
Solaris Service Management Facility: Modern
System Startup and Administration

Jonathan Adams, David Bustos, Stephen Hahn, David Powell, and Liane Praza
– Sun Microsystems, Inc.

ABSTRACT

Application uptime is critical to every administrator. The factors which cause system
downtime are often handled by the operating system, but causes for application faults (e.g., software
bugs, hardware faults, or human errors) are not addressed by standard system software. Recovery is
left to humans, who may often compound the problem due to misdiagnosis or simple error. While
availability issues have traditionally been addressed by expensive high-availability clustering
solutions, the increasing complexity of software stacks requires a solution for all systems.

In addition to the challenges of managing availability of higher level software, the modern
operating system itself is composed of many interdependent software entities. A failure in any one
of these components often cascades, causing failures in other components. A complex software
model with many interdependent elements makes diagnosing failures very challenging for system
administrators. The traditional init.d script mechanisms for UNIX are only a weak reflection of the
intricate dependency relationships which exist on every system.

We introduce the Service Management Facility (SMF) as a comprehensive way to describe,
execute, and manage software services. SMF promotes the service to a first-class operating system
entity, without requiring modification of application binaries or changes to the UNIX process
model. It relieves the administrator from duties of application failure detection and restart, and
provides sophisticated diagnosis tools when automatic repair is impossible.

Introduction

As software running on a system becomes more
complex, the traditional separation of management of
system startup from run-time management becomes
untenable. The reliability of modern hardware, coupled
with the ever-increasing complexity of modern software
means that applications are just as likely, if not more
likely, to be the point of failure on a system. Reboots
are costly, especially on sophisticated hardware.

A system administrator is expected to ensure that
critical applications are always running. This is some-
times done by manual monitoring or an expensive to
maintain home-grown tool, or the administrator is
expected to turn to software not well integrated with the
operating system – either sophisticated monitoring pack-
ages, or expensive and often complex high-availability
clustering software. The unbundled solutions usually
also focus on higher level applications, and can neglect
potential failures of core operating system daemons.

But, even higher level applications do not stand
on their own. In order to provide business-critical
functionality, often two or more pieces of software
must be working and cooperating closely together.
Failure of even a less critical application can have
unforeseen consequences in important software.

In addition to basic availability concerns for soft-
ware services, the service management model needs to
be significantly enhanced. Without a common model and

interface, it is very difficult to ask the system even basic
questions such as: ‘‘what’s running?’’, ‘‘what’s broken?’’,
and ‘‘what applications are available on this system?’’.

Application management is a fundamental task
of all administrators: managing applications should
not require a bolt-on solution. Driving the service
management interface into the operating system also
brings significant benefits through encouraging evolu-
tion of core operating system functionality to support
the service, and creating a truly common interface for
all user software: operating system daemons and third
party products alike.

The UNIX service management model has not
evolved significantly beyond the traditional process
model coupled loosely with service startup scripts, and
is stretched in trying to meet modern system adminis-
tration demands. The lack of functionality is costly for
administrators, who must spend significant effort
monitoring and managing systems that provide no fun-
damental abstractions to allow this.

SMF directly addresses all of these administra-
tion gaps and provides an integrated solution for ser-
vice delivery and management on UNIX systems.
SMF defines a fundamental service model which is
used to control system startup, introduces a manage-
ment interface for system and application services,
and delivers diagnosis and restart capabilities for all
services to maximize application availability.

19th Large Installation System Administration Conference (LISA ’05) 225

Solaris Service Management Facility: Modern System Startup and Administration Adams, et al.

Background and Related Work

The traditional System V and BSD style init.d/rc
systems provide an extremely flexible mechanism for
initiating arbitrary processes during system startup.
For all of the flexibility provided, a number of defi-
ciencies are apparent. We’ll enumerate these deficien-
cies in terms of the System V implementation, but
analogous problems exist in the BSD style system.

