multicast
membership for this purpose.

e If MAC destination is unknown, i.e. there is no en-
try for the MAC address in the layer-2 classification
table of the virtual switch, the packet is passed down
to the underlying physical NIC for transmission on
the wire.

3.3.2 Inbound Packet Processing

Packets received off the wire are first classified by the
NIC hardware according to the destination MAC address
of the packet. If there is a match after hardware clas-
sification, the NIC hardware deposits the packet in one
of the hardware rings associated with the MAC address.
The MAC address and VNIC that are associated with
that hardware ring is known to the host. Thus, when the
host picks up the packet from that ring, it can deliver the
packet to the correct VNIC network stack or virtual ma-
chine.

If the hardware classifier cannot find a dedicated hard-
ware ring for the destination MAC address of the incom-
ing packet, it deposits the packet in one of the dedicated
hardware default receive rings. The MAC layer performs
software classification on the packets received from these
default rings to find the destination VNIC.

3.4 Etherstubs

We have seen in Section 3.3 that Crossbow creates a vir-
tual switch between the VNICs sharing the same under-
lying physical NIC. As an alternative, VNICs can also

50

LISA "09: 23rd Large Installation System Administration Conference

USENIX Association

be created on top of etherstubs to create virtual switches
which are independent of any hardware. Etherstubs are
pseudo ethernet NICs and are managed by the system
administrator. After an etherstub is created, it can be
used instead of a physical NIC to create VNICs. The
MAC layer will then perform virtual switching between
the VNICs which share the same underlying etherstub.

Etherstubs and the MAC layer virtual switching allow
users to create virtual switches which are independent
from physical NICs. Whether the virtual switch is im-
plicitly created over a link (physical NIC or an aggrega-
tion), or explicitly built by an etherstub, all VNICs shar-
ing the same virtual switch are connected and can com-
municate with one another. Conversely, VNICs that are
not members of the same virtual switch are isolated from
each other. Figure 2 shows how virtual switching can be
used between VNICs with both physical NICs and ether-
stubs.

VNIC1 VNIC2 VNIC3 VNIC4
MAC virtual MAC virtual
switching switching

NIC etherstub
1 virtual switch

Figure 2: Virtual switching with physical NICs and
etherstubs

Multiple etherstubs can be created to construct multi-
ple virtual switches which can be combined to form flex-
ible virtual networks. Section 5.2 shows an example of
such an architecture.

3.5 VLANs

IEEE 802.1 VLANSs can be used to build isolated vir-
tual LANSs sharing the same underlying physical layer-2
network infrastructure. Each VLAN is associated with a
VLAN tag and defines its own broadcast domain. Hard-
ware switches allow the traffic of different VLANS to
be separated, and to associate switch ports with specific
VLAN tags.

The Crossbow virtual switching is VLAN-aware and
thus allows VLAN separation to extend to virtual
switches and VNICs. VNICs can be associated with a
VLAN identifier, or VID, which is used along with the
MAC address to classify traffic to VNICs. As it is the
case of physical switches, the Crossbow virtual switch

also implements per-VLAN broadcast domains. In other
words, tagged broadcast frames will be delivered only
to the VNICs that match the VLAN tag. From the per-
spectives of efficiency and security, the Crossbow VLAN
implementation provides two important features: it pre-
vents the unnecessary duplication of frames and it en-
sures that no leakage of frames to the wrong VLAN is
occurring.

Control of the VLAN handling is deliberately kept to
the MAC layer of the host OS (or global zone when ap-
plicable). When a VNIC is used by a guest VM, the VM
can only send and receive untagged traffic. The host’s
MAC layer inserts or strips the VLAN tag transparently.
It also ensures that the VM does not attempt to send
tagged packets. Thus, the VM cannot send packets on
a VLAN to which it does not belong.

3.6 High Availability and VNICs

In order to provide highly available network connectivity,
OpenSolaris supports availability at layer-2 and layer-3
by means of link aggregations and IPMP, respectively.

3.6.1 Layer-2: IEEE 802.3ad Link Aggregation

Link aggregations are formed by grouping multiple NICs
in a single pseudo NIC. Multiple connections are spread
through the NICs of the aggregation. Ports are taken out
of the aggregation if they are misconfigured or fail un-
expectedly. Failure detection is achieved by monitoring
the link state of aggregated NICs or by exchanging Link
Aggregation Control Protocol (LACP) control messages
at regular intervals.

In OpenSolaris, link aggregations are managed by us-
ing dladm (1M) and implemented by a pseudo driver
which registers with the system a pseudo NIC for each
configured link aggregation. Each instance of the pseudo
driver behaves like any other NIC on the system. As
such, the pseudo driver allows VNICs to be created on
top of link aggregations in the same manner that VNICs
can be created on top of physical NICs or etherstubs.
Figure 3 shows how two physical NICs can be aggre-
gated, virtualized, and shared transparently by two guest
domains.

The IEEE link aggregation standard assumes that an
aggregation is built between two entities on the network.
Typically these entities are switches and hosts. Unfor-
tunately, this standard does not allow an aggregation to
connect one host to multiple switches, which is a desir-
able configuration as a measure against possible switch
failure. Some switch vendors have provided extensions
called switch stacking that allow an aggregation to span
multiple switches. These extensions are transparent to
the peers that are connected to the switch stack.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 51

Figure 3: Using link aggregation to provide high-
availability and increased throughput to VNICs

domU domU
group group
VNIC VNIC VNIC VNIC
A A A 4
\ A \/ \ A A
VNIC VNIC VNIC VNIC
NIC A NICB
domO

Figure 4: Using IP multipathing from virtual machines
for high-availability

3.6.2 Layer-3: IP Multipathing

IP Multipathing, or IPMP[19], is a layer-3 high availabil-
ity feature. It allows multiple IP interfaces to be grouped
together, and provides load spreading and failover across
members of the group. IPMP provides link-based detec-
tion failure, and probe-based detection failure.

Since IPMP is at layer-3 above NIC virtualization,
VNICs cannot be created on IPMP groups and IPMP
high availability cannot be provided transparently to vir-
tual machines. Instead, VNICs can be created on each
physical NIC, and VNICs can be grouped within virtual
machines. Figure 4 shows how two NICs can be virtual-
ized and grouped within virtual machines. IPMP groups
are managed by using the i fconfig (1M) IP configu-
ration tool.

Note that link aggregation and IPMP can be combined.
For example, link aggregations can be used to group mul-

tiple NICs connected to the same switches, and IPMP can
be used to group multiple link aggregations.

3.7 Virtual Network Machines

Virtual NICs and virtual switching constructs are the
building blocks that allow more complex virtual net-
working topologies to be built within a host. The func-
tionality needed to implement typical networking de-
vices on a network, such as routers or firewalls, exists in
modern operating systems like OpenSolaris. Network-
ing devices can be therefore encapsulated within virtual
machines or OpenSolaris zones.

An OpenSolaris zone is a lightweight virtualization ar-
chitecture where the zone provides its own application
environment that is isolated from other zones[21]. Each
zone can be associated with a set of CPUs, data links
such as VNIC, memory cap, and so on. Zones share the
same kernel but each zone can have its own IP network
stack. This feature avoids overheads that are typically
associated with hypervisors. Because of their low over-
head, small memory footprint, and specific functionality
that does not require a full separate OS instance, zones
are particularly suited to implement virtual network de-
vices.

Virtual network machines refer to virtual machines
or zones which are dedicated to implementing specific
network functions. VNMs can be connected by assign-
ing them VNICs and connecting these VNICs to virtual
switches. Several types of network functions can be im-
plemented, such as routers, firewalls, load balancers, and
bridges. With Crossbow, essentially any layer-2 or layer-
3 network can be virtualized within a single host.

3.8 Traffic Flows

Crossbow flows allow bandwidth limits, CPUs, and pri-
orities to be associated with a subset of the network traf-
fic that traverses a NIC, link aggregation, or VNIC. Flow
attributes describe the traffic that is associated with the
flows. Attributes consist of information such as IP ad-
dresses, well known port numbers, protocol types, and
SO on.

Crossbow flows span the whole network stack from
the NIC hardware to sockets, and are associated with
their own kernel threads and available hardware re-
sources. Their specific associations make flows distinct
from one another. Consequently, after hardware classifi-
cation of incoming traffic is performed, traffic processing
of flows can be scheduled independently from each other
as well. With a setup that uses Crossbow, flows are bet-
ter isolated, the task of classification is assumed by the
hardware, and the network stack can control the arrival
of traffic into the host on a per-flow basis.

52

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

Flows also maintain their own statistics to allow an ad-
ministrator to track real-time statistics and usage history
not only of individual data links as a whole but also of
specific types of traffic the host receives or sends. Traffic
flows are described in more detail in[25].

4 Ease of Management

Crossbow provides management tools that are easy to
use to create VNICs, connect VNICs by using virtual
switches to build vWires, and configure networking re-
sources for these VNICs’ dedicated use. In addition,
statistics on traffic flows, both real time and historical,
provide the administrator the ability to monitor traffic at
a deeper granularity and thus better allocate networking
resources. This section describes the Crossbow tools to
perform these tasks.

4.1 Managing vWire

The vWire building blocks are managed through
the dladm(1M) command, the OpenSolaris data-link
management utility. ~ This section shows how the
dladm (1M) tool can be used to perform the following:

e Manage VNICs.

e Combine VNICs with etherstubs to build virtual
networks.

e Combine VNICs with link aggregations to provide
high availability and increased throughput to virtual
machines and zones.

4.1.1 NIC Virtualization

As seen in Section 3.1, VNICs can be used to virtu-
alize a data link. A VNIC is easily created with the
dladm(1M) create-vnic subcommand. The fol-
lowing example shows the creation of a VNIC called
vnicl00 on top of the physical NIC e1000g4.

dladm create-vnic -1 e€1000g4 vnicl00

In this case the administrator lets the system determine
the MAC address to be associated with the VNIC. Users
can choose any administratively meaningful name for the
data links (NICs, VNICs, aggregations, etherstubs, and
so on) as long as the name ends with a numeral. The
dladm(1M) show-vnic subcommand can be used
to display the VNIC configuration. For example:

dladm show-vnic -o LINK, OVER

LINK OVER

vniclO00 el000g4

dladm show-vnic -o LINK,MACADDRESS

LINK MACADDRESS

vnicl0O0 2:8:20:36:ed:5

dladm show-vnic -o LINK,OVER,MACADDRESS
LINK OVER MACADDRESS
vniclO0O0 el000g4 2:8:20:36:ed:5

The previous example shows how the —o option can
be used to specify the fields to be displayed for each
VNIC. If the —o option is omitted, then all attributes of
the VNICs will be displayed.

VNIC attributes such as the specified MAC ad-
dress to be associated with the VNIC can be specified
by the user as additional options of create-vnic.
Thedladm (1M) delete-vnic subcommand canbe
used to delete previously created VNICs from the sys-
tem. Of course, multiple VNICs can be created on top of
the same physical NIC.

After a VNIC is created, it appears to the rest of the
system as a regular data link and therefore can be man-
aged in the same way as other NICs. It can be plumbed
by the network stack directly as shown below, or as-
signed to a virtual machine as shown in Sections 4.2.1
and 4.2.2.

ifconfig vnicl00 plumb

ifconfig vnicl00 inet 10.20.20.1/24 up

ifconfig vnicl00

vnicl00: flags=1000843<UP, BROADCAST, ...
inet 10.20.20.1 netmask ffffff00
broadcast 10.20.20.255
ether 2:8:20:36:ed:5

4.1.2 Etherstubs

Etherstubs are constructs that can be used to build virtual
switches which are completely independent from phys-
ical NICs (see Section 3.4.) An etherstub can be used
instead of a physical NIC to create VNICs. The VNICs
sharing the same etherstub then appear to be connected
through a virtual switch.

In the following example, an etherstub vswitchO is
created, and then used to create three VNICs: vnicO,
vnicl, and vnic2.

dladm create—-etherstub vswitchO

dladm create-vnic -1 vswitchO wvnicO
dladm create-vnic -1 vswitchO wvnicl
dladm create-vnic -1 vswitchO vnic2

4.1.3 VLANSs

Section 3.5 described how VLANs can be seamlessly
integrated in the virtualization environment and used to
create multiple virtual networks on the same underlying
physical infrastructure. A VLAN can be easily associ-
ated with a VNIC during its creation.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 53

dladm create-vnic -1 e1000g0 \
-v 200 v1lan200vnicO
dladm create-vnic -1 €1000g0 \
-v 200 vlan200vnicl
dladm create-vnic -1 €1000g0 \
-v 300 v1lan300vnicO

dladm show-vnic -o LINK,MACADDRESS,VID

LINK MACADDRESS VID
vlan200vnic0O 2:8:20:d5:38:7 200
vlan200vnicl 2:8:20:69:8f:ab 200
v1an300vnicO 2:8:20:3a:79:3a 300

As shown in the previous example, multiple VNICs
can be created on top of the same physical NIC or ether-
stub with the same VID. In this case, the MAC layer vir-
tual switching isolates these VLANs from each other, but
will allow VNICs with the same VID to communicate to-
gether as if they were connected through a switch.

4.1.4 Link Aggregation

Link aggregations are also managed through the
dladm(1M) utility. A link aggregation can be easily
created as shown in the example below where an aggre-
gation called aggr0 consisting of two physical NICs,
e1000g2 and e1000g3 is created.

dladm create—-aggr -1 e1000g2 \
-1 e1000g3 aggr0

The resulting aggr0 is a regular data link on the sys-
tem. It can be configured using ifconfig (1M), or it
can be used to create VNICs which are then assigned to
zones or virtual machines. In the example below, two
VNICs are created on top of aggr0:

dladm create-vnic -1 aggrO vnic500
dladm create-vnic -1 aggr0 vnic501

4.1.5 Management Library

The dladm(1M) command is a thin CLI above the
OpenSolaris data link management library libdladm. The
bulk of the work is done by the library, while the com-
mand line tool implements the parsing and formatting
needed. The libdladm management library is also used
by other management tools, agents, and utilities.

4.1.6 Network Flows

Crossbow provides a new command £f1lowadm (1M) to
configure flows. As described in Section 3.8, flows can
be used from vWire to control and measure bandwidth
usage of finer grain traffic. The flowadm (1M) com-
mand takes as its arguments a data link name, traffic cri-
teria, priority, and desired bandwidth. Traffic criteria can

be specific protocols, protocol ports, or local or remote
IP addresses.

For example, a flow to match all UDP traffic passing
through NIC ixgbe0 can be created as follows:

flowadm add-flow -1 ixgbeO\
—-a transport=udp udp-flow

Each flow has associated properties specified by the
—p option. These properties can be used to define the
maximum bandwidth or priority for a flow. Properties
of existing flows can be changed without impacting the
flow’s defined criteria. By default, udp—£f1low uses the
bandwidth of the underlying NIC, which in the example
is 10 Gb/s. To change the bandwidth of udp—-flow to 3
Gb/s, issue the following command:

flowadm set-flowprop —-p maxbw=3G \
udp-flow

If no speed unit is specified, the maxbw property
unit is assumed to be in megabits per second (Mb/s).
Additionally, the flowadm(1M) show-flow and
show-flowprop subcommands can be used to display
flow configuration and properties respectively. Flows can
be deleted using the flowadm (1M) remove-flow
subcommand.

4.2 Resource partitioning and QoS

Configuring QoS policies often tends to be laborious. For
example, a typical policy might be to limit TCP traffic to
use a bandwidth of 1000 Mb/s. However, configuring
such a policy by using IPQoS in Solaris 10[19] or tc[5]
in Linux entails several complex steps such as defining
queuing disciplines, classes, filter rules, and the relation-
ships among all of them.

The subsections that follow use real life scenarios to
illustrate how Crossbow vastly simplifies QoS configu-
ration.

4.2.1 Zones

With Crossbow, limiting bandwidth for a zone is sim-
ple to perform. One just needs to create a virtual NIC
with the desired bandwidth and assign it to the zone. For
example, to limit the bandwidth of zone zonel to 100
Mb/s, first create a VNIC with the desired bandwidth:

dladm create-vnic —-p maxbw=100 \
-1 e1000g0 vnicl

When the zone is created, it can be given vnicl as its
network interface:

54

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

zonecfg -z zonel

zonecfg:zonel> add net
zonecfg:zonel:net> set physical=vnicl
zonecfg:zonel:net> end

Any traffic sent and received zonel through vnicl
will be limited to 100 Mb/s. The configuration steps are
a one time exercise. The configuration will be persistent
across the zone or the operating system reboot. Changing
the bandwidth limit at a later time can be achieved by
setting maxbw property of that VNIC to the new value.
Thus, to change bandwidth of zonel to 200 Mb/s, use
the following command syntax:

dladm set-linkprop -p maxbw=200 vnicl

One can query the VNIC property zone to determine
if the VNIC is assigned to any zone. Using the previ-
ous example, zone under the VALUE field indicates that
vnicl is a link that is being used by zonel.

dladm show-linkprop -p zone vnicl
LINK PROPERTY PERM VALUE
vnicl zone rw zonel

Plans are currently under consideration to configure
zones’ VNICs and their bandwidth limits directly by us-
ing zonecfg (1M) . Thus, VNICs with specific property
values can be created automatically when the zones are
booted.

4.2.2 Xen

When OpenSolaris is used as domO (host OS), Cross-
bow provides a simple mechanism to assign bandwidth
limits to domUs (VM guests). The configuration pro-
cess is similar to configuring bandwidth limits for zones.
A VNIC is created with the desired bandwidth limit, and
then supplied as an argument during domU creation. The
domU could be running OpenSolaris, Solaris 10, Linux,
Windows, or any other Xen supported guest. This pro-
cess is independent of the choice of the domU. The pro-
cedure is explained in detail as follows:

When a Xen domU is created, Crossbow implicitly
creates a VNIC and assigns it to the domU. To enforce
a bandwidth limit for a domU, first, explicitly create a
VNIC and assign it to domU during creation. Then, set
the bandwidth limit for the Xen domU by setting the
maxbw property of the VNIC.

For example, to limit the bandwidth of domU guest1
to 300Mb/s, the VNIC with the given bandwidth is first
created:

dladm create-vnic -p maxbw=300 \
-1 e1000g0 wvnicl

Then, to assign the newly configured VNIC to the Xen
domU as its network interface, include the following in
the domU’s template.xml configuration file. Use the
dladm(1M) show-vnic subcommand to display the
MAC address of vnicl.

<interface type='bridge’>

<source bridge='vnicl’/>

<mac address='vnicl’s mac address/>
<script path=’vif-dedicated’/>
</interface>

Finally, the domU is created as follows:
virsh create template.xml

Any traffic sent and received by the guest domain
through vnicl will be limited to 300 Mb/s. As with
zones, the bandwidth can be changed at a later time by
setting the maxbw property to the new value.

Plans are under consideration to configure bandwidth
limit for Xen domUs by using Xen configuration tools
suchas xm (1M) andvirt-install (1M).For exam-
ple, the virsh-attach interface command will take
the maximum bandwidth as an optional argument. The
specific bandwidth limit is then automatically applied to
the implicitly created VNIC when the domain is booted.

When using Linux as dom0, bandwidth control on
guests can be configured as follows:!

1. Associate a queuing discipline with a network inter-
face (tc qdisc).

2. Define classes with the desired bandwidth within
this queuing discipline (tc class).

3. Using the IP address of the guest OS’s interface, de-
fine a rule to classify an outgoing packet into one of
the defined classes (tc filter).

For example, the following set of commands issued
from dom0, would set bandwidth limits of 200 Mb/s and
300 Mb/s for each one of the domU instances, and re-
serve the remaining 500 Mb/s for dom0O’ use[8].

tc gdisc add dev pethO \
root handle 1: htb default 99

tc class add dev pethO \
parent 1: classid 1:1 htb rate 1000mbps \
burst 15k

tc class add dev peth0 parent 1:1 \

VAt the time of writing this paper, the latest Fedora release that
could host Xen guests was Fedora 8 (Fedora 9 and Fedora 10 cannot
host Xen guests). It supports a vif parameter ‘rate’to control band-
width limit. However, due to a bug (RedHat bug id 432411), we could
not evaluate that feature.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 55

classid 1:13 htb rate 200mbps burst 15k
tc class add dev peth0O parent 1:1 \
classid 1:14 htb rate 300mbps burst 15k
tc class add dev peth0O parent 1:1 \
classid 1:99 htb rate 500mbps burst 15k

iptables -t mangle -A POSTROUTING \
-p tcp -s 192.168.1.103 —-j CLASSIFY \
—-—-set-class 1:13
iptables -t mangle -A POSTROUTING \
-p tcp -s 192.168.1.104 -j CLASSIFY \
—-—-set-class 1:14
iptables -t mangle -A POSTROUTING \
-p tcp -s 192.168.1.111 -j CLASSIFY \
—-—-set-class 1:21

Note that the previous approach does not work well
when domUs obtain IP addresses by using DHCP. More-
over, domU users can circumvent the bandwidth limit en-
forcement by changing their IP address.

4.2.3 Traffic Flows

In the previous example, we restricted all traffic passing
through a Xen domU to 300 Mb/s. Suppose that we fur-
ther want to partition the available 300 Mb/s bandwidth
as follows: 100 Mb/s for all TCP traffic and the remain-
ing 200 Mb/s for all other traffic. Crossbow can achieve
this configuration by using flows:

flowadm add-flow -p maxbw=100 \
—-a transport=tcp -1 vnicl tcp-flowl

The concept of flows is applicable to non-virtualized
context as well. For example, a physical NIC can be
specified instead of a VNIC. Thus, Crossbow provides
a simple yet powerful way to administer bandwidth.

In contrast, configuring policies with iproute (8)
and tc (8) on Linux typically involves several steps,
For example:

tc gdisc add dev eth4 handle ffff: \
ingress

tc filter add dev eth4 parent ffff: \
protocol ip prio 20 \

u32 match ip protocol 6 Oxff \

police rate 1Gbit buffer 1M drop \
flowid :1

tc gdisc add dev eth4 root \
handle 1:0 cbg bandwidth 10Gbit \
avpkt 1000 cell 8

tc class add dev eth4 parent 1:0 \
classid 1:1 cbg bandwidth 10Gbit \
rate 10Gbit prio 8 \

allot 1514 cell 8 maxburst 20 \
avpkt 1000 bounded

tc class add dev eth4 parent 1:1 \
classid 1:3 cbg bandwidth 10Gbit
rate 1Gbit weight 0.1Gbit prio 5 \
allot 1514 cell 8 maxburst 20 \
avpkt 1000

—

tc class add dev eth4 parent 1:1
classid 1:4 cbg bandwidth 10Gbit
rate 9Gbit weight 0.9Gbit prio 5 \
allot 1514 cell 8 maxburst 20 \
avpkt 1000

—

tc gdisc add dev eth4 parent 1:3 \
handle 30: pfifo

tc gdisc add dev eth4 parent 1:4 \
handle 40: pfifo

tc filter add dev eth4 parent 1:0 \
protocol ip prio 1 u32 match ip \
protocol 6 0Oxff flowid 1:3

4.2.4 Flow Tradeoffs

The Crossbow design has traded off richness of flow at-
tributes for simplicity and performance. Crossbow has
departed from the traditional ways to specify QoS that
consists of the following steps:

e Definition of classes of services
e Addition of rules similar to those of packet filtering

e Description of the packets that are assigned to each
class

Instead, a flow is created by specifying its defining at-
tributes that constitute as the common criteria that pack-
ets should match in order to belong to that flow. Resource
controls policies, such as bandwidth constraints, prior-
ity and CPUs are viewed as mutable properties that can
be allotted to flows at creation time and can be modified
later.

Although flows can be created based on different at-
tributes such as IP addresses, subnets, transport, DSCP
marking, and port number, flows are defined based only
on one attribute at a time, not on a combination of multi-
ple attributes. Furthermore, only non overlapping flows
are allowed to co-exist over a data link. Any attempt to
create a flow that conflicts with an existing one fails. This
apparent limitation provides the advantage of keeping the
rule set that describes the flows inside the system unam-
biguous and order independent. A lookup for the flow

56

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

that matches a packet will always find the same flow, re-
gardless of the presence of other flows or the order in
which they were added.

4.3 Monitoring Network Statistics

Crossbow also provides a rich set of statistics for gaining
better insight into the behavior of the system. This sec-
tion describes the tools provided to observe these statis-
tics, and concludes with an example scenario to illustrate
how these tools can be combined with other commands
to diagnose and resolve a performance issue.

4.3.1 distat(1M) and flowstat(1M)

Crossbow statistics are provided on a per flow or data
link basis. They provide information such as the count of
packets received by polling and by interrupts, hardware
and software packet drops, distribution of load across
hardware lanes and so on. These statistics help to iden-
tify performance bottlenecks.

The current interface provides counts over a certain
interval. Future improvements will provide more sophis-
ticated aggregate level statistics such as percentage of
polled packets, minimum, maximum, and average queue
lengths over a specified time interval, and so on.

Crossbow introduces d1stat (1m) to print dynamic
traffic statistics for links. For example, the following
command prints the aggregate statistics for vnicl:

dlstat vnicl
LINK IPKTS IBYTES OPKTS
vnicl 9.9M 2.3G 4.8M

OBYTES
0.3G

To observe traffic exchange at 5-second interval, use
the following:

dlstat -i 5 vnicl

LINK IPKTS IBYTES OPKTS OBYTES
vnicl 1.5M 0.3G 0.6M 46 .9M
vnicl 2.2M 0.5 1.1M 73.3M

Apart from dynamic statistics, dlstat (1M) also
supports off-line viewing and analysis of statistics.
acctadm (1m) is used to enable logging network statis-
tics to a specific log file. The dlstat (1M) —u sub-
option can then operate on the log file to extract historical
network statistics. For example, the following command
will extract network statistics for vnicl from the spec-
ified time range from logfile.

dlstat -u -f logfile \
-s D1,shh:smm:sss —-e Dl,ehh:emm:ess vnicl

The output, if generated using -F gnuplot option,
could be directly fed to gnuplot to draw graphical us-
age information for vnicl.

To analyze detailed receiver side statistics such as poll
and interrupt packet counts as well as hardware and soft-
ware drops, do the following:

dlstat -r

LINK IBYTES INTRS POLLS HDRPS
el1000g0 2.1M 22.3K 78.0 0.0
ixgbe0 13.6G 0.8K 10.7M 0.0
vnicl 13.6G 0.8K 10.7M 0.0

To also analyze per hardware lane statistics, append
the —L option to the previous command. For example,
the following will show per hardware lane statistics for
each hardware lane that belongs to ixgbe0.

dlstat -r -L ixgbeO
LINK:LNE LTYP USEDBY IBYTES INTRS POLLS

ixgbe0:0 slne ixgbe0 13.6G 0.8K 0.0

ixgbel0:1 hlne ixgbe0 13.1G 0.8K 10.2M

ixgbel0:7 hlne ixgbe0 13.4G 0.8K 10.5M
While dlstat (1M) operates on data links,

flowsat (1M) is used for querying network statistics
for flows. For example, to display t cp—f1ow’s network
traffic statistics, do the following:

flowstat tcp-flow
FLOW LINK IBYTES OPKTS
tcp-flow vnicl 2.3G 4.8M

OBYTES
0.3G

Like dlstat (1M), flowstat (1M) also supports
logging network statistics by using the —u sub-option.

Both inbound and outbound traffic statistics are shown
by dlstat (1M) and and f1lowstat (1M). The band-
width limits apply to the combined bidirectional traffic,
which is the sum of incoming and outgoing packets over
time. Although we can observe the statistics for each di-
rection, we currently can’t set a different limit on each.

4.3.2 Example: Diagnosing a Scalability Issue

Consider a multi-processor system under heavy network
load that uses the NIC i xgbe0 and whose receiver side
network performance needs improvement. Suppose that
the output of d1lstat -r -L is satisfactory. That is,
after listing per-hardware lane packet and byte counts as
well as poll and interrupt counts, you observe that traffic
is evenly distributed across hardware lanes and that 95%
of packets are delivered by polling. You can then check
CPU utilization as follows:

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 57

e dlstat -r —-F ixgbeO gives the breakdown
of which CPUs are currently being used to process
packets received by ixgbe0.

e dladm show-linkprop -p cpus ixgbeO
displays the list of CPUs associated with the data
link.

e mpstat (1M) provides information about the uti-
lization of each CPU that is associated with
ixgbeO.

Suppose that the data indicates that all the CPUs that
are currently assigned to 1xgbe0 for packet processing
are fully utilized while other CPUs in the system are at an
idle or near-idle state. To dedicate a new list of CPUs for
ixgbe0’s use, the following command syntax is used:

dladm set-linkprop \
-p cpus=<list of cpus> ixgbel

5 Virtual Wire: Network in a Box

We have described so far the major components needed
for achieving network virtualization using convenient
and intuitive tools. We then showed how bandwidth and
computing resources can be awarded and controlled at a
fine granularity to data links and VNMs. We can now
use the VNMs, VNICs, etherstubs, along with the vir-
tual switching and resource control capabilities as the
building blocks to construct fully functional vWires of
arbitrarily complex topologies in a single or small set of
machines. The three scenarios below are examples of
vWires used for consolidation of subnet and enterprise
networks and for planning of horizontal scaling.

5.1 Example 1 — Seamlessly Consolidating
Multiple Subnets

This example illustrates the high availability and elastic-
ity features of vWires. It shows how two subnets can be
consolidated together without any change to the IP con-
figuration of the machines. It also shows how this con-
solidation not only reduces the cost but also increases the
availability of all existing services. Figure 5 represents
the two independent subnets. To emphasize the elasticity
point, the subnets use the same internal IP addresses.

The consolidation must meet the following two re-
quirements:

o Existing IP addresses must be retained. Many ser-
vices in the network such as firewalls, proxies, di-
rectory services, kerberos, and so on depend on IP
addresses. Reassigning IP addresses during consoli-
dation risks breaking down these services and there-
fore must be avoided.

serveri server2
IP:10.10.10.1 IP:10.10.10.1
MAC: 0:1:2:3:4:5 MAC: 0:6:7:8:9:a
NIC NIC
A A
A\ \
IP:10.10.10.2 IP:10.10.10.2
MAC: <> switch switch |« MAC:
O:a:b:c:d:e 0:3:4:5:e:f
- A A -
client1 client4
A4 \4
IP:10.10.10.3 IP:10.10.10.3
MAC: 0:a:b:c:d:f MAC: 0:3:4:5:6:7
client2 client3

Figure 5: Example 1 — two separate physical subnets

1 1
| serveri Lo server2 !
1 1
' IP:10.10.10.1 oo IP:10.10.10.1 '
1 MAC: 0:1:2:3:4:5 i1 | MAC:0:6:7:8:9:a 1
E VLANT | "y AN ID: 1 o VLAN ID: 2 VLANZ
: NIC i : NIC i
i Do :
! 1 ! 1
i [i
1| IP:10.10.10.2 IP:10.10.10.2 |,
1 [MAC: O:a:b:cidie [switch <> MAC:0:3:4:5:eif ||
! VLAN ID: 1 . VLAN ID: 2 !
E client / ! E \ client4 1
1 ! 1 !
1 ! 1 !
! IP:10.10.10.3 oo IP:10.10.10.3 |
! MAC: 0:a:b:c:d:f 1 ! MAC: 0:3:4:5:6:7 1
! VLAN ID: 1 b VLAN ID: 2 '
\ client2 E \ client3 E

Figure 6: Example 1 — two VLANSs sharing a physical
network

e The consolidation must preserve the separation of
traffic from the different subnets on the wire.

The traditional way to consolidate the two subnets on
the same physical network would be to assign each sub-
net a VLAN ID, and then configure the switch ports with
the appropriate VLAN IDs of the subnet. Finally, each
machine is connected to the correct port. A VLAN-based
network consolidation is represented in Figure 6. Note,
however, that the resulting consolidation still retains the
same number of machines and connections to a switch
port.

A second approach would be to use virtualization. The
two servers can be converted into two virtual machines
that are co-hosted on a physical server. The same num-
ber of physical NICs for the two VMs can be retained,
as well as the wire-port connectivity to the switch. From
a hardware perspective, the redundancy of network con-
nectivity ensures that there is no single point of failure.

The administrator has several options when assigning

58

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

NICs to the VMs. An obvious choice would be to assign
the physical NICs, one to each VM. However, this option
loses the advantage of high availability. In fact, the NIC
of a specific VM becomes the single point of failure for
that VM’s network. If that NIC fails, then all the VMs be-
hind that failed NIC become unreachable. Furthermore,
this setup restricts the scalability of the configuration to
the limited number of physical NICs that can be installed
on the bus as well as the number of ports on a switch.

A better approach would be to first create a link ag-
gregation that bundles the physical NICs together. The
aggregation is then virtualized into multiple VNICs and
assigned to their respective VMs. Figure 7 shows this
virtualized consolidation. In Figure 7, the VNICs are
created based on the VLAN ID of their respective VMs.
Thus, even after the transformation to a virtual environ-
ment is completed, traffic from the different VMs can
still be differentiated on the wire.

Furthermore, every VM benefits from the HA of the
networking connectivity because it has a redundant path
to the network. An outage of one of the NICs or its port
on the switch will result in a possibly slower overall net-
work, however each VM is still reachable.

We show below the steps needed to create the link ag-
gregation and then the VNICs to create the configuration
of Figure 7.

dladm create-aggr -1 nxge0O -1 nxgel \
aggr0
dladm create-vnic -1 aggr0O -v 1 wvnicl

Note that in this example, the single switch consti-
tutes a single point of failure. Switch stacking or layer-3
multi-pathing can be combined with link aggregations to
provide high availability across multiple switches, as de-
scribed in Section 3.6.

5.2 Example 2 — Consolidating Multi-Tier
Enterprise Networks

This example is a typical scenario for a cloud operator
that offers hosting services for its enterprise clients. Each
client tenant of the cloud operator’s data center expects
complete separation from the other tenants. This exam-
ple demonstrates that all the three tiers (web server, App
server, Database server and iSCSI storage) of the client
data center as shown in Figure 8 can move to the cloud
but remain isolated and separate from other virtualized
data centers in the cloud.

The following steps show how to convert one of the
client enterprise’s Intranets. First create the etherstub for
the Intranet and three VNICs on top of it.

dladm create—-etherstub stubl
dladlm create-vnic -1 stubl VNIC_WS1

1 1
1 T T 1
| VLAN1 vserveri i | _vserver2 VLAN2 |
1 1
| IP:10.10.104 | ! 1| IP:10.10.10.1 |
1 MAC:0:1:2:3:4:5 | 1 1| MAC: 0:6:7:8:9:a !
1 VLAN ID: 1 | | VLAN ID: 2 !
1 1
| VNIC Lo VNIC |
| P |
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
| |
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 . 1
| IP:10.10.10.2 IP: 10.10.102 1,
i | MAC: 0:a:b:c:d:e MAC: 0:3:4:5:e:f ||
! VLAN ID: 1 VLAN ID: 2 !
1 1 n
| clienti ro clientd |
I ! ! I
| ! ! . I
! IP:10.10.10.3 o IP: 10.10.10.3 |
! - 0ahard- H H MAC: 0:3:4:5:6:7 !
i MAC: 0:acb:c:d:f b 03 |
| VLAN ID: 1 roa 12 !
' - N lient2 !
' clienti . c !

Figure 7: Example 1 —a vWire with two VLANS in a box

dladlm create-vnic -1 stubl VNIC_ASI1
dladlm create-vnic -1 stubl VNIC_DBI1

The VNICs can then be assigned to the zone
Webserverl as described in Section 4.2.1. Similarly,
assign VNIC_AS1 and VNIC_DB1 to AppServerl and
DBServerl, respectively. Now connect the Database
server to the back-end storage served by the iSCSI tar-
get: Create a VNIC on the back-end physical NIC:

dladm create-vnic -1 NIC2 VNIC_ST1

Assign VNIC_ST1 to DBserverl as described in
Section 4.2.1. Finally, connect the virtual enterprise sub-
net to the front-end edge router VNM by creating the
VNIC1 onthe Etherstubl and assigning it to the Vir-
tual Router VNM.

Figure 9 shows the resulting virtualized and consoli-
dated Intranets for the two client enterprises. The phys-
ical servers have been converted into virtual appliances
that are running in their respective zones. At the same
time, the virtual network topology mimics the physical
Intranets.

The two enterprises are competing for the CPU re-
sources available on the virtualized server. Therefore,
a remaining step is to define processor sets for each
client, assign them to the zones, and bind the VNICs
accordingly. Assume, for example, that AppServerl
is assigned a processor set containing CPUs 1, 2, and
3. The VNIC can be bound to the CPUs assigned to
AppServerl by issuing the following command:

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 59

Webserver1 AppServer1 DBServeri
NIC_WSH1 NIC_AS1 NIC_DB1 | NIC_ST1
Edge | . .
Router | € Switch iscsi
:: P ’ target1
T Ed [iscsi
9€ | —p ;
Router |~ | Switch target2
NIC_WS2 NIC_AS2 NIC_DB2 | NIC_ST2
Webserver2 AppServer2 DBServer2

Figure 8: Example 2 — consolidating multi-tier enterprise
networks, physical View

Webservert AppServeri DBServert

VNIC_WS1 VNIC_AS1 VNIC_DB1 | VNIC_ST1

N/

3
iscsi

target1
VNICA <->| Etherstub1 |
N
5 Virtual B
z Router —
iscsi
VNIC2 <->| Etherstub2 | / target2
VNIC_WS2 VNIC_AS2 VNIC_DB2 | VNIC_ST2
Webserver2 AppServer2 DBServer2

Figure 9: Example 2 — consolidating multi-tier enterprise
networks, virtual View

dladm set-linkprop cpus=1,2,3 VNIC_AS1

Future improvements will allow the data links to be
automatically bound to the CPUs that are assigned to
the zone, without requiring the administrator to manu-
ally bind the CPUs as shown above.

5.3 Example 3 — Try-Before-Deployment
and Scale Out Scenario

In this example, we show how some of the observability
and virtualization features of Crossbow can be employed
to plan for scaling up the physical configurations as the
need grows. The starting point is a small web server rep-
resented in Figure 10. As long as the amount of trans-
actions coming from clients over the Internet is low, a

single server is capable of handling the level of load re-
quired.

Web server
BT

Figure 10: Example 3 — initial setting

192.0.2.1

In this scenario, the monitoring tools described in Sec-
tion 4.3 can be used to log the usage history on the NIC
to which the IP address 192.0.2.1 is associated:

acctadm -e basic -f /var/log/net.log net

At this stage, only basic accounting for the networking
interface is captured, and no flows are required. As the
business picks up, the web server receives an increasing
number of hits. A simple report to indicate the increased
traffic activity can be obtained thus:

dlstat -u -f /var/log/net.log
LINK IBYTES OBYTES BANDWIDTH
el000g 2.5M 0.1G 200.4 Mb/s

Anticipating further increase of traffic, the administra-
tor can plan to horizontally scale the network up to mul-
tiple servers. However, before actually investing or com-
mitting any new physical resources to the network, it is
desirable for the administrator to first understand how the
new network configuration would actually behave while
handling increased traffic. With Crossbow, the new dis-
tributed environment can be deployed and tuned in a vir-
tual environment first.

In the give scenario, the web server is first virtual-
ized into multiple virtual server instances running inside
zones. Each instance can handle any of the URIs orig-
inally served. The virtual servers are connected to an
in-box virtual switch through their respective VNICs. A
load balancer and NAT appliance translates the IP ad-
dresses before forwarding the packet to the appropriate
virtual server. An integrated load balancer [1] is ex-
pected to be available in OpenSolaris late 2009. Fig-
ure 11 shows the virtualized topology.

With the network usage history logging is still en-
abled, the amount of traffic on each link on the virtu-
alized server can be monitored:

dlstat -u -f /var/log/net.log
LINK IBYTES OBYTES BANDWIDTH

21t is understood that most web servers also include logging of ac-
cess statistics per URL. The authors’ point here is to show how network
infrastructure tools can be used for such accounting, whether the ser-
vice being deployed included internal logging or not.

60

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

Virtual
Web Server 1

192.168.0.1
\ Load t

o
% o S Balﬁr—? T 8¢g Etherstub
«l |03 = 8le—>
Internet &——Z 2| \iial Z - vsw1
2| Network S
Machine - t
VNIC2
192.168.0.2

Virtual
Web Server 1

Figure 11: Example 3 — vWire for live workload analysis

% Web Server 1
L_] NIC
p-——N 192.168.0.1

'

<—| Switch

Load
Balancer +

gH NAT
m H
192.168.0.2

Figure 12: Example 3 — De-virtualizing for horizontal
scaling

NIC
192.0.2.1
NIC
192.168.0.10

Web Server 2

e1000g0 2.5M 0.1G 180.4 Mbps
vswl 1.5M 52.7M 203.4 Mbps
vnicl 0.1M 3.0M 47.4 Mbps
vnic2 1.4M 49.8M 156.0 Mbps

This test run shows that the balance of traffic between
the two virtual server appliances is imbalanced. The traf-
fic through vnicl is only 23% of all traffic coming in
the system, as opposed to the 77% being handled by the
second virtual web server. The system administrator can
then adjust the load balancer parameters to bring a more
equitable distribution of the load.

When the load nears saturation levels for a single
physical server to handle, the administrator can make an
educated decision on the configuration of the new hard-
ware. Note that the virtual web servers can be migrated
to the new physical host with the exact same network
configuration, without any need for IP renumbering. The
final deployment is represented Figure 12.

It should be noted that more information can be de-
rived from the usage history. The administrator could

for example quantify the variation of load over time, and
study the peaks of load, and the progression of the net-
work usage, and extrapolate that progression to estimate
the right time to start considering an upgrade.

6 Related Work

The Crossbow architecture provides mechanisms to
achieve network virtualization within a host with ease of
use and minimum performance penalty. The virtual NICs
and flows leverage NIC hardware advancements such as
classification and multiple receive and transmit rings to
ensure the separation of virtualized packet streams with-
out any processing overhead on the host. The virtual
NICs and flows can be created over physical NICs, link
aggregations, and etherstubs to provide private connec-
tivity between virtual machines.

The idea of virtual switching has been implemented
in other main stream virtualization technologies as well.
Citrix System Xen [7] has a native Linux implementation
where the physical NIC is owned by the hypervisor and
virtual machines access the network by means of a front
end driver that run in the guest domain and the back end
driver that runs in the hypervisor. The hypervisor runs
the physical NIC in promiscuous mode and uses a soft-
ware based bridge implementation to provide all packets
to the back-end drivers, which then select the packets that
match their respective MAC addresses. There are mech-
anisms available to enforce bandwidth limiting and fire-
wall rules on the traffic for virtual machines. However,
these are typically separate subsystems, often very com-
plex in implementation and administration, and can re-
sult in significant performance overheads [25]. VMware
ESX based hypervisor has a proprietary implementation
on a Linux variant but apparently suffers from some of
the same issues [26] in terms of demultiplexing packets
for various virtual machines and resource separation.

More recently, Cisco Systems announced a new virtu-
alization offering under the Unified Computing System
(UCS) [22] umbrella and based on the VMware EX hy-
pervisor. The solution uses a specialized NIC along with
a Nexus switch where packets from individual virtual
machines are tagged to allow the switch to implement
virtual ports and provide features similar to the Cross-
bow implementation. A centralized management solu-
tion in the form of a Virtual Supervisor module manages
the physical and virtual components on the switch as well
as hosts to provide easy management of resources and fil-
tering policies. At the same time, the implementation is
proprietary to Cisco software and hardware and VMware
ESX hypervisor.

Some work is also occurring in the research com-
munity as part of the OpenFlow [11] consortium which
helps in building a standard based programmable switch.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 61

Such a switch would enable the Crossbow based hyper-
visor to program the switch with VLAN tags that are as-
sociated with customers and thus create more dynamic
virtual networks where the switch can also provide sepa-
ration, fairness, and security for the Crossbow vWire.

7 Conclusion and Future Work

The Crossbow virtualization and QoS components pre-
sented in this paper provide a unique mechanism to
achieve network virtualization and consolidate multiple
networks into one physical network. Assigning VLAN
tags to VNICs and performing host based VLAN switch-
ing allow the creation of fully virtualized and isolated
networks. Because the VNICs can be assigned link
speeds, priorities, and dedicated NICs and CPU re-
sources, a collection of virtual machines can span mul-
tiple physical machines and yet have deterministic per-
formance characteristics. The configuration of VNICs
and resource assignment is easy to configure and can be
driven by external management tools with the provided
APIs.

Apart from VNICs and virtual switches, multiple
VNICs on different physical NICs can be assigned to
OpenSolaris zones or virtual machines to create network
components like routers, load balancers, firewalls, and
so on. These virtual network machine along with VNICs
and virtual switches can be combined together to create
a fully virtualized network called vWire.

The Crossbow vWire offers a fully elastic, isolated,
and dynamic virtualized network where virtual machines
can migrate to other physical machines. The vWire ex-
tends with these VMs without needing any changes to
the physical cabling or switches. Since the vWire uses
VLAN tags and extended VLAN tags to provide isola-
tion, it can work with any existing switch.

The various enterprise level features for failover and
high availability such as link aggregation and IPMP, are
designed in the architecture. Thus VNICs can be created
over link aggregations and multiple VNICs on different
attach points can be assigned to the same IPMP group.
Care has been taken to ensure that a VNIC shows up
as a separate interface on the MIB with the configured
link speed as the interface speed. Existing network man-
agement tools can thus continue to work seamlessly in a
virtualized environment.

The various examples in this paper show some of the
possibilities where Crossbow can be used in an enterprise
to decouple the application from the physical hardware
and network to ensure easier deployment, management,
and hardware upgrade. Because the vWire is a collec-
tion of rules and objects, it can be easily migrated from
one physical network to another. This flexibility allows
enterprises to migrate their network in full or in part to

a public cloud when needed. The same concepts can be
used by startups to create their data-center in a box in
a public cloud. They can use Crossbow tools to analyze
their usage and scale out to multiple machines seamlessly
as business needs and traffic grow.

The core of the Crossbow architecture and all the
features described in this paper have been imple-
mented and integrated in OpenSolaris and available at
http://opensolaris.org to any user.

Near term work focuses on enhancing the manage-
ment tools to visualize and configure these vWires and
virtual network machines. Crossbow has achieved a
powerful level of control and observability over the net-
working resources inside a single system. One of the
directions being pursued is to extend that kind of con-
trol beyond the boundaries of a single box, to encompass
flows that span multiple subnets of physical and virtual
machines. To that end, new wire protocols are being ex-
plored to convey some of the QoS requirements between
nodes. We need to address both the data plane, and the
control plane. Priority-based Flow Control (PFC) is the
layer-2 mechanism defined by the IEEE and used for dis-
criminating based on the VLAN tag’s priority field on
data packets. On the control plane, Generic Attribute
Registration Protocol (GARP) and Multiple VLAN Reg-
istration Protocol (MVRP) are being considered for two
reasons: The scalable administration of multiple inter-
connected nodes underscores the need for a hands off
propagation of QoS information across the links. Sec-
ondly the network must be protected from the floods of
unnecessary broadcasts from unused VLANS.

8 Author Biographies

Sunay Tripathi is a Distinguished Engineer at Sun Mi-
crosystem working on networking and network virtu-
alization. He received a MS in Computer Science
from Stanford University in 1997. His blog is at
http://blogs.sun.com/sunay, and he can be reached at
sunay.tripathi @sun.Com

Nicolas Droux is a Senior Staff Engineer and archi-
tect with the Solaris Core OS group at Sun Microsys-
tems. Nicolas has led, designed, and implemented sev-
eral kernel projects in the areas of High Performance
Computing, I/O, security, virtualization, and networking.
His blog is at http://blogs.sun.com/droux, and he can be
reached at nicolas.droux @sun.com.

Kais Belgaied is a senior staff engineer and a techni-
cal leader at Sun Microsystems, Inc. His areas of interest
include networking, virtualization, operating systems,
cloud computing, and IT security. He is a voting member
of the Platform Architecture Review Counsel with Sun
Microsystems, and an active participant in multiple IETF

62

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

working groups. His blog is http://blogs.sun.com/kais,
and he can be reached at kais.belgaied @sun.com.

Shrikrishna Khare is a Solaris Kernel Networking
engineer at Sun Microsystems. He received a M.S.
in Computer Science from North Carolina State Uni-
versity, USA in 2008. He can be reached at shrikr-
ishna.khare @sun.com

References

[1] http://opensolaris.org/os/project/vam/ilb
(PSARC/2008/575).

[2] http://www.virtualbox.org.
[3] http://www.vmware.com/pdf/virtualization.pdf.

[4] M. Allman and W. S. V. Paxson. TCP Congestion
Control. In RFC 2581, 1999.

[5] W. Almesberger. Linux Network Traffic Control.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A. Patter-
son, A. Rabkin, I. Stoica, and M. Zaharia. Above
the Clouds: A Berkeley View of Cloud Computing.
In Technical Report No. UCB/EECS-2009-28.

[7] P. Barham, B. Dragovic, K. Fraser, T. H.
Steven Hand, A. Ho, R. Neugebauer, 1. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
19th ACM symposium on Operating System Princi-
ples, pages 164-177. ACM, 2003.

[8] Carson. Limiting Bandwidth Usage on Xen Linux
Setup.

[9] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and
A. Warfield. QoS’s Downfall: At The Bottom, or
Not at Alll In RIPQOS’03: Proceedings of the
ACM SIGCOMM workshop on Revisiting IP QoS,
2003.

[10] Intel. Intel 82598 10GbE Ethernet Controller Open
Source Datasheet, 2008.

[11] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Enabling Innovation in Campus Net-
working. 2008.

[12] Neterion. Neterion Xframe II 10 Gigabit Ethernet.

[13] L. M. S. C. of the IEEE Computer Society. IEEE
Standards for Local and Metropolitan Area Net-
works: Virtual Bridged Local Area Networks. In
IEEE Std 802.10Q-1998, 1998.

[14] D. Price and A. Tucker. Solaris Zones: Operat-
ing System Support for Consolidating Commercial
Workloads. In I8th Large Installation System Ad-
ministration Conference, pages 241-254. USENIX,
2004.

[15] T. H. Ptacek and T. N. Newsham. Insertion, Eva-
sion, and Denial of Service: Eluding Network In-
trusion Detection. White paper, 1998.

[16] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spaf-
ford, A. Sundaram, and D. Zamboni. Analysis of a
Denial of Service Attack on TCP. In In Proceed-
ings of the 1997 IEEE Symposium on Security and
Privacy, pages 208-223. IEEE Computer Society
Press, 1997.

[17] M. Seaman. A Multiple VLAN Registration Proto-
col (MVRP), 2003.

[18] S. Soltesz, H. Potzl, M. Fiuczynski, A. Bavier,
and L. Peterson. Container-Based Operating Sys-
tem Virtualization: a Scalable High-Performance
Alternative to Hypervisors. In 2nd ACM
SIGOPS/EuroSys European Conference on Com-
puter Systems 2007, pages 275-287. ACM, 2007.

[19] Sun Microsystems. Solaris 10 System Administra-
tion Guide: IP Services, 2008.

[20] Sun Microsystems, Inc. Sun Multithreaded 10GbE
(Gigabit Ethernet) Networking Cards, 2007.

[21] Sun Microsystems, Inc. System Administration
Guide: Solaris Containers-Resource Management
and Solaris Zones, 2009.

[22] C. Systems. Unified Computing Systems.

[23] S. Tripathi, K. Belgaied, and N. Droux. Crossbow:
Network Virtualization Resource Partitioning.

[24] S. Tripathi, N. Droux, T. Srinivasan, and K. Bel-
gaied. Crossbow: From Hardware Virtualized NICs
to Virtualized Networks. In In Proceedings of the
ACM SIGCOMM Workshop VISA’09, 2009.

[25] S. Tripathi, N. Droux, T. Srinivasan, K. Belgaied,
and V. Iyer. Crossbow: A Vertically Integrated QoS
Stack. In In Proceedings of the ACM SIGCOMM
Workshop WREN’09, 2009.

[26] J. S. G. Venkitachalam and B. Lim. Virtualizing
I/0 Devices on VMware Workstation’s Hosted Vir-
tual Machine Monitor. In Proceedings of the 2001
USENIX Annual Technical Conference, 2001.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 63

EVA: A Framework for Network Analysis and Risk Assessment

Melissa Danforth
Department of Computer Science
California State University, Bakersfield
Bakersfield, CA 93311
mdanforth@csub.edu

Tags: security, research, attack graphs

Abstract

EVA is an attack graph tool that allows an administrator
to assess and analyze a network in a variety of fashions.
Unlike other attack graph tools which just focus on vi-
sualizing the network or recommending a set of patches
to secure the network, EVA goes beyond these modes to
fully explore the power of attack graphs for a multitude
of administrative and security tasks. EVA can be used
to derive a set of hardening measures for a network, to
perform strategic analysis of a network, to design a more
secure network architecture, to assist in forensic evalua-
tions after a security event and to augment an intrusion
detect system with information about the likely targets
of an attack. This paper summarizes the framework used
by EVA, provides real-world results of using EVA and
shows how EVA is scalable to large networks.

1 Introduction

Securing a computer network against intrusion is a com-
plicated task. The risk profile of the network depends
not only on the configuration of individual machines, but
also on the connectivity between machines. If an admin-
istrator only evaluates the risk profile of each machine
individually, he will miss multi-stage attacks that propa-
gate across the network. For example, an attacker might
compromise a public web server and then use that server
to compromise the database server. This is a classic
“foothold” scenario whereby the attacker compromises
one machine to use as a base for gaining access to inter-
nal networks he could not directly access. Such scenarios
must be considered when evaluating a network.

Attack graphs [2, 4, 10, 11, 14, 15, 16, 17, 18, 19, 9,
21] and attack trees [6, 7] provide a method to discover
and visualize such “foothold” scenarios in the network.

Attack graphs and trees compute exploit paths that a the-
oretical attacker might take through the network, given
knowledge of the vulnerabilities on each machine, the
firewall rules in the network and the topology of the net-
work. Attack graphs by themselves are purely just a
method to represent and possibly visualize these paths.
The true power of attack graphs lays in analyzing the at-
tack graph.

EVA (Evolutionary Vulnerability Analysis) is an at-
tack graph tool that supports a multitude of analysis
modes. As shown in [5], it is scalable to large networks
containing hundreds of hosts. This paper describes fur-
ther improvements that increase the scalability to net-
works containing thousands of hosts. EVA is a policy
driven model, which allows administrators to tune the
analysis to the specific operating criteria or mission for
their networks. The policy model is flexible so that the
administrator does not need to provide extensive infor-
mation to it.

Most prior work has focused on two modes of analy-
sis: finding a set of hardening measures and performing
“what if” scenarios. A set of hardening measures are typ-
ically patches or firewall rules that prevent the attacker
from achieving one or more goals. The “what if” scenar-
ios allow the administrator to pretend there are unknown
vulnerabilities in the network. This allows an adminis-
trator to explore the consequences of unknown vulnera-
bilities, such as “zero-day” exploits. The “what if”” mode
essentially alters the input into the attack graph tool to
support the scenario instead of the actual network. The
resulting “what if” attack graph that can be analyzed us-
ing other modes of analysis. EVA supports these modes
of analysis and uses the policy to guide the analysis.

EVA goes beyond these modes of analysis to further
unlock the power of the attack graph model. It can also
be used for network design, forensic evaluation and IDS
monitoring. For the network design mode, the tool can
be used in two ways. First, it can be given multiple proto-
type networks to evaluate and decide which has the best

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 65

security. The mode of analysis has also been used in
GARNET [21]. The second use of the tool for network
design is unique to EVA. Given a prototype network, it
can automatically alter the connectivity and/or add IDS
sensors to improve the security of the network. As with
hardening measures, this analysis is guided by the policy
for the network.

For forensic analysis, the evidence gathered during the
course of the investigation is given to the tool. The tool
then produces a list of resources that the attacker could
have also compromised given the evidence. This gives
direction to the forensic evaluators by pointing out likely
paths the attacker took during the compromise. IDS
monitoring uses a similar approach, but in real-time as
opposed to after-the-fact. Theoretically, the list of poten-
tial exploit paths could be given to a intrusion response
system to prevent the attacker from actually exploiting
those paths.

These analysis modes have not been explored in other
attack graph tools. This work describes how EVA can be
expanded to supporting these new analysis modes. By
supporting these modes, EVA has a much wider use than
simply visualizing or securing the network. It can be
used in multiple phases of operation for a variety of se-
curity purposes.

Section 2 describes prior works in attack graphs and
attack trees. This section highlights how EVA differs
from these prior works. Section 3 details the attack graph
model used by EVA. In Section 4, the methodology used
to generate the attack graphs is given. Section 5 describes
the genetic algorithm used for analyzing attack graphs.
Section 5 also details the policy model and the various
modes of analysis. Section 6 provides some experimen-
tal results of using EVA on our student lab network and
on simulated networks. Section 7 talks about future work
to improve this tool.

2 Related Work

Several prior works [11, 15, 17, 18] have shown that de-
termining a set of hardening measures is in NP. Philips
and Swiler [15] also shows that the problem of plac-
ing sensors to maximize coverage of the exploit paths
an attacker could take is in NP as well. Given this, most
prior works have focused on non-adaptive approximation
methods to find a set of hardening measures.

Philips and Swiler [15] allow an administrator to se-
cure one resource at a time by computing shortest paths
to that resource. This does not actually provide a set of
hardening measures, but instead trims the attack graph to
just the most likely paths an attacker would take. Their
method requires extensive administrator interaction to
actually determine the hardening measures and to secure
all the resources on the network.

Other groups have proposed non-adaptive approxima-
tion methods to derive a set of hardening measures. Noel,
et al. [10, 14] derive an algebraic expression of the initial
conditions that allow an attacker to compromise a single
resource. Sheyner, ef al. [11, 17, 18] use a greedy algo-
rithm to protect a given resource. Ammann, et al. [2]
compute the hardening measures for a single resource
based on information added to each node during the at-
tack graph generation. These methods only compute the
set of hardening measures for a single “goal” at a time.
They must be repeated for each resource the adminis-
trator wishes to protect. This requires not only more
processing time, but most likely will result in repeating
computational steps when two resources share a portion
of their exploit paths. EVA on the other hand derives a
set of hardening measures to protect all the resources the
administrator has marked as critical.

Dewri, et al. [7] uses a genetic algorithm to compute
a set of hardening measures for one or more resources.
Their algorithm also supports each hardening measure
having a different cost. This is similar to the approach
used by EVA, but there are several critical differences, as
detailed in [5]. First, their cost model is not very flexible.
It requires the administrator to assign a cost and weight
for every single possible hardening measure. Since the
number of hardening measures increases dramatically as
the size of the network increases, Dewri’s method would
require extensive user input before being able to compute
the set of hardening measures for larger networks. EVA
uses a default cost for most hardening measures, but al-
lows the administrator to adjust the cost for any harden-
ing measure. The administrator also has flexibility in this
adjustment. One can adjust a measure globally, such as
“do not allow port 80 to be disabled”, or one can adjust
a measure for a specific machine. Thus, the administra-
tor only has to specify costs for those measures deemed
desirable or undesirable for the network.

Second, the genetic algorithm used in [7] is not very
scalable to large networks, as shown in [5]. This is be-
cause they use a multi-objective genetic algorithm that
treats the security provided by the set of hardening mea-
sures and the cost of that set as equals. As shown in [5],
this leads to their algorithm maintaining a set of low cost
but also low security hardening measures. Most of these
low cost solutions turn out to be evolutionary dead-ends
because they provided very little security. By maintain-
ing them, the genetic algorithm in [7] is essentially wast-
ing memory and computational time on untenable solu-
tions. The genetic algorithm used by EVA uses a priority
based method which first prioritizes on securing the net-
work and then looks at minimizing the cost of the set
of hardening measures. The experimental results shown
in [5] show that this is a far more suitable approach for
the attack graph problem.

66

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

Server

General
Access
Labs

Programming

DMZ
Linux Solaris 8 Solaris 7 Digital
Unix
Lab
NAT

Advanced
Lab

Hardware
Lab Lab

Figure 1: The Computer Science instructional network that was scanned for modeling in EVA.

NetSPA [9] and its graphical front-end GARNET [21]
are the closest competitors to EVA in the market today.
NetSPA is a project out of MIT Lincoln Labs that was
awarded $10k in MIT’s 2008 Entrepreneurship Compe-
tition to form a startup company based around NetSPA
called CyberAnalytix [13]. While NetSPA is similar to
EVA, there are several key differences between NetSPA
and EVA. First, NetSPA uses a different technical ap-
proach to the attack graph problem than EVA. NetSPA
focuses on the data structure of the attack graph and post-
processing the attack graph to reduce complexity. EVA
uses a classic adjacency-list data structure for the attack
graph and focuses on pre-processing the network using
an abstract exploit model described in Section 3.1 and
a meta-machine model described in Section 3.2 to re-
duce the complexity of the network. Both approaches
provide scalability, but are fundamentally different in na-
ture. Second, NetSPA uses a non-adaptive algorithm to
compute the set of hardening measures while EVA uses
an adaptive genetic algorithm that incorporates the site’s
policy when computing the set of hardening measures.
By incorporating the policy, EVA is able to provide rec-
ommendations tuned to the site’s mission or operating
criteria. Third, NetSPA and GARNET focus on pro-
viding a set of hardening measures and visualizing the
network for both actual networks and theoretical (‘“what
if’) scenarios. EVA supports these modes and also adds
modes for network design, forensic evaluation and IDS
monitoring. This gives EVA more versatility.

3 Attack Graph Model

The attack graph model used by EVA was first described
in [4]. The attack graph itself is an adjacency-list ma-
trix that describes the exploit paths an attacker could
take through the network. The inner nodes of the graph
represent various states the attacker has achieved, such
as “user privilege on hosts”. The initial nodes of the
graph represent the initial state of the network, such as
what vulnerabilities are present and what privileges the
attacker has initially. The edges of the graph represent
exploits the attacker has executed. An attack graph for
the network evaluated in Section 6 is shown in Figure 2.

The primary underpinning of the model is a set of ex-
ploit templates that describe exploits an attacker could
use in the network. These templates are represented in
a “requires/provides” [12] format. The “requires” por-
tion of the template specifies what conditions must exist
for the exploit to occur. The “provides” portion of the
template states the consequences of the exploit, such as
new privileges the attacker gains from the exploit. An
attack graph is built by matching templates to the current
knowledge about the network. When all of the “require”
conditions are met for a template, it is executed and all
of its “provide” conditions are added to the attack graph.
For purposes of the representation, each condition is tied
to an individual node in the attack graph.

The initial nodes of the attack graph are derived from
several sources: a model of the network connectivity, a
list of vulnerabilities present on all machines in the net-
work and an attacker model. The model of the network
connectivity describes the firewall and/or routing rules
that would prevent two hosts from communicating with
one another. By default, EVA assumes two hosts can

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 67

r2r-noauth Zero -> serverl
0: No privilege on serverl
0: pe_noauth on serverl
r2r-noauth* server2 -> serverl -

0: pe_noauth on server2 r2r-noauth* serverl -> server2 -I
0: Root privilege on Zero
r2r-noauth Zero -> server2

0: No privilege on server2

(a) Unpatched

r2r-noauth Zero -> serverl

0: pe_noauth on serverl > = = = . BRI
— r2r-noauth* server2 -> serverl - P{ 1: Root privilege on serverl ‘
0: pe_noauth on server2 > Z 7= r2r-noauth* serverl -> server2 - P{ 1: Root privilege on server2 ‘
N =

R r2r-noauth Zero -> server2
0: No privilege on server2

(b) Patched

Figure 2: The attack graph for the basic network configuration and the patched attack graph after analyzing it. The
color scheme for the graphs is as follows. The orange oval is the attacker’s starting point. Red boxes represent
machines where the attacker has obtained root privileges. Yellow boxes are machines where the attacker has gained
user privileges. Orange diamonds are the attacks executed against the network. Clear ovals are the initial conditions
in the network. In the patched graph, disabled attacks and nodes are grey while the patched vulnerabilities are aqua.
For this network, the recommended patches prevent the attacker from getting root on both machines, since both root
nodes have been disabled in the patched graph.

68 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

communicate on a given port. The connectivity model
only needs to specify denied connectivity. When refer-
ring to TCP connections, the denied connectivity is as-
sumed to be a denied SYN packet. The denied connectiv-
ity is directional, just as firewall rules are. For example,
if you deny host; from connecting to port 443 on hosty,
this does not prevent host, from connecting to port 443
on host;. This connectivity matrix can be derived from
knowledge of the network’s firewall and routing rules.

The list of vulnerabilities on all machines in the net-
work can be obtained via vulnerability scanner reports.
The vulnerability name must match the naming struc-
ture used in the exploit templates. Currently, EVA can
translate certain Nessus [20] plugin IDs to a vulnerability
name. The machines must also be given unique names in
this list and these names must match the names used in
the connectivity model. IP addresses or domain names
are a very logical name to use for this model. One can
also rename machines in both the vulnerability list and
connectivity model to any name of the administrator’s
choosing.

The attacker model describes what initial privileges
the attacker has in the network and where the attacker
is located in the network. For example, one can model
an attacker that is outside of the network and who has no
initial privileges in the network (the “outsider” problem).
One can also model an attacker who has a machine inside
the network under his control or who has certain priv-
ileges inside the network (the “insider” problem). One
can also use any combination of these two problems, al-
though currently EVA assumes a single-attacker model,
so it cannot distinguish between the nodes achieved by
two or more attackers. In other words, if you model both
an insider and outsider, EVA assumes them to be the
same person. Allowing multiple attackers is a planned
future refinement (see Section 7).

One of the issues with attack graphs that was described
in more detail in [4] is that the number of edges in the
graph, in other words the number of exploits executed
by the attacker, is dominated by the number of exploit
templates in the model and the number of machines in
the network. If a is the number of exploit templates and
n is the number of machines, then the number of edges
is O(an?). To achieve scalability, one must reduce the
number of exploit templates and the number of machines
in the network in such a way that it does not affect the
functionality of the attack graph. To do this, EVA uses
two approaches: an abstract model of exploit classes and
clustering of identical machines.

3.1 Abstract Model of Exploit Classes

When looking at the early literature on attack graphs,
particularly the work of Sheyner, ef al. [11, 17, 18], two

things became clear. First, if one were to model each and
every exploit that existed in the world, the exploit tem-
plates would quickly grow to an enormous size. Second,
many exploits shared characteristics and only varied by
the name of the vulnerability and/or the port number used
in the exploit. One could greatly reduce the number of
exploit templates required by coming up with abstracted
templates that apply to a variety of actual exploits.

The difficulty with this approach is creating abstract
templates that retain the ability to model different types
of exploits while still grouping multiple exploits to-
gether. Essentially, a classification system had to be de-
veloped for exploits. The details of this classification
system are given in [4]. In brief, exploit classes such
as “remote to user” or “remote to root” were developed.
Most of the classes focus on privilege escalations, client-
side privilege escalations (such as a browser exploit),
username/password guessing, password cracking, infor-
mation leaks, bypassing firewall rules or altering router
rules. The model currently does not support denial of
service, but it could be extended to do so by writing a
new set of rules for that class.

Rewriting the exploit templates is only part of the ab-
straction process. The vulnerability list also must be
translated from actual vulnerabilities to abstract vulnera-
bilities. This is done currently by comparing the Nes-
sus [20] plugin ID to a mapping that converts known
Nessus plugin IDs to their corresponding abstract vulner-
ability. This mapping is currently maintained by hand.
The translation of the vulnerability list is done during the
pre-processing stage, before generating the graph. For
each machine in the vulnerability list, its set of vulner-
abilities are translated to the abstract vulnerability class.
If two or more vulnerabilities for that machine map to
the same abstract class, the duplicates are discarded.
When post-processing the reports generated by the anal-
ysis tool, this process is reversed.

Likewise, the port numbers given in the model of
network connectivity must also be abstracted. This is
a slightly more complex process, since any given port
may be used for more than one abstract exploit class.
Again, a mapping of port number to abstract port name
is used, except this mapping supports one-to-many map-
pings where one port number might be associated with
several abstract exploit classes.

There are two major advantages to having an abstract
model for the exploit templates. The first advantage is
that this greatly reduces the size of the template set. By
reducing the number of templates, the number of edges
in the graph are also reduced, as detailed above. This
increases the scalability of the model since, as described
in [4], the number of edges are a prime indicator of the
complexity of the attack graph. The second advantage
is reduced administrative overhead. One does not have

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 69

to alter the exploit templates every time a new exploit
comes to light. Instead, the administrator can see if that
exploit is part of an existing abstract class. If so, the pre-
processing mappings can be altered to support this new
exploit. If not, the model allows an administrator to write
templates for specific exploits that are not covered by the
abstract templates.

3.2 Clustering

The second approach to reduce complexity and increase
scalability is to group identical machines into a cluster.
In [4], this cluster was modeled as one meta-machine.
This has been updated to model each cluster as two ma-
chines, so that the interactions between machines in a
cluster can be observed.

The process of clustering is similar to what was de-
scribed in [4]. After the connectivity model and list of
vulnerabilities has been pre-processed for the abstract
template model, it is further pre-processed to discover
the clusters. On the first pass, all machines with identical
vulnerabilities are put into a proto-cluster. On the sec-
ond pass, each proto-cluster is subdivided into the final
clusters based on the connectivity. Each final cluster con-
tains machines with identical vulnerabilities and identi-
cal connectivity. Each cluster is assigned a name and the
members of that cluster are recorded. Then the vulnera-
bility list and connectivity model are updated as follows.
If a cluster contains only one machine, that machine is
left as-is in both the vulnerability list and the connectiv-
ity model. If a cluster contains two or more machines,
all machines in the cluster are removed from both the
vulnerability list and connectivity model. Then two ma-
chines whose names are based on the cluster name are
added to both the connectivity model and vulnerability
list. These two cluster machines have all the vulnerabil-
ities and connectivity rules specified by the original ma-
chines in the cluster. Clustering is currently done with a
Perl script to parse and alter the input files.

For a network which has large segments of identi-
cal machines, clustering can greatly improve the perfor-
mance of EVA by reducing the number of machines mod-
eled in the attack graph. Since the members of the cluster
are recorded, it is easy in post-processing to augment all
reports about a cluster with the list of machines in that
cluster. The administrator can then tell that hardening
measures need to be applied to all machines in the clus-
ter.

4 Generation of Graphs

As described in Section 3, the exploit templates are in
a “requires/provides” format. This makes them well-
suited to be encoded as rules in an expert system. The

expert system JESS [8] is used by EVA. The abstract ex-
ploit templates are encoded as rules in the expert sys-
tem. These rules use the CLIPS [1] syntax, so the ruleset
could be exported to other expert systems that support
this syntax. The network connectivity model, the list of
vulnerabilities and the attacker model are encoded as ini-
tial facts to the expert system. From these initial facts,
the “requires” portion of zero or more templates is satis-
fied. The “provides” portion of the template asserts more
facts into the expert system. This in turn may satisfy
other templates.

Unlike some prior works [11, 17, 18, 16] which only
see if the attacker can achieve a specific goal, such as “get
root on the web server”, EVA uses an exploratory ap-
proach to seek out all possible exploit paths the attacker
could take through the network. The matching of facts to
exploit templates continues until the newly asserted facts
cause no more templates to be satisfied. Thus all avenues
of attacks that can be described given the initial facts and
the exploit templates are explored.

The expert system also records each exploit template
rule that is activated, the facts that caused it to be satis-
fied and the facts that are asserted as a consequence of
it being activated. This is equivalent to one edge in the
attack graph. The nodes in the attack graph are equiv-
alent to the facts in the expert system, which are also
recorded. A Perl script translates the output of the expert
system into two formats: a visualization format and the
genetic algorithm format. The visualization format uses
the DOT syntax of the Graphviz project [3]. From DOT,
one can produce images in a variety of formats such as
EPS and GIF. The genetic algorithm format is a list of an-
notated edges used to construct the adjacency-list matrix
for analysis.

5 Evolutionary Analysis

In order to determine a set of hardening measures, one
must first specify what is considered to be the “bad”
states in the attack graph, i.e. what the administrator does
not want the attacker to achieve. For example, the ad-
ministrator might want to prevent the attacker from gain-
ing root-level privileges on all hosts. When deriving the
hardening set, one then seeks to disconnect the attacker
from these undesirable states by applying a hardening
measure. The “bad” states correspond to a set of nodes
in the attack graph. This can be given specifically, such
as “prevent root access on hostg”, or generally, such as
“prevent root access on all hosts”. These bad states are
referred to collectively as the goal nodes since they rep-
resent the goals of the attacker.

Related to finding a set of hardening measures, one
can also analyze the network to assess its risk profile. To
do so, one simply measures how many of these “bad”

70

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

A

(a) Unpatched

(b) Patched

Figure 3: The attack graph and analyzed attack graph for the scenario where a user visits a malicious website with a
vulnerable web browser. This is a classic outsider scenario where the attacker gains a foothold in the network then
uses this foothold to further compromise the network. The color scheme is as described in Figure 2.

states the attacker has obtained and output that as a risk
metric or a risk profile. Again, this can be tuned to the
particular needs of a given network by changing the set
of “bad” states to reflect what is undesirable for that par-
ticular network.

The hardening measures supported by EVA are patch-
ing a vulnerability, adding a firewall rule and placing an
IDS sensor. Priority is given to each hardening mea-
sure based on the policy model and the mode of anal-
ysis. Each measure has two attributes associated with
it: the cost of that measure and the security provided by
that measure. Both attributes can be manipulated by the
policy and by the mode of analysis. When the mode of
analysis is to derive a set of hardening measures, the de-
fault costs in order from cheapest to most expensive are
patches, firewalls and IDS sensors. The default behavior
is to have patches and firewall rules confer more security
than IDS sensors. Any of these defaults can be changed
by the policy model. One can also tell the genetic algo-
rithm to only consider a subset of hardening measures,
such as to just consider patches.

A genetic algorithm was chosen as the means of do-
ing the analysis. As described in [5], finding a set of
hardening measures directly is computationally infeasi-
ble. One cannot “brute force” the solution. Genetic al-

gorithms are an approximation method that allows one
to start with random solutions and then refine those so-
lutions into better solutions via an evolutionary process.
This is essentially a guided search of the solutions space.
Each solution is referred to as a chromosome. A group
of solutions being evaluated are called a population. The
evaluation continues iteratively for several rounds, with
each round being called a “generation”. Initially, in the
first generation, the population is randomly generated.
Then the “fitness” of each chromosome is evaluated. The
fitness function determines how well a given solution
works for the problem. The most fit chromosomes are
then selected as parents and recombined, with the hopes
of creating even better solutions. Finally, a few chromo-
somes are randomly mutated. In EVA, a mutation flips
the bit, so if a hardening measure was in use, it would
no longer be used and vis versa. After recombination
and mutation, the population moves on to the next gen-
eration, where it begins with evaluating the fitness of the
chromosomes. The population will keep passing through
the fitness evaluation, recombination and mutation steps
until the programmed maximum number of generations
has elapsed.

More details about the genetic algorithm can be found
in [5]. The code has been updated since that time to be

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 71

multi-threaded when evaluating the fitness of the pop-
ulation. Since each chromosome in the population has
its own fitness, this point of the evaluation is well-suited
to multi-threading. The population is broken down into
sub-groups and each sub-group spawns a thread to evalu-
ate the fitness of the chromosomes in its sub-group. The
number of threads is selected when the program is com-
piled. Currently, four threads are spawned. The main
program waits for each thread to complete before mov-
ing on to the recombination step.

The chromosome in the genetic algorithm corresponds
to a proposed set of hardening measures. During fitness
evaluation, each measure in the chromosome is applied
to the attack graph. Each node and edge in the attack
graph records how it is affected by the measure. A patch
disables an initial node, which corresponds to a vulner-
ability on a machine, and all edges leading out of that
node, which correspond to attacks enabled by that vul-
nerability. A firewall rule disables an edge, which corre-
sponds to the attack that the firewall rule blocks. An IDS
sensor watches an edge. This indicates that the attack
represented by that edge will be detected if it is executed.
After applying the hardening measures, a cascade effect
takes place throughout the graph, as described below.

Edges, which correspond to one specific attack, will
disable themselves if any incoming node to that edge is
disabled. This is because the incoming nodes correspond
to preconditions required for the attack to succeed. If any
precondition becomes disabled, the attack can no longer
succeed, so the edge disables itself. It does not disable
the other incoming nodes though since those have not
been affected by the fact that the attack can no longer
succeed. Similarly, if any of the incoming nodes for
an edge are watched, the edge marks itself as watched.
This indicates that one of the preconditions for the at-
tack is enabled by an attack that the IDS can detect. This
will only occur when several attacks are needed in or-
der for the attacker to reach a goal. While the IDS may
not detect the attack corresponding with this edge, it has
detected an early attack that is required for this edge’s
attack to succeed. Thus, this edge will mark itself as
watched.

Internal nodes will disable themselves when all their
incoming edges are disabled. This means that all at-
tacks which lead to that state have been disabled. When a
node disables itself, all edges leading out from that node
will disable themselves due to the behavior of edges de-
scribed above. Similarly, when all edges coming into
a node are watched or disabled, the node will mark it-
self as watched. This indicates that all possible paths to
the privilege or condition represented by the node have
been covered by IDS sensors. The attacker cannot reach
this node without triggering an IDS alarm, so the node
is marked as watched. This will then trigger all edges

leaving that node to mark themselves as watched, for the
reasons described above. If a node or edge is marked as
both watched and disabled, the disabled state takes pri-
ority.

At the end of applying all the proposed hardening
measures and this cascade effect, each goal node is
checked. The preferable result is that all the goal nodes
have been disabled. For each node that is not disabled, its
risk metric is calculated based on if it is being watched
by an IDS sensor and how many enabled edges can still
reach it. The sum of the risk metrics for each goal node
is the overall risk that is still present with that proposed
set of hardening measures. The genetic algorithm fit-
ness function first seeks to minimize this risk and then
attempts to minimize the cost of the measures in the hard-
ening set.

The primary advantage to using a genetic algorithm
for analysis are that the direction of the search can be
easily changed by altering the nature of the chromosome
or the fitness function. For example, if one is just con-
cerned with finding a set of patches to apply, the chromo-
some can be redefined as just the set of hardening mea-
sures corresponding to patches. The same genetic algo-
rithm described above will still work even with this re-
definition. EVA’s flexibility in analysis comes from this
flexibility that genetic algorithms provides.

Another advantage to genetic algorithm is many solu-
tions are evaluated in parallel. EVA keeps a record of
the best solutions across all generations. Each of these
solutions is unique. Currently the ten best solutions are
saved, but this is a tunable parameter. When the maxi-
mum number of generations has been reached, EVA out-
puts all of these saved best solutions, ranked by their fit-
ness. The administrator can then choose amongst the so-
Iutions. This is particularly useful when multiple solu-
tions with identical fitness exist. The genetic algorithm
cannot distinguish between them since their fitness is the
same, but a human may have a preference for one solu-
tion over another. This is also useful to fine-tune the pol-
icy model, described below, to obtain better solutions if
the first analysis was not satisfactory to the administrator.
By reviewing the saved best solutions, the administrator
can see if one hardening measure is being excessively
preferred, which could indicate that its cost or benefit
needs to be modified.

5.1 Policy Model

The policy model is designed to give the administra-
tor great flexibility in overriding the default behavior of
the analysis. The administrator can override the secu-
rity provided by each class of hardening measures. This
would affect how the risk metric is calculated for each
goal node. The administrator can also override the cost

72

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

rnms

0y
e
Din
VA
.'I,I-m"o
I
\g’l—

[\

A e
!§‘§E§==.~7§E.=‘? ?/A"II'.

g
A LVIIIJllllill,I'
D

l
nSEIvP); J

=1/

2

(a) Unpatched

NS © o. o

(b) Patched

Figure 4: The attack graph and patched attack graph for the malicious student scenario. Since all students are allowed
to log in as a user on the lab machines, the analysis cannot disable the user privilege nodes in the patched graph.

of hardening measures. This can be done for a specific
hardening measure or a group of hardening measures.
The cost can also be changed on different machines.

For patches, the policy model allows an administrator
to specify an abstract vulnerability class from the abstract
exploit templates, a machine name template and the new
cost. The abstract vulnerability class corresponds to a
class of patches. The machine name template can be an
actual machine name, a cluster name or a partial name
which will match all machine and cluster names contain-
ing that name. The administrator can specify just the
vulnerability class or just the machine name template if
desired. The most specific cost is used when there is
overlap between multiple policies. For example, an ad-
ministrator can set the cost of a “privilege escalation”
class patch to 5 on all machines with one policy rule, but
say that the cost of the “privilege escalation” class is only
3 on host, with another rule. The second rule would be
used for host,.

For firewall rules, the policy model allows the cost to
be set based on the source of the packet, the destination
of the packet and the abstract destination port from the
abstract exploit templates. As with patches, the source
and destination machine names can be an actual machine
name, a cluster name or a partial name. The destination
port can be one of the abstract port names or the keyword

“all”. Similar to the patch policy rules, not all fields need
to be specified. If two rules overlap, again the most spe-
cific rule will be used. IDS sensor placement has all the
fields that firewall rules have and adds a field for the ab-
stract exploit class. The abstract exploit class field allows
one to say it is cheaper or more expensive to monitor for
certain types of exploits.

Policy rules can be set for each mode of analysis. Only
the rules for the current mode of analysis will be consid-
ered. For any hardening measure not covered under a
policy rule, the default cost is used. The administrator
may alter these default costs for each hardening measure
class as well. Default costs can also be altered based on
not only the class, but also the mode of analysis.

5.2 Modes of Analysis

The genetic algorithm is adaptable to many modes of
analysis. Besides finding a set of hardening measures, it
can also be used for strategic planning, network design,
forensic evaluation and IDS monitoring. This is done
by changing the costs and priorities of each hardening
measure (thus altering the fitness of a chromosome), by
redefining the chromosome to only consider a subset of
hardening measures or by altering the input to the attack
graph generator.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 73

O\O
AN AN N
' >
<X

A \A
VA ANV

m—— Q I“ /to"j\“:)

S AR Wiy
IS A AR]l

““
N

(a) Unpatched

@ o o o L@

(b) Patched

Figure 5: These graphs are for the scenario where a user has a compromised laptop and plugs it in to the instructor’s
station in a lab. The attacker cannot be prevented from obtaining user privileges since an easily-guessed login is used
for student access to the lab machines. The policy prevents this login from being disabled.

For strategic planning, the desired task is to evaluate
how the network would respond to unknown risks by per-
forming “what if” scenarios. Essentially, an administra-
tor adds vulnerabilities to the vulnerabilities list file that
have not actually been detected in the network and/or al-
ters the connectivity of the network. For example, an ad-
ministrator would ask “what if machine x has a remote to
root vulnerability?” The “what if” scenarios are partic-
ularly useful to model vulnerabilities that a vulnerability
scanner can not easily find. For example, Nessus can-
not detect a client-side browser vulnerability, but this is
becoming a common method used to compromise a ma-
chine. If the administrator does not have a client-based
vulnerability analyzer, he can still model client-side at-
tacks by performing a “what if”” scenario. The tool com-
putes the attack graph for the given scenario. The admin-
istrator can analyze the resulting attack graph in any of
the other supported modes.

With network design, the administrator wants to create
a network that is resistant to attack. There are two ways
attack graphs can be used to support network design. The
simplest method is to have the administrator design sev-
eral potential networks as input to the strategic planning
mode. The tool would then calculate an attack graph for
each network and its associated risk metric. The results
could then be displayed to the administrator so she can

choose the design which has the lowest metric and which
best suits the requirements of the installation.

A more interesting approach to network design analy-
sis, and an approach unique to EVA, is to give a proto-
type network design to the tool and have the tool auto-
matically reconfigure the network to minimize risk. The
genetic algorithm in this mode does not consider patches
as a possible hardening measure. Instead, it focuses on
firewall rules, which could also be interpreted as routing
rules, and IDS sensor placement. The fitness function
still seeks to minimize the risk of the network. The costs
are policy-driven, using the policy rules for network de-
sign. The set of firewall rules and IDS sensors that min-
imizes the risk and minimizes the cost is favored by the
algorithm. It outputs several potential network designs
that follow this desired outcome.

For forensic evaluation, the current evidence is given
as input. This evidence can consist of known resources
the attacker has achieved, which corresponds to nodes in
the attack graph, or IDS alerts about attacks seen, which
corresponds to edges in the attack graph. All evidence
that corresponds to the attack graph of the network is
highlighted and treated as the initial states of a subgraph
of the attack graph. Any other nodes reachable by these
states could be other resources the attacker could have
compromised. The IDS monitoring mode works simi-

74

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

larly, but with current IDS alerts. While it has not been
implemented yet, theoretically one could feed the output
of the IDS monitoring mode to an intrusion response sys-
tem. It could then use the knowledge of resources at risk
to add further protection measures for those resources.
This could prevent the attacker from compromising those
resources.

6 Experimental Results

The Computer Science instructional network, as shown
in Figure 1, was profiled as the input network to this tool.
The network consists of a server zone located outside
the firewall and a NAT zone for all the instructional labs.
The server zone contains five servers: two Debian Linux
servers, one Solaris 8 server, one Solaris 7 server and one
Digital Unix server. The instructional lab machines are
all identical within a single lab room. There are several
prototype lab machines that the administrator clones out
to all the machines in a particular room. These proto-
types are an Ubuntu Linux image for the general access
labs (51 machines), an Ubuntu Linux image for the pro-
gramming lab (36 machines), a Windows XP image for
the hardware labs (24 machines) and an Ubuntu Linux
image for the advanced computation lab (30 machines).
In total, there are 141 lab machines in the NAT zone and
5 machines in the server zone.

The clustering Perl script derived four clusters based
on the vulnerabilities present on the machines and the
connectivity allowed by the machines. The first clus-
ter consisted of the servers. The second cluster corre-
sponded to the general access labs. The third cluster cor-
responded to the programming lab. The fourth cluster
contained both the hardware and advanced computation
labs since they had identical abstracted vulnerabilities.
Even though the actual vulnerabilities differed, the ab-
stracted vulnerabilities are what matters for purposes of
clustering. The process of clustering the network took
0.25 seconds on a Xeon quad core 2.33GHz system.

Three “what if”” scenarios were also generated for the
network. The first scenario assumes that a student in
the general access lab is using a version of Firefox with
an exploitable vulnerability that would give a malicious
website the same privileges on the machine as the stu-
dent. It is then assumed the student visits such a web-
site, giving the attacker user privileges on that machine.
The attacker model states that the attacker’s malicious
website would place a bot on that machine which would
then attempt to compromise other machines and would
“call home” to the attacker, thereby allowing the attacker
to communicate with the machine even though it is in a
NAT.

The second scenario assumes a student has decided to
compromise the network. This is a variation of the in-

sider problem. Since the student already has user priv-
ileges on all lab machines and several servers, his goal
is to escalate his privileges to root on one or more ma-
chines. The third scenario assumes an instructor has
brought a compromised laptop on to campus. All lab
rooms have an Ethernet jack at the instructor station
where the instructor can plug in a laptop. There are no
restrictions on the connectivity of these jacks. There-
fore, once plugged in, they have full access to the LAN
containing all the lab machines. Again, this scenario as-
sumes the compromised laptop can “call home” to the
attacker so the attacker can have direct access into the
NAT zone via the laptop.

All three scenarios and the base configuration of the
network were given as input to the attack graph genera-
tor. The attack graph for the base scenario showed that
two of the servers could be compromised via “remote
to root” vulnerabilities. These were two old servers ap-
proaching end-of-life which had not been maintained re-
cently. The attack graph for the Firefox vulnerability sce-
nario showed that once the attacker had a foothold into
the NAT zone, he was able to get user on all lab ma-
chines via the “student” account, which is the account all
students use to log in to the lab machines locally. The
cluster containing the hardware and advanced lab had a
“remote to root” vulnerability that the attacker was able
to exploit to get root privileges on those machines. The
programming lab had a “privilege escalation” vulnerabil-
ity that allowed the attacker to elevate from user to root
on those machines.

The attack graph for the malicious student showed
a similar course of action. The student is able to es-
calate from user to root on the programming lab ma-
chines. The student is also able to exploit the “remote
to root” vulnerability on the hardware and advanced lab
machines. Likewise, the attack graph for the rogue lap-
top also showed these compromise routes once the lap-
top had been plugged into the NAT zone. The generation
of each of these attack graphs took 0.5 seconds on the
aforementioned quad core Xeon machine.

Each attack graph was then given to the hardening
mode of EVA. The goal given to the analysis was to pre-
vent the attacker from gaining root privileges on any ma-
chine. The analysis was further restricted to only con-
sidering patches that could be applied, instead of all pos-
sible hardening measures. The policy rules applied to
the evaluation were that logins could not be turned off to
any machine and on the lab machines the “student” ac-
count could not be disabled, even though it has a guess-
able password. A run was made without these policy
rules and several of the highly fit solutions proposed by
the genetic algorithm did indeed suggest these courses of
action. When the policy rules were applied, none of the
highly fit solutions contained these courses of action.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 75

Figure 6: This is the attack graph for the rogue laptop scenario after redesigning the network to segment off the
Ethernet port at the instructor’s station. Since the laptop plugged into that port can no longer connect to the lab
machines, it is unable to compromise them even though the easily guessed student login from Figure 5 remains.

The genetic algorithm was run several times using dif-
ferent population sizes and different maximum genera-
tion limits. Larger population sizes will more frequently
generate optimal results, but require more CPU time to
complete the analysis. A larger maximum generation
limit likewise can increase the optimality of the result,
but also takes more CPU time. Part of the testing was de-
termining values for these two parameters that balanced
good results against CPU time. In doing so, a “suggested
parameters” matrix can be developed for other networks
that are similarly sized.

When the base configuration was evaluated, the sug-
gested course of action was to patch two servers which
had “remote to root” vulnerabilities. No other courses of
action were suggested because the remaining machines
are inside the NAT and the attacker did not have a vector
into the NAT zone in the base configuration. It took 0.01
seconds to evaluate the base scenario using a population
of 50 chromosomes and 50 maximum generations for the
population. The original and patched attack graph for the
base scenario are shown in Figure 2.

For the Firefox scenario, the suggested course of ac-
tion was to patch the two servers, as before, and to patch
the Firefox vulnerability that gave the attacker a foothold
into the NAT zone. Again, the genetic algorithm was run
with a population of 50 and 50 maximum generations. It
took 0.04 seconds for the genetic algorithm to derive this
recommendation. The attack graph and analyzed attack
graph for this scenario are shown in Figure 3.

For both the malicious student scenario and the rogue
laptop scenario, the suggested course of action was to
patch the two servers, patch the privilege escalation vul-
nerability in the programming lab and patch the remote
to root vulnerabilities in the hardware and advanced labs.
This limits the attacker to just getting user privileges on
the machines via the “student” accounts, since it was not
allowed to disable those accounts. Again, with a popu-
lation of 50 and 50 maximum generations, it took 0.03
seconds for the genetic algorithm to derive these recom-
mendations for each scenario. The attack graphs for the

malicious student scenario are shown in Figure 4 and the
graphs for the rogue laptop are shown in Figure 5.

6.1 Network Design

The three scenarios were also analyzed using the network
design mode. For all scenarios, the most fit solutions
only required new firewall or router rules. None of the
recommendations included placing an IDS sensor for this
data set.

For the Firefox vulnerability scenario, it was assumed
that the vulnerability was just in the general access labs.
The most fit recommendation stated to block Firefox in
the general access labs, since there was no policy rule
stating to avoid this action. Since blocking Firefox was
considered the cheaper course of action, it was recom-
mended over segmenting the NAT zone. With a pop-
ulation size of 250 and 250 maximum generations, the
genetic algorithm was able to find this solution on the
majority of its runs. It took on average 1.3 seconds to
find this recommendation.

For the malicious student scenario, it was assumed the
student just had class in the campus-wide general access
lab. The student was assumed to not have physical access
to the programming, hardware and advanced computa-
tion labs. The most fit recommendation was to segment
the general access labs away from the remaining labs.
Again, a population of 250 and 250 maximum genera-
tions were needed to consistently produce this result. It
took an average of 1 second for the algorithm to run.

For the compromised laptop, the most fit design was to
segment the laptop Ethernet jack at the instructor’s sta-
tion away from the rest of the labs in the NAT zone. As
before, a population of 250 and 250 maximum genera-
tions were needed. It took an average of 1.05 seconds
to calculate. Figure 6 shows the attack graph after the
laptop port has been segmented into a different subnet.

This mode needed a larger population size and a higher
maximum generation limit than finding a patch set be-
cause there were more possible solutions. The number of

76

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

12000

Original
Clustered -
10000 |

8000

6000

4000

CPU Time (seconds)

2000

0 100 200 300 400 500
Number of Hosts in Original Network

Figure 7: The CPU time for running the attack graph
generator and analysis in hardening mode for generated
networks with 5 to 500 machines. The original time is for
the unclustered machines. The clustered time includes
the time it takes to cluster the machines before generating
and analyzing the graph.

edges in an attack graph are far greater than the number
of nodes in an attack graph since most nodes are highly
connected. Determining how to segment the network in-
volves finding the minimal set of edges to cut to discon-
nect the attacker from the goal nodes, while finding a
patch set involves finding a minimum set of nodes to dis-
able. Since there are more edges than nodes, the network
design mode has more possible solutions than deriving a
set of patches.

6.2 Scalability Testing

The simulated network described in [5] was run through
the clustering script, had the attack graphs generated and
then was evaluated using the hardening mode in order to
test the scalability of this approach. Previously in [5],
the tool was tested to a network with 500 unclustered
machines. Those same networks were clustered and run
again.

For both the unclustered and clustered networks, the
proposed hardening measures completely prevented the
attacker from getting root privileges on any machine in
the network. Figure 7 shows the CPU time of the two
methods when the genetic algorithm had a population of
250 and 500 maximum generations. The CPU time is
used for this figure since the results in [5] did not use
a multi-threaded form of the genetic algorithm. Com-
paring the CPU time allows the clustering results, which
do use the multi-threaded algorithm, to be meaningfully
compared to the single-threaded algorithm. It is clear
that with clustering, it took far less time to derive the
hardening set.

Again, the tool was run with multiple values for the

population size and maximum generations. This allowed
the “suggested parameters” matrix to be filled with in-
formation from larger networks than the Computer Sci-
ence instructional lab network. As expected, the smaller
networks needed only small values for these two param-
eters. The largest network tested, which contained 2500
unclustered nodes and 337 clustered machines, needed
a population size of 500 and a maximum generations of
500 to determine a set of patches. It took an hour and
a half on the Xeon quad core 2.33GHz system to ana-
lyze this graph due to the complexity of the graph and
the large genetic algorithm parameters needed to produce
optimal results.

7 Future Work

There are still several areas of improvement for this tool.
The first area of improvement is the gathering of input
data for the tool. Currently, the firewall and routing rules
have to be imported by hand. The next improvement will
be to automatically import firewall rules using tools that
can extract firewall rules from the network. Another area
of input automation is the Nessus plugin ID to abstract
vulnerability mapping. A student is currently working
on a evolutionary technique to scan the plugin descrip-
tion and classify the plugin based on the keywords in the
description. If this works, it should greatly reduce the
maintenance needed for the abstraction mappings. Of
course, another area for input improvement is to support
other vulnerability scanners besides Nessus. This is also
planned for the tool.

The second area of improvement is the attacker model.
Currently, only one attacker is assumed. If one wishes to
model multiple attackers, one needs to run several sce-
narios, similar to what was described in the results sec-
tion. A future improvement is to allow multiple attacker
models for a single attack graph. This will require mark-
ing the nodes to identify which attackers have gained that
node and altering the genetic algorithm to pay mind to
this node marking.

Another area of improvement is the visualization of
the attack graphs. While DOT [3] is nice for small net-
works, it does not visualize large networks well. A better
visualization technique would allow an administrator to
“drill down” into the graph to see more specific details or
“zoom out” to see more general details.

On the analysis side, one desired area of improvement
is to integrate the IDS correlation mode with an intrusion
response system to see if it would be feasible to run the
analysis in real-time and also if doing so would stop an
attacker before they compromised resources. This would
be a very powerful extension to the tool.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 77

8 Acknowledgements

I would like to thank the undergraduate students who
have worked on this project for their hard work. Jonathan
Berling was instrumental in translating the Nessus re-
ports into the appropriate format for attack graph gen-
eration and in assisting with the creation of the scenarios
that were presented in this paper. Fred McHale and John
Millikin played a key role in setting up the isolated net-
work that was used to test the scalability of EVA. I’d also
like to thank the Computer Science network administra-
tor, Steve Garcia, and his student assistant, Nick Tooth-
man, for their help in scanning and modeling the Com-
puter Science instructional network.

References

[1] CLIPS: A Tool for Building Expert Systems.
http://clipsrules.sourceforge.net/.

[Online]

[2] AMMANN, P., WIJESEKARA, D., AND KAUSHIK, S. Scal-
able, Graph-Based Network Vulnerability Analysis. In CCS02:
9th ACM Conference on Computer and Communication Security
(Washington, DC, November 2002), ACM, pp. 217 — 224.

[3] AT&T RESEARCH. Graphviz - Open Source Graph Drawing
Software. [Online] http://www.graphviz.org/, April 2006. Ver-
sion 2.8.

[4] DANFORTH, M. Models for Threat Assessment in Networks. PhD
thesis, University of Califonia, Davis, Davis, CA, USA, June
2006.

[S] DANFORTH, M. Scalable Patch Management using Evolutionary
Analysis of Attack Graphs. In Proceedings of the 7th Interna-
tional Conference on Machine Learning and Applications (San
Diego, CA, USA, December 2008), pp. 300-307.

[6] DAWKINS, J., CAMPBELL, C., AND HALE, J. Modeling Net-
work Attacks: Extending the Attack Tree Paradigm. In Proceed-
ings of the Workshop on Statistical and Machine Learning Tech-
niques in Computer Intrusion Detection (June 2002).

[7] DEWRI, R., POOLSAPPASIT, N., RAY, I., AND WHITLEY, D.
Optimal security hardening using multi-objective optimization on
attack tree models of networks. In CCS ’07: Proceedings of the
14th ACM conference on Computer and Communications Secu-
rity (New York, NY, USA, 2007), ACM, pp. 204-213.

[8] FRIEDMAN-HILL, E. JESS: Java Expert System Shell. [Online]
http://www.jessrules.com. Version 6.1p6.

[9] INGOLS, K., LIPPMANN, R., AND PIWOWARSKI, K. Practical
Attack Graph Generation for Network Defense. In Proceedings
of the 22nd Annual Computer Security Applications Conference
(Miami, FL, USA, December 2006), pp. 121-130.

JAJODIA, S., NOEL, S., AND O’BERRY, B. Managing Cy-
ber Threats: Issues, Approaches and Challenges. Kluwer Aca-
demic Publisher, 2003, ch. Topological Analysis of Network At-
tack Vulnerability.

[10]

[11] JHA, S., SHEYNER, O., AND WING, J. Two Formal Analyses of
Attack Graphs. In IEEE Computer Security Foundations Work-
shop (Cape Brenton, Nova Scotia, Canada, June 2002), pp. 49—

63.

J.TEMPLETON, S., AND LEVITT, K. A Require/Provides Model
for Computer Attacks. In Proceedings of the New Security
Paradigms Workshop (Cork Island, September 2000).

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

MIT PRESS RELEASE. MIT Lincoln
software aims to thwart cyber hackers.
http://web.mit.edu/newsoffice/2008/security-0827.html,
gust 2008.

NOEL, S., JAJODIA, S., O’BERRY, B., AND JACOBS, M. Ef-
ficient Minimum-Cost Network Hardening Via Exploit Depen-
dency Graphs. In Proceedings of the 19th Annual Computer Se-
curity Applications Conference (Las Vegas, NV, USA, December
2003).

PHILLIPS, C., AND SWILER, L. A Graph-Based System for
Network-Vulnerability Analysis. In Proceedings of the New Se-
curity Paradigms Workshop (Charlottesville, VA, 1998).

RITCHEY, R. W., AND AMMANN, P. Using Model Checking
to Analyze Network Vulnerabilities. In Proceedings of the 2000
IEEE Symposium on Security and Privacy (Oakland, CA, May
2000), pp. 156 — 165.

SHEYNER, O. Scenario Graphs and Attack Graphs. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, April 2004.

SHEYNER, O., HAINES, J., JHA, S., LIPPMANN, R., AND
WING, J. Automated Generation and Analysis of Attack Graphs.
In Proceedings of the IEEE Symposium on Security and Privacy
(May 2002), pp. 254 — 265.

SWILER, L., PHILLIPS, C., ELLIS, D., AND CHAKERIAN, S.
Computer-Attack Graph Generation Tool. In Proceedings of the
DARPA Information Survivability Conference and Exposition I1
(June 2001).

TENABLE NETWORK SECURITY.
http://www.nessus.org/.

Laboratory
[Online]
Au-

Nessus. [Online]

WILLIAMS, L., LIPPMANN, R., AND INGOLS, K. GARNET:
A Graphical Attack Graph and Reachability Network Evaluation
Tool. In Proceedings of the 5th International Workshop on Visu-
alization for Computer Security (Cambridge, MA, USA, Septem-
ber 2008), pp. 44-59.

78

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

An Analysis of Network Configuration Artifacts

David Plonka and Andres Jaan Tack
University of Wisconsin-Madison

Abstract

Computer networks and the Internet have become nec-
essary tools in many daily activities; as such, they share
the expectation to be “always on” and highly available.
Throughout a decades-long evolution of increasing re-
liance, campus/enterprise networks and Wide-Area Net-
works (WANs) have been engineered and maintained by
an increasingly large set of skilled practitioners, i.e., net-
work operators or engineers. While strikingly similar to
the evolution of software and software development by
programmers and software engineers, there has not been
similar attention to the discipline of network operations
as there has to that of software engineering.

In this work, we analyze the deployment and operation
of two large networks over a period of five to ten years.
Our analogy-based approach is to apply software source
code artifact analysis techniques to network device con-
figurations. Specifically, we analyze the repositories of
router and switch configurations of both a large cam-
pus and a service-provider network; these repositories
store the actions of hundreds of practitioners maintain-
ing thousands of pieces of equipment over more than ten
years time. Our results expose the evolution of these net-
works both longitudinally in time and by network device
types and topological roles. We reverse-engineer oper-
ators’ work behavior in terms of how they use version
control tools, how they change network device configu-
rations, and how long their changes last in a production
network. Lastly, we evaluate our proposed analogy be-
tween software engineering and network operations, i.e.,
that network operators are programmers, by comparing
and contrasting the analysis of software development to
that of modern network operations.

1 Introduction

The evolution of network engineering and operation has
brought it to the point of being the respected profes-
sion of increasingly skilled practitioners. This evolution

has brought with it tools and techniques which make the
administration of large networks feasible. Networking
practitioners in these large networks use integrated devel-
opment environments (IDEs) to guide and control their
changes and they use source code management tools
to communicate with each other and record a history
of their work. Networks, like software projects, have
“bugs,” i.e., configurations that have negative effects on
the system. Also like software projects, networks are
subject to the culture of its governing practitioners.

An artifact is defined as “any object created by hu-
mans, especially one remaining from a particular pe-
riod.” The software engineering profession has coined
the term, “software artifacts,” to mean specifically any
such object produced by human being during the course
of software development. These artifacts include code,
bug databases, communications, design documents, and
revision histories by Source Code Management (SCM)
and Version Control Systems (VCS). Following from
this, we define network artifacts as anything produced
by network practitioners in the course of their practice.
Matching the world of software, these include device
configurations (code), trouble tickets (“bug” reports),
communications, design documents, and configuration
change histories.

We find the similarity between the software and net-
working professions compelling. It suggests to us that
the two professions may be closely related. However,
whereas software has received a great deal of attention
from the research community with respect to artifacts
and practitioner workflow, the artifacts of network prac-
titioners have gone woefully unstudied. We hypothesize
that, just as the analysis of software artifacts has made an
impact in the software domain, a similar analysis would
be prudent in the networking domain.

We herein propose an analogy-based approach to the
analysis of network artifacts, concentrating specifically
on the VCS repositories of two long-standing networks
as case studies. Our examination makes use of existing

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 79

tools designed for software version histories as well as
our own longitudinal static analysis of device configura-
tions. While we test our hypothesis, we point out that
our approach is unprecedented in the networking com-
munity. Therefore, while we might expect some natural
similarities, we must be prepared to witness patterns in
network practice which do not have obvious counterparts
in software development. It is discovering the extent of
their similarity that is our motivation.

In this paper, we use the following set of terms to refer
to elements of network configuration management repos-
itories and network configurations (similarly to source
code management and software source code):

practitioner regardless of domain, the actor or author
that is responsible for a configuration change. In
the network domain, the practitioner is a network
operator or engineer; in the software development
domain, this is the programmer or software engi-
neer.

revision a file revision expressing a change to a single
device configuration. This is the smallest repre-
sentable change in the systems under study and typ-
ically is the work of one authoring practitioner.

commit a set of one or more supposedly related revi-
sions, submitted for storage in a repository by a
practitioner. In some prior work, the commit is
known as a transaction; we use the CVS command
name, commit, instead. (In this work we used a
window of six hours to coalesce related revisions
with cvs2cl.)

module a component of the system under study. In the
networks we study, the modules are either collec-
tions of devices by similar topological role (e.g.,
core, distribution, access) or by device type (e.g.,
router, switch, firewall, uninterruptable power sup-
ply). In software development a module is typically
is a sub-directory containing a subsystem or a class
of components, such as header files or library func-
tions.

stanza a line, set of adjacent related lines, or a para-
graph of configuration with a common purpose. For
instance, a single interface or access-1list
definition in Cisco’s Internet Operating System
(I0S) configuration language. (See Listing 1 for a
sample IOS configuration fragment.)

LOC lines of configuration. Network devices are typ-
ically configured using a vendor-specific declara-
tive language. This metric is roughly comparable
to lines of code in more general programming lan-
guages.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce the two networks that we study. We
subsequently present, in Section 3, the existing tools that
we applied to our task. We describe the preparation of
the network configuration data in Section 4 and point
out some of the similarities and differences between soft-
ware development and network operations. In Section 5,
we first present the results of processing this repository
essentially as if it contained software source code. Fol-
lowing those results, we introduce two network-specific
analyses and results: (i) revision lifetimes and (ii) stanza-
based activity in Subsections 5.5 and 5.6, respectively.
Section 6 reports on our expert interview-based valida-
tion of our analyses. Lastly, we report related work in
Section 7, propose future work in Section 8, and con-
clude.

2 Networks Under Study

We studied two large networks: a campus network and a
service-provider network.

Table 1 summarizes the characteristics of the two net-
works under study.

2.1 Campus Network

The campus network under study is a very large network,
with approximately 90,000 ethernet access ports and per-
vasive wireless ethernet access in many campus build-
ings. In Table 1 note that the number of operators for
the campus network is very high, 343 in total. This is
due to the fact that the access layer of this network is
partially administered by “authorized agents” employed
in “end user” departments throughout the campus that
use a sort of a network IDE with a web interface to per-
form changes, rather than a command-line interface as
the super-users often use. (AANTS [16] is one example
of such a network IDE.) Of the 343 campus operators,
64 of them are network “super users,” i.e., the most priv-
ileged operators (with similar responsibilities to the 31
operators of the service-provider network). In summary,
the campus network is a large IP and ethernet network,
with a 3-tiered layout: a set of core and distribution layer
routers and switches providing redundant paths to a very
large set of ethernet access layer switches.

2.2 Service-Provider Network

The service-provider network is significantly different
from the campus network. It is a mostly router-based
Wide-Area Network (WAN), with approximately 500
customer sites in nearly as many cities and municipali-
ties. In Table 1, we see that it has been continually op-
erated for more than ten years under the SCM system;

80

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

] Network || Period (years) | Operators (super users) | Files | Revisions | Lines of Code

Campus 5+

343 (64) | 3,839 128,394 2,898,362

Service Provider 10+

31 (31) 519 41,787 163,882

Table 1: Network Characteristics.

actually, the network was created in the late 1980s, and
thus has been operated for nearly 20 years in total. We
also see that there are many fewer operators, and devices
(files) than the campus network. This is to be expected
though, given that it contains almost no access layer
equipment; the customers of this service-provider oper-
ate their own ethernet Local-Area Networks (LANs) and
thus access devices are not part of the service-provider
network under study.

3 Tools

As mentioned above, our goal is to utilize existing tools
to form a database from our repository of RCS files
for the Campus and Service-Provider networks. To this
end, we surveyed and experimented with many freely-
available tools, both from the research and the open
source software developer communities. In general, the
former seemed more applicable to our research, however
the latter were more easily available and functional in
that they were often still currently maintained. For in-
stance, we initially intended to use Bloof [8] because
it was feature-rich and extensible, but we found it un-
satisfactory in that has not been maintained in years,
would not build in our modern development environ-
ments, and was also lacking set-up documentation. Since
most tools were introduced for use with the popular CVS
source code management system, it was convenient that
we were able to directly convert our two networks’ direc-
tories of RCS files to modules within a CVS repository.
(CVS actually uses RCS underneath.)

In this study we used the following existing tools to
analyze both the campus and service-provider network
repositories:

StatCvs-XML StatCvs-XML [3] is a statistics tool for
CVS repositories that generates a hierarchy of
HTML documents and images from CVS log files.
It conveniently supplies a web presentation of both
longitudinal and summary statistics.

cvs2cl cvs2cl [1] is a tool of singular purpose: it con-
verts a cvs log to a more concise “ChangeLog”
file. This is useful to us primarily because it im-
plements the sliding-window algorithm described in
German and Mockus’ work [9], that coalesces indi-

vidual file revisions into the author’s commit trans-
actions.

From the tool selection process, we’ve learned that
there are a lot of tools available but many, while per-
haps useful to practitioners, do not expose enough of the
details (e.g., they only produce bit-mapped graphs rather
than tabular numeric data) to facilitate new analyses.

4 Data Preparation and Transformation

In this work, we report on two case studies each involv-
ing the analysis of a repository of configuration files for
the devices in a large network. Combined, the data com-
prises over four thousand files, maintained over approx-
imately ten years, by hundreds of authors. Furthermore,
the data was managed in two custom network configu-
ration management systems written in 1997; these sys-
tems were similar, and both stored device configurations
in files such as that shown in Listing 1, using the legacy
file revision control system, RCS. Our analyses, how-
ever, expect the data to be in a more modern form. Con-
sequently, perhaps it is not surprising that the raw data
needed to be pre-processed, and then transformed. Here
we describe the ways in which the network configuration
data was prepared for our analogy-based analysis as if it
were source code for large software systems.

4.1 Converting From RCS to CVS

Most of converting an RCS-based repository to CVS is
straightforward because CVS is based on RCS. We sim-
ply created a directory structure of modules and move the
RCS files into that structure. We chose to use modules
which represented the position of each device in the hi-
erarchical topology of a network, e.g., core, distribution,
or access layers.

One limitation of our conversion to CVS is that, be-
cause RCS does not record when a file has been removed,
our CVS repository does not contain file deletions in-
formation, so network device removal is not exposed by
our analysis. While there are some creative proposals for
how this limitation might be addressed (such as using the
final revision date as an approximate removal date), we
chose to simply not report on any devices whose config-
urations were ever removed in the years studied. Overall

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 81

version 12.2

no service pad

service timestamps debug datetime localtime
service timestamps log datetime localtime
service password—encryption

!

hostname s—bldg—5—2—access
!

interface FastEthernetl/0/1
description sample 100Mbps ethernet interface
switchport access vlan 42
switchport mode access

ip access—list extended nodhcpserver
remark Id: ndhcp.acl,v 1.2 2005—05—20 11:26:03 ashley Exp
deny udp any eq bootps any
permit ip any any

5 permit 192.2.0.1

5 remark Allow foo, bar, and baz servers
5 permit 192.2.0.10

5 permit 192.2.0.11

_ /

Listing 1: A representative example of IOS configura-
tion code. Most multi-line stanzas types are separated by
exclamation points.

it is relatively uncommon to remove devices completely;
more often they are replaced, but keep the same device
and file name, so are represented accurately.

4.2 Cleaning the Data

In the course of our analysis work, we discovered a few
interesting features of the data itself. Some of these (in-
cluding some non-printable characters) required manual
attention to permit a clean analysis. Others appeared as
systemic properties of the network revision control sys-
tem, and deserve attention as they would have appeared
as quite distracting anomalies in visualizations of the net-
work history.

For some devices, we discovered revisions where the
change committed removed every line of the configura-
tion. These revisions, then, were immediately replaced
by whole files (as they were before the removal). We
identified the source of this problem as an intermittent
failure of the network devices themselves; these failures
were not handled sensibly by the network configuration
management systems. Although there were a relatively
small number of these “empty” revisions (111 in campus
and 21 in service-provider), they needed to be removed
so that the subsequent revisions would not have all the
configuration lines erroneously attributed to a single au-
thor. We cleaned these sources with the heuristic that
any revision removing 90% or more of the configuration
lines, based on the most lines that had ever been observed
prior, should be ignored. After manual inspectection of
just that subset of candidates, we found that this heuristic

vwrinldad 7zern falee nacitivec and we reamavad all tha arrant

revisions.

Note that the presence of these empty revisions is a
side effect of one major difference between how SCM
is done in network operations versus software develop-
ment. In software development, especially at a large
scale, there are many developers, perhaps in many re-
mote locations, that periodically push their changed files
back to a central repository, from which software re-
leases are subsequently built. By contrast, in network op-
erations, the operators typically operate the SCM system
from one central server and they pull the configuration
file content from the devices’ persistent storage (such as
non-volatile RAM) back to that central repository. While
this push versus pull model is dramatically different, it
has only limited effects on the analysis results. That said,
it is worth remembering that networks typically do not
have full “development” environments (as in software);
the network configuration changes pulled back from de-
vices in the network are immediately in production, if
they weren’t in production already before the revision
was committed. (By contrast, software changes typically
don’t affect a production system until after a software re-
lease.)

4.3 Authors and Author Groups

The campus network had very many active operators at
343 in total. Rather than deal with this overwhelming
number of authors for visualizations, a portion of our
analyses report on groups of operators rather than indi-
viduals. The task of translating the practitioner names
to their corresponding group was non-trivial because, in
ten years, some practitioners had left their jobs, changed
to different groups, or even changed names. However,
we were able to accurately assign practitioners by us-
ing a revision history of their group assignments, kept
as described in [12], combined with expert knowledge of
the operator employees by other employees that had re-
mained for the duration. Manual effort was also required
to combine multiple author (account) names that were
really the same practitioner.

5 Analysis and Results

In this section we present graphical and tabular analy-
sis results and comment on characteristics, prominent
features, and anomalies that are either similar or dif-
ferent between the campus and service-provider net-
works under study. Wherever our results mention user
login names or real names, these names have been

annnuvmizad

82

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

Campus Network
File Count

a000
3750
3500
3250
3000
2750
00

250

Files

2000

1750

1500

1250

1000

750

500

250

Service Provider Network
File Count

525
500
ars
450
azs
400
375
350
325
300
278

Files

250
225
200
175
150
125
100

75

50

s

Sep-1997

Date

()

Figure 1: Campus (a) and service-provider (b) file/device
count over time. These two networks experienced very
different growth rates and changes in rate.

5.1 Network Evolution

First, we present the entire lifetime of each network in
time series, i.e., each network’s evolution in time. While
the active portion of the campus network is approxi-
mately only five years, both networks are shown in an
approximately ten year time range that allows the plots
to be easily compared.

Figure 1 shows the number of devices, such as routers
and switches, that existed at each point in time for
both the campus and service-provider networks. In the
campus graph, Figure la, notable elements include the
growth rate, and its change over time, nearly reaching
4,000 total devices. The shape of this curve suggests
that we’ve captured the network deployment from its in-
ception and that it has gone through periods of differing
growth rates. In the service-provider graph, Figure 1b,

the adoption of the configuration management system is
marked by a sudden increase in device count. There have
been two other prominent increases in new devices, be-
ginning roughly September, 1998 and January, 2006, ul-
timately reaching more than 500 devices in total. Our
expert interview from Section 6 was able to offer an ex-
planation for these events.

In Figure 2 we see a time series plot over that same
time as Figure 1, but here we show the evolution of the
portions of the topology, i.e., by plotting the total LOC
for all devices that serve a particular role in the net-
work. We see in both the campus and service-provider
networks, that the periphery (campus access layer and
service-provider customer sites) are responsible for the
most LOC, and that the peripheral topological layers
most contribute to the overall growth in configuration
content. This is perhaps to be expected as these de-
vices are the most numerous, connecting approximately
90,000 ethernet ports plus wireless access points in the
campus and all the service-provider’s customers. An-
other prominent feature is the addition of management
equipment after January 2007, and firewall devices after
September 2007. However, It is not clear whether these
devices were very quickly deployed or whether they were
merely inducted into the configuration management sys-
tem at this time.

5.2 Activity by Topological Role and De-
vice Type

In Tables 2a and 2b we show how much of each mod-
ule (collections of devices by their topological role) con-
tributes to activity in terms of commits and LOC, for
the campus and service-provider networks, respectively.
One points of interest is that more than 75% of the
commits are performed within each network’s periph-
ery (campus access and wireless, and service-provider’s
customer sites). However, the LOC per commit is quite
different between campus and service-provider. This
suggests that campus/enterprise access switches require
much less fine-tuning than do site routers in this service-
provider WAN. We also see that, in both networks, out-
of-band management equipment and firewall services
represent a much smaller portion of the work, in terms
of commits.

5.3 Author Activity

Figure 3 presents the activity for every practitioner that
authored revisions in the campus and service-provider
networks. Because the number of practitioners involved
in the campus network is clearly overwhelming, we
present the same campus data in Figure 4 based on the
group in which they are employed. Specifically, “net”

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference

83

Module || Commits | LOC | Added LOC | LOC per Commit
campus/access/ || 89833 (70.0%) | 1912430 (66.0%) | 2883860 (68.2%) 21.29
campus/access/wireless/ || 18164 (14.1%) 601836 (20.8%) 657409 (15.5%) 33.13
campus/dist/ 7598 (5.9%) 98921 (3.4%) 143155 (3.4%) 13.02
campusicore/ | 6022 (4.7%) 47272 (1.6%) 97295 (2.3%) 7.85
campus/firewall/ 5557 (4.3%) 120147 (4.1%) 319426 (7.6%) 21.62
campus/mgmt/ || 1220 (1.0%) | 117756 4.1%) | 126903 (3.0%) 96.52
(a
Module || Commits | LOC | Added LOC | LOC per Commit
isp/dist/site/ || 31931 (76.4%) | 92977 (56.7%) | 309604 (55.7%) 291
isp/dist/hub/ 5203 (12.5%) | 28116 (17.2%) 98581 (17.7%) 5.40
isp/border/ 3373 (8.1%) | 18665 (11.4%) 98985 (17.8%) 5.53
isp/firewall/ 445 (1.1%) 12516 (7.6%) 25939 (4.7%) 28.13
isp/mgmt/ 835 (2.0%) 11608 (7.1%) 22434 (4.0%) 13.90

(®)

Table 2: Commits by topological role of the device for campus (a) and service-provider (b) networks.

is the network engineers, “contract” represents the con-
tractors, “noc” is the Network Operations Center (NOC)
staff, “field” the field service agents, “authorized-agents”
are employees in various peripheral campus departments
that are authorized to make access layer changes only,
and “security” is an IT security group. From this pie
chart, we see that the operators responsible for most of
the LOC are network engineers proper. Also, the con-
tractors performed a significant amount of similar work.

In Tables 3a and 3b, we show the top ten most active
practitioners based on their number of commits. Note
also that the LOC per commit is approximately an order
of magnitude different between the campus and service-
provider network operators. This suggests that the cam-
pus, with very many switches rather than routers, is in a
higher state of flux and perhaps recently in a deployment
mode. In contrast, the service-provider network experi-
ences relatively small changes in terms of LOC per com-
mit, perhaps suggesting that it is largely stable and in a
maintenance mode.

5.4 Anomalies

Here, we describe a number of curiosities or anomalies
discovered in the networks studied, solely based upon the
results presented thus far.

5.4.1 Activity by Campus “system” Author

In the campus network, and shown in Table 3a, we can
see that one of the “Top 10” most active authors is the
software system itself (by the name system), rather
than a real person/practitioner. This entry is additionally

interesting in that overall it has removed more lines that
it has added and thus is very different from the real prac-
titioners. Further investigation identified two reasons for
this unexpected significant authorship of changes by the
SCM system itself: (1) some of the operators often do not
“follow the rules,” i.e., they do not commit their changes
in a timely fashion and thus the system sometimes has
to commit their changes implicitly just prior to applying
a subsequent automated change (so as not to mix unre-
lated changes together), and (2) a few operators have dis-
covered an unintended feature of their automated change
system; namely, that they can cause their earlier changes
to be committed implicitly to the version repository. This
avoids those changes being reported as unfinished in a
nightly email report to all operators. Both of these causes
demonstrate to how a VCS can produce both efficien-
cies and inefficiencies in the everyday work flow of net-
work operators. This suggests that the process by which
changes are merged into a network configuration version
control system can be improved. It is an open question as
to whether existing merging techniques from SCM sys-
tems will be similarly effective, but there are certainly
both syntactic and semantic differences between the net-
work device configuration files in a production network
and the source files in software development.

5.4.2 Outstanding Service-Provider Author

Considering the question of which operators perform
most commits, we see in Table 3b that both the most
commits and most of the LOC are authored a sin-
gle, seemingly “super human,” outstanding author, here
named “robert.” This suggests that operator involvement

84

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

Campus Network
Lines Of Code (per module)

2,000,000
1,900,000
1,800,000
1,700.000
1,600,000
1,500,000
1,400,000
1,300,000
1,200,000
1100000
£ Lovoono
500,000
800,000
700,000
600,000
500,000
400,000
300,000
200,000
100,000
5 s
W ampus/dist/ B «ampus/core) W
(a)
Service Provider Network
Lines Of Code (per module)
95,000
50,000
85,000
50,000
75,000
70,000
65,000
60,000
55,000
£ so000
= 45,000
40,000
35,000
30,000
25,000
20,000
15,000
10,000
5,000

W ispfirewall; Wisp/mgmt/ M isp/distihubs

ispidist/site/

(b)

Figure 2: Campus (a) and service-provider (b) LOC by
topological role over time. Most of the LOC are config-
uration of the periphery of each of these networks, i.e.,
the campus access layer and service-provider’s customer
sites.

varies widely amongst networks and amongst individual
practitioners with respect to the tasks of introducing de-
vices (i.e., introducing many LOC of their initial config-
uration) and subsequently managing a network’s device
configurations.

5.4.3 Common Commit Comments

Tables 4a and Tables 4b show the most common com-
ments provided by the operators in the campus and
service-provider networks, respectively. In Table 4a we
see that the second most common comment is “asdf,’
from the home row on a qwerty keyboard, suggesting
it’s a cavalier refusal to supply a meaningful comment.
Further investigation showed that this comment is al-

Campus Network
Lines Of Code (per author)

sara = 38L178]

Kevin = 638,818

Malexander Manne Wannic antonic - berty M bradley © cathy christina M cindy M daniel Mdanny M debbie ¥ deborah Mdon M edwin
Meclizabeth Mirederick Mglenn Wgrace jason Mjim “jimmy "joc Mjose Wjuanita Mjudith M kathryn M kelly Mkimberly M leonard
W micheal © michele mike monicz paula Mray Mraymond Mrence rhonda © samuel Mshannon ¥ steve ©steven Mtiffany Mtom
Miacy Muavis oy Mvictor Myirginia Mwayne ®ann Mbarry O catherine dana M danielle © diane howard Mjanice Mjay Mjeffery
Wjeffrey Mjohn Mjonathan Wjustin Mlauren ©margaret maria M matthew mildred M phyllis Mrebecca Msharon stanley ©aaron
Wamy Wbrian ©ellen joseph Mjosephine Mnicole M pamela M patrick Mrandy M russell Mruth M timothy Mualerie Mvincent craig
®douglas * gail “gloria Mkathleen Wiinda Wmichelle M nicholas Msamantha Mthelma Mvictoria Mwendy © amber brenda ™ carmen
clarence Mdavid Medna M jeremy joann juan Mliisa Mthomas © alice Mdoris Mjackie Mmarcus Mmark Snorma Myvonne Mamanda
Mannette ®jamic lawrence ¥ nancy robert sylvia theodore “julia Mana Wcarclyn Mbarbara M jacqueline M bobby Mjack M laura
Wrosa shawn heather W michael mary Misandra Misheila Mvivian donna ©carl Mcharles ® geraldine © francis M iynn M william
Malbert Wearol W sherry Mroy Mstacy Mpauline wanda M christopher M cleanor henry Mchristine © anita judy Mandrea M helen
Wgilly ®randall Mphilip ®crystal gladys Mdarlene luis jacob ™ jean ~ alan Mmiguel Wcharlotte Mclara donald * george
Mjessica “martin * herbert M frances Mjeff Mjames M megan S veronica Mtina Mjil Mharold ®jane Mfred Mjerry hazel M chris
susan “scott Mtony Meugene Mleroy Mjoshuz Merin Miodd Wrichard Mrita anthony nan Mmarvin - kenneth M carie Weva
Wrorman audrey ©eric Mangela Methel *johnny Mwalter Mronald Mregina Mkeith Mbruce Wandrew M edward Mshidey Mlois
Mgregory ®melvin florence M anna ©emma gerald Mapril Mbranden M ruby Medith Mnathan Mpeggy Msara ashley © kevin

(a)

Service Provider Network
Lines Of Code (per author)

Wjennifer Mmargaret ®paul system edward M george © elizabeth - christopher M richard Mcharles M barbara M kenneth ®john W daniel
¥ Gavid Mbrian M patricia Mmark Mlinda susan Mthomas " joseph " maria Mronald M michael Mwilliam M robert

(b)

Figure 3: Campus (a) and service-provider (b) LOC per
author. In both networks, five authors are responsible for
approximately 75% of the LOC.

ways supplied by only one of the authorized agents us-
ing a web interface to perform changes. Unlike with the
CLI interface, here the comment is required, and thus the
practitioner is forced to supply something. Our hypothe-
sis is that this practitioner likely sees only himself as the
“audience” of the comments, and deems it unnecessary
to exert effort to carefully explain the changes he com-
mits.

In Table 4b we see that nearly 6% of all log comments
are empty. Like the campus “asdf” comment, these
empty comments are being supplied by only a small sub-
set of the practitioners, again perhaps ones that don’t see,
or have never realized, any value from such comments.
In the service-provider environment, the “?” comment
was occasionally supplied by the outstanding practitioner
that performs most of the commits. Further investiga-
tion suggests that he is stumbling across changes made

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 85

’ Author H Commits \ LOC \ Added LOC \ LOC per Commit ‘
ashley || 16430 (12.8%) | 570408 (19.7%) | 952945 (22.5%) 34.72
kevin 9296 (7.2%) | 658818 (22.7%) | 703006 (16.6%) 70.87
system 8164 (6.4%) -6595 (-0.2%) 49117 (1.2%) -0.81
nathan 5257 (4.1%) | 279484 (9.6%) | 329512 (7.8%) 53.16
sara 4790 (3.7%) | 381178 (13.2%) | 410738 (9.7%) 79.58
edith 4755 (3.7%) | 122640 (4.2%) | 134277 (3.2%) 25.79
brandon 4666 (3.6%) 75641 (2.6%) 91540 (2.2%) 16.21
ruby 4626 (3.6%) 99700 (3.4%) | 190530 (4.5%) 21.55
peggy 3958 (3.1%) | 345232 (11.9%) | 365551 (8.6%) 87.22
emma 3483 (2.7%) 54658 (1.9%) 63449 (1.5%) 15.69

(a) Note that the third most active campus author, “system,” is not a practitioner but records automated commit
activity by the configuration management system itself.

| Author || Commits | LOC | Added LOC | LOC per Commit |
robert || 30385 (72.7%) | 85596 (52.2%) | 396634 (71.4%) 2.82
michael | 1480 (3.6%) | 9439 (5.8%) | 16443 (3.0%) 634
brian | 1444 (3.5%) | 3036 (1.9%) | 15698 (2.8%) 2.10
joseph 1431 (3.4%) 6900 (4.2%) 13688 (2.5%) 4.82
linda | 1174 2.8%) | 3716 (2.3%) | 13091 (2.4%) 317
william 1058 (2.5%) 10326 (6.3%) 14566 (2.6%) 9.76
daniel 673 (1.6%) | 2332 (1.4%) 7254 (1.3%) 347
john 628 (1.5%) 1644 (1.0%) 4952 (0.9%) 2.62
kenneth S11(12%) | 1318 (0.8%) 5461 (1.0%) 258
david 459 (1.1%) 2638 (1.6%) 6137 (1.1%) 5.75

(b) Note that the most active service-provider author, “robert,” is a single most outstanding operator that per-

formed more than 70% of the commits and was responsible for more than half of the LOC.

Table 3: Commits by author for the (a) campus and (b) service-provider networks. The bold entries are discussed in

Sections 5.4.1 and 5.4.2.

86

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

Campus Network
Lines Of Code (per author)

contract Mnet

M sccurity M authorized-agents Mfield noc

Figure 4: Campus LOC per author group. We note that
the “net” (network engineering staff) group is responsi-
ble for approximately 80% of the LOC, followed dis-
tantly by contractors, field service agents, and authorized
agents.

by others, and is essentially using the “?” to say that
he’s checking in changes performed by someone else,
for which he does not readily have an explanation. He
thus commits that change, and carries on with his tasks
without having to wait for such an explanation.

These anomalous results of system authorship of com-
mits and common log comments both speak to the issue
of operator conformance with the system used in these
networks. In large part, practitioners appear to use the
tools as intended, and with a high degree of compliance.
However a subset of the operators seem to find it cumber-
some and sometimes find workarounds that make their
tasks easier. Such discoveries can effectively guide new
tools and features.

5.5 Revision Lifetimes

In Figure 5, we see a pair of plots demonstrating revision
lifetimes, or the time from a revision’s appearance within
a file to the first subsequent revision which affects any
of the same lines of configuration. Both plots are for the
campus network (the service-provider network does not
change often enough for this plot to be valuable). We are
particularly interested in short-lived changes, here clus-
tered to the bottom of the graph. Note that this version
history is unique in that it always reflects a production
environment.

In Figure 5a, we are surprised to see that such short re-
visions as to occur within a day or two of each other (sug-
gesting a network “bug”) are treated only during business
days, and very infrequently require overnight attention

Comment Frequency
Initial revision || 1442 (2.8%)
asdf | 584 (1.1%)
test 437 (0.9%)
‘newer bulk checkin’ 411 (0.8%)
change vlan 308 (0.6%)
(a)
Comment Frequency
% empty log message *** || 768 (5.9%)
Initial revision || 350 (2.7%)
router swap || 117 (0.9%)
config cleanup || 107 (0.8%)
? 75 (0.6%)

(b)

Table 4: Top five commit comments for (a) the campus
network and (b) the service-provider network. In each
of these results, garbage comments indicate operator non
conformance and other habits. The bold entries are par-
ticularly unexpected and are discussed in Section 5.4.3.

from network operators even though these revisions are
ostensibly part of the production network.

Figure 5b, essentially the same data on a finer time
scale, tells its own story about change lifetimes from dif-
ferent contributor groups. The net group (squares) repre-
sents super-users on the network, whose access is com-
pletely unrestricted. This group makes relatively few
changes in the ten-minute window shown here. The
other group, authorized agents working at all levels of
the network infrastructure, composes the vast majority
of the plotted points (crosses). These agents make their
changes through a web interface (essentially an IDE for
the network) which automatically checks in the change
as soon as it is applied to the router.

Based on this last observation, we see that we have two
different data sets available to us in the revision history
for the campus network. For network engineers (the net
group), we see a traditional software-like history of com-
mits, where the user commits his changes most often af-
ter he has observed their effect and deemed them a valu-
able contribution. From the commits made by agents,
since they are not privileged to interact with the devices
directly, we actually have a richer version history. Their
history not only includes those changes which survive in
the long term, but also the changes that they make as part
of their efforts from one minute to the next. It is, one
may consider, an extrapolation of revisions to a perfectly
fine granularity of change. Thus, in the recorded history
of this network, we find an artifact which is entirely un-
available from any known software project.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 87

Campus Network

Revision Lifetimes

3.5 . = T *
3 8h [bod bt - Rl et %
. J X S
3ddh T et g : g %
3d % agents | 2* EE PR R
i LBl i v Mt
2 2d20n LRI SRRt % R
5 2d 16h % ¥ .
= 25d : *
£ 2dsh X x5
3 . % X g = a5 i X o
S 2d4n o ais R 4 9
= - % -
g Pl 2 e -@%&ﬁx £sf skt o
 1d20n 3 [< RHERS SR
S 1d16h im0 X ™
k=] a
2 1sd . P -
g I b 3 v i
S 1dsh & " o % %
= 1d4h % a- il gl
e 5 3 3o .7%
£ 20h 5 %
E 16h Bt PR -g AR Y R
12h T R B S Ko
8h . el X Mg 5 XE X
4h o fa -4
0 lo™
facBscKscRsclsPod I IIFI TR0 00 000 0O OO NN N30 %0202 % 0
32 55509899 TS
§§§§§§§w%§§§§§§§§§§§%§§§§§§§§a§%§§§
SUS PO AT U SR ARGt SR AL Gt oAt At sy ATAS
SSICKESSISFEESESSEESESSEE558555 8358

Campus Network

Revision Lifetimes

“““ TN T T R g
2 X
ais X

Figure 5: Campus revisions, time to next modification: 3.5 days (a) and 10 minutes (b).

5.6 Activity by Stanza Type

The relatively simple structure of IOS configurations al-
lows some static analyses which consider stanzas, rather
than lines, as the basic units of change from one revision
to the next. Tables 5 describe the results of this analysis.
These results can guide the creation of tools to manage
the network under inspection: In both cases described
here, we confirm that any service built for the configu-
ration of these network devices would be well-advised
to cater specifically to the management of interface
and global stanzas.

5.7 Discussion

We close this section with our observation about LOC
as a metric for networks rather than software. While we
have not yet done analysis of code complexity, early in-
dications suggest that there are a number of reasons that
numbers of lines of configuration (LOC) is a poor candi-
date as a measure of complexity or work. First, the initial
versions of our configuration files (source code) contain
very many “boiler-plate” lines produced by the network
device itself; attributing these lines of code to the oper-
ator that introduced the device to the network dramat-
ically exaggerates the volume of the work done by that
operator. Secondly, the configuration files are rigidly for-
matted by the device rather than the operator (program-
mer), i.e., it is not a free format language. Thus, the
vendor-specific network device configuration language,
itself, dictates the numbers of lines more so than mod-
ern general software programming languages dictate the
number of lines of program source code.

P X 5%
om » ?:zlmﬂ‘ R x'& 5 % o j;
ot 2R s
- - N K K o B X }&(&.x
sy
i, AP ENR G e (B g o §f Fa
g i it] % B
2 Tigl T B oot Tk
2 5m .‘l é % & % Xl X X X §>‘L o ﬂ%
g §<' > 3 1 2 % o)55 X
£ 4m o % IOl
H AR e N %
g * ! x !-@g“ 3
2m ,&\%.“ . 8 . %
Im % é;‘ 8
o - ¥aNS BOAX
o RS | D8 T Rt e R
OO I I II I LD N DN OO OO ONN AN DL 2D
b bbb kLt ibb bbb L b b
R - -) - POV PO R
SIISSEFIISSEESESRLES ISR FE 55352
(b
Revisions
Stanza Type Total Revisions per Instance
interface 471,238 4
vlan 25,591 1
global 12,534 4
logging 12,390 9
ip 12,006 1
bridge 4,353 1

(a) Campus network: the ratio of interface stanza revisions to
global stanza revisions is 19:1.

Revisions

Stanza Type Total Revisions per Instance

interface 25,288 4
global 11,737 26
ip 8,207 4
line 6,146 14
router 3,974 4
policy-map 2,783 4

(b) Service provider network: the ratio of interface stanza revisions
to global stanza revisions is roughly 2:1.

Table 5: Number of revisions made per each I0S stanza
type, for the campus (a) and service provider (b) net-
works. The global meta-stanza included all unindented
lines at the top of a file, preceding the appearance of any
others in this list.

88

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

6 Validation

This being an initial study of it’s kind, to the best of
our knowledge, we were left to interview domain experts
in network operations to validate our approach. For the
campus network, we interviewed the manager to whom
most of the super-user operators have reported. For the
service-provider network, we interviewed the director.

6.1 Campus Expert Feedback

Here are highlights of the feedback offered by our cam-
pus network expert:

e The top authors by LOC agrees with manage-
ments knowledge of their respective performance,
i.e., these are outstanding practitioners in that they
indeed have the most responsibility for network
equipment deployment.

* The data points, e.g., commit volume and common
comments, would be useful to demonstrate to cus-
tomer departments that we know how authorized
agents use the tools provided.

* The visualizations are useful to show the evolution
of the network’s architecture over time, e.g., the
wireless access deployment and the use of contract
labor to do so.

* The author-specific visualizations, such as activity
by days of week and times of day would be an inter-
esting addition to existing tools, such as the network
IDE provided to the practitioners themselves.

6.2 Service-Provider Expert Feedback

Here are highlights of the feedback offered by our expert
on the service-provider network:

* The file count evolution over time clearly shows in-
flections due to two significant events: (i) a $200M
influx of funding resulting in membership growth
by more than 100 sites and (ii) the merging of the
service-provider network with a similarly scoped
network, resulting in many devices being replaced
(to switch from T1 circuits to 10Mbps ethernet).

* One practitioner, a temporary employee, was re-
sponsible for an unexpectedly large number pro-
portion of the code. However, this coincides with
the person’s role, which was to deploy replacement
equipment. (Consequently, they were responsible
for much of the initial device configuration, thus a
large number of lines of configuration.)

e The similarity between network operations [when
viewed this way] and software development is strik-

ing.

e Common commit comments suggest the need for a
new standard operating procedure that would en-
courage practitioner’s to supply meaningful com-
ments; this would also aid analysis.

* Such linear trends over time were not expected.
There are some events that had significant costs
(such as router replacements by alternate brands)
that do show prominently in the time series graphs.
(This is akin to, perhaps, changing programming
languages in a portion of a software system.)

While clearly a subjective assessment, the feedback
from both experts showed the utility of our results, and
consequently the value of the analogy-based application
of these analyses.

7 Related Work

We are aware of one study in the literature, the recent
work of Sung, et al. [15], that longitudinally examined
network configuration repositories of network devices
such as routers and switches. Similarly, our work also ex-
amines and reports on the configuration changes in mul-
tiple real-world networks over time, examines stanzas by
type, and evaluates results by expert interview. However,
our work differs in that we apply software development
analysis techniques to expose practitioner behaviors and
network evolution over time, whereas they apply differ-
ent data mining techniques to identify correlated config-
uration changes. More generally, our work is informed
by related work in three areas: programming languages,
network management, and systems administration.

The Revision Control System (RCS [17]) is the ver-
sion control sub-system with which the versions of con-
figurations we consider are stored. In [4], Ball, ef al.,
demonstrate some of the uses of the information stored in
such VCSs for software source code. Our work applies
analysis and visualization techniques to expose charac-
teristics of network management in a similar fashion to
that early examination of software development via VCS.
In [7], Draheim and Pekack introduced a freely-available
tool, Bloof [8]. Tools such as Bloof and cvsanaly?2 [2],
introduced in work [14] by Robles, et al., could poten-
tially be used similarly to the one we used (StatCvs-
XML).

In this work, we study repositories of network config-
urations maintained by the Network Configuration Man-
agement System (NetCMS [11]) and AANTS [16]. An
alternative technique often used by network operators is
to retrieve device configurations using RANCID [13, 10]

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference 89

and subsequently store them using tools such as CVS. A
very recent work [5] by Benson, et al., introduces a code
complexity metric for network devices configurations.
Their metric uses attributes including Lines of Code and
inter-stanza references (within and amongst configura-
tion files) to arrive at a numeric measure of complexity;
they subsequently validate their proposed metric by op-
erator interview. In this work, instead, we develop a way
to measure programmer effort by revision lifetimes, but
have not yet used it to evaluate a complexity metric.

There is a large literature concerning the profession
of system administrator and improvement to the pro-
cesses involved in system configuration. System admin-
istrators sometimes similarly use VCSs for their config-
urations [12] and researchers seek to improve configu-
ration management. For instance, Sun and Couch de-
velop a state-machine model of configuration manage-
ment in [6].

8 Future Work

While we have completed an analysis of two ostensibly
different, large networks, the process and results suggest
some directions for future work.

In our consideration of revision lifetimes, we have not
considered the author of the subsequent revision. It may
be useful to classify or characterize practitioners based
upon the lifetimes of the revisions they make. Also, one
might consider whether or not practitioners do a revi-
sion that modifies the configuration that they introduced
in a earlier revision, or whether or not practitioners just
as easily (and often) maintain each others configuration
fragments.

In this work, we did not much consider how the declar-
ative configuration can be influenced by the revising
practitioners intent or style. This because the layout of
the configuration is nearly completely dictated by the
device operating system. However, there are a subset
of stanza types that allow for more variety in the ex-
pression of their purpose. For instance, access control
lists (ACLs) contain statements that can be ordered by
the operator, and multiple orderings and arrangements
can have the same effect; some orderings are likely more
concise or understandable than others. Therefore, it may
be fruitful to consider whether or not some revisions are
simply refactorings, like in software development. Fur-
ther, the identification of cloned configuration fragments
amongst devices, as in code clone analysis of software,
could identify oft used configuration idioms.

Lastly, the goal of measuring effort in terms of revi-
sions lifetimes was to provide a measurement of com-
plexity. For instance, one might wonder which stanza
types are more complex as evidenced by their modifica-
tion (presumable fixes) in rapid succession. We did not

implement nor even propose a complexity metric in this
work, but future work could explore this topic, and de-
termine whether or not certain refactorings are more or
less complex.

Conclusion

In this paper we presented two techniques: (i) an ini-
tial application of software development analysis tools
to network operations and (ii) the beginnings of net-
work operations-specific approach to measuring practi-
tioner effort to guide new tool development. We applied
these techniques in case studies of the network configu-
ration repositories of both a large campus network and
a service-provider network. By analysis and visualiza-
tion, we compared and contrasted the two networks, in-
vestigating the value of metrics (e.g., LOC) and expos-
ing practitioner behaviors when using SCM and IDE-like
tools. Lastly, we evaluated the analogy-based applica-
tion of software development mining tools to the disci-
pline of network operations by performing expert inter-
views. This expert feedback suggests the promise of our
approach as both a technique to visualize the operation
of real networks and as an aid to management and other
stakeholders in understanding where operational effort is
concentrated in large computer networks.

In closing, we have provided evidence that existing
software development analysis techniques are of signif-
icant value when applied in the network operations do-
main. These methods expose practitioner behavior and
essentially show that network operators are program-
mers, at least in their use of similar tools. By analogy
to software development, this suggests that the study of
network operations can effectively inform and direct net-
work management tool development. Our hope is that
the resulting improved tools will liberate the network op-
erator from mundane tasks, will reduce mistakes in con-
figuration, and will enable skilled operators to focus their
efforts more completely on the goal of continually in-
creasing network reliability.

References

[1] cvs2cl. http://www.red-bean.com/cvs2cl/.

[2] cvsanaly2. http://forge.morfeo-project.org/
projects/libresoft-tools/.

[3

[4] BALL, T., MIN KiM, J., PORTER, A. A., AND S1Y, H. P. If Your
Version Control System Could Talk. In In ICSE *97 Workshop on
Process Modelling and Empirical Studies of Software Engineer-
ing (1997).

[5] BENSON, T., AKELLA, A., AND MALTZ, D. Unraveling the
Complexity of Network Management. In NSDI ’09: Proceedings
of the 6th USENIX Symposium on Networked Systems Design and
Implementation (2009).

StatCvs-XML. http://statcvs-xml.berlios.de/.

90

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

COUCH, A., AND SUN, Y. On Observed Reproducibility in
Network Configuration Management. Science of Computer Pro-
gramming 53, 2 (November 2004), 215-253.

DRAHEIM, D., AND PEKACKI, L. Process-Centric Analytical
Processing of Version Control Data. In IWPSE "03: Proceedings
of the 6th International Workshop on Principles of Software Evo-
lution (Washington, DC, USA, 2003), IEEE Computer Society,
p. 131.

DRAHEIM, D., AND PEKACKI, L. The Bloof Project. http:
//bloof .sourceforge.net, 2003.

GERMAN, D., AND MOCKUS, A. Automating the Measurement
of Open Source Projects. In Proceedings of the 3rd Workshop on
Open Source Software Engineering (2003), pp. 63-67.

GouLD, W. Backing up your network with RANCID. http:
//www.linux.com/feature/55873,2006.

PLONKA, D. NetCMS - Network device Configuration Manage-
ment System. http://net.doit.wisc.edu/~plonka/
NetCMS/, 1997.

PLONKA, D. Sys Admin File Revision Control with RCS. SysAd-
min - the Journal for UNIX Systems Administrators (1998), 8-24.

RANCID - Really Awesome New Cisco Config Differ. http:
//www.shrubbery.net/rancid/.

ROBLES, G., KOCH, S., AND GONZALEZ-BARAHONA, J. Re-
mote Analysis and Measurement of Libre Software Systems by
Means of the CVSAnalY Tool. In Proceedings of the 2nd ICSE
Workshop on Remote Analysis and Measurement of Software Sys-
tems (RAMSS), Edinburg, Scotland, UK (2004), pp. 51-55.

SUNG, Y., RAO, S., SEN, S., AND LEGGETT, S. Extracting
Network-Wide Correlated Changes from Longitudinal Configu-
ration Data. In Proceedings of the 10th Passive and Active Mea-
surement Conference (PAM) (2009), Springer, pp. 58—67.

THOMAS, C., AND PLONKA, D. AANTS: Web-Based Tools for
Cooperative Campus Network Administration. In Proceedings of
the Fall 2005 Internet2 Member Meeting, Philadelphia, PA, USA
(2005).

TicHY, W. F. Design, implementation, and evaluation of a Re-
vision Control System. In ICSE ’82: Proceedings of the 6th In-
ternational Conference on Software Engineering (Los Alamitos,
CA, USA, 1982), IEEE Computer Society Press, pp. 58-67.

USENIX Association

LISA ’09: 23rd Large Installation System Administration Conference

91

- @ ~

¢ Reead Swp Home

¥ hitos: f{3ignin.ebay.comfwifeBaiS & ¥ B - Q

U Gefling Marted Labest Meadlines

Enter @@ Password [*]

To protect this site enter your password prefixed with @@
lie 1o protect “password” type "E@Epassword”

Back for moen fun? Sign in now to buy, bid and s, ¢

Join the millions of people who ane almsdy a part of the eBay manags your scoount.

faenity. Don't worry, wa have reom for one mer.

(a)

- ¢ o

Back ¢ Reoad Siep Home

¥ hetpy: [/signin.ebay.com fwa feBaylSAl & ¥ i - Q

Lotling tarted Latmsd bonacilines

B egert il s

A\

- Unprotected Passward Q

This site is curmently unprotected. To add protection to it,
please fog in with your old password and navigate to the
| change passward page. Dnce these enter yous new
| protected passwor d (prefized with @) to enable
protection.
4 Back for mers fun? Sign in now 1o buy, bid and sal, or
manage your sccound]

TRty Don WOy, wa NEve fom 1or one mees.

(®)

Figure 5: User focused password fields: (a) on a protected site, (b) on an unprotected site.

both are sent to the Repository for storage. The new salt
is then used to generate the site password.

3.2.5 Multiple Accounts on One Site

A user can have multiple accounts on a single site, for
example, someone may have two Gmail accounts. Pass-
wordAgent is compatible with this scenario, as it can
use the site’s salt to hash both passwords. In this case,
password uniqueness cannot be guaranteed because if
the user selects the same password for both accounts, the
protected password will also be the same. This is a mi-
nor issue, given that it is a relatively rare scenario. This
issue also exists in PwdHash and Password Multiplier.
Password protection is provided in that a compromised
password on the site with multiple accounts will only ef-
fect that particular site - all other sites are guaranteed to
have unique passwords.

3.2.6 Changing Site Password

The site password can be changed by one of two mech-
anisms. The first is to change the plain-text password as
one would do with a normal password (i.e., “@ @pass-
word” to “@ @newpassword”). The Salt Repository does
not need to be notified in this case, since the salt remains
unchanged. The new password is protected in the same
manner as the old password. This has the advantage of
not requiring the user to learn any new paradigms about
changing passwords. The second is to keep the plain-text
password intact but to change the site salt.

3.2.7 Password Format

Every site has different requirements for passwords.
Some sites require at least one non-alphanumeric char-
acter, while others prohibit them entirely. To allow for
these different formats, the user’s plain-text password is
examined for clues as to the makeup of a valid site pass-
word. If the user does not include a non-alphanumeric
character in the plain-text password, the site password
would not contain one and the site would notify the

Is the website you are currently on in the list below:

amazon.com
google.com
live.com
yahoo.com

) €N

(" Yes

Figure 6: Information dialog that assists users in recog-
nizing phishing sites.

user of the incorrect composition of the password. Any
changes in the plain-text password will be reflected in the
site password, enabling PasswordAgent to generate valid
passwords for all sites without any specific prior knowl-
edge. Such a design was first presented in [31]. While
this technique does leak information about the plain-text
password, it is of little concern because no information
about the salt is revealed. This technique avoids the need
to constantly update a list of composition rules for com-
mon sites on the Internet. This also addresses an impor-
tant usability issue of users being dissatisfied with site
passwords. Users become concerned when sites, like
Hotmail, offer a password strength meter and the site
passwords are rated as medium instead of strong [14]. By
inspecting plain-text passwords for clues, the indicated
strength of a password is directly related to the strength
of the plain-text password. It should be noted that the
actual strength of the site password is greater, even if the
password meter indicates they are the same. A user pro-
vided character string has less entropy than a salted and
hashed version of that string.

3.2.8 Roaming

Roaming can be achieved in one of two ways. A roam-
ing user can either install the Agent as outlined before,
or site passwords can be generated via a web interface

98

LISA ’09: 23rd Large Installation System Administration Conference

USENIX Association