• No systematic way to list services. As the init.d
system does not even encourage, much less
enforce a 1:1 mapping of system services to
init.d scripts, a simple ls of rc directories is never
sufficient to get a full list of services provided
by the system. The services required to start
core operating system components are often the
most opaque to the administrator.

• No persistent mechanism to indicate to the sys-
tem whether a service should be running or not.
Upgrade of software components often updates
or even re-creates the corresponding rc script,
overwriting administrative customizations such
as attempts to disable the service.

• No formal dependency management interfaces.
System components are usually very sensitive
to ordering changes. The System V lexico-
graphical ordering provides some latitude for
the third-party service. Service developers can
have their script run at a certain point during
startup (before some services and after others)
by giving the script an appropriate name. But,
the lack of explicit dependency specification
for a service makes modifications to the order-
ing of core system services fragile, and leads to
unexpected behaviour.

• Incomplete manual restart capabilities. The
individual init.d scripts are not necessarily
stand-alone or idempotent. The administrator is
not expected to execute all of the init.d scripts
manually, so there is no simple way to restart
many individual services without understanding
the intricacies of their implementation. Closely
cooperating services compound the problem;
restart of one may require restart of its closely
coupled dependent services. The init.d system
provides no mechanism to determine service
interdependencies, so significant administrative
expertise is required to restart individual ser-
vices without a reboot.

• Nonexistent automatic restart capabilities. The
init.d system does not include automatic detec-
tion and restart of failed components. Detection
and restart is left to orthogonal mechanisms
such as inittab and inetd.conf.

• Lack of correlation between processes and ser-
vices. Services are becoming increasingly
sophisticated; the traditional UNIX model of a
single daemon process as the entirety of a ser-
vice is no longer adequate. Multiple processes

are correlated into service boundaries by admin-
istrative expertise rather than being programmat-
ically represented as a first-class object. The
UNIX process model complicates the analysis –
daemons are often reparented to init and lose
their parent-child association in the process tree.

• Ticking configuration time bombs. There is no
formal association between the current status of
the system and the expected state when the sys-
tem is restarted because starting a service has
no impact on its settings on reboot. In addition,
there is no systematic way to determine current
versus configured state, so a reboot often leads
to unpleasant surprises due to un-configured or
mis-configured services.

For rigidly specified service models, such as
inetd, the deficiencies can be more easily addressed.
However, a complete system management architecture
must provide a model sufficiently rich for all system
services. SMF addresses each of these deficiencies for
general software services.

Previous work in this area aims primarily to
improve deficiencies of the init.d/rc system in system
startup and manual service enable, disable and restart, up
to and including a more formal statement of dependen-
cies [1, 2, 3]. This work helps administrators gain better
visibility into system service configuration and provide
slight enhancements to administrative tools. However, if
application availability is the crucial measurement, these
sorts of enhancements only aid insofar as they slightly
reduce the chances of administrative error.

Some recent efforts [4, 5] are more sophisticated
and include simple service restart. The service can be
restarted either when requests for that service come in,
or restarted when the service exits unexpectedly. How-
ever, these efforts assume a single process is the pri-
mary provider of service, which is insufficient for a
large class of business-critical applications.

Design Principles

Altering system service management is guaran-
teed to cause a change in administrative procedures.
Changing something as fundamental as the init.d system
requires administrators to spend time learning the new
management paradigm. Thus, we took an ambitious
approach so that the significant changes happened all
together, rather than creating an incremental education
cost over many software releases. The redesign of ser-
vice management procedures must be comprehensive,
and consider the full range of administrative proce-
dures, software errors, and hardware errors.

The most fundamental requirement of this work is
a simple, common model for all services. Services must
be able to encompass nearly all capabilities of the system
– simple daemons, network services, complex databases,
and even non-process-based services such as dump
device configuration. The management framework must

226 19th Large Installation System Administration Conference (LISA ’05)

Adams, et al. Solaris Service Management Facility: Modern System Startup and Administration

be flexible enough to allow common actions to be done
easily and with no required administrative knowledge of
the service implementation. A common model for all
application and system services is required in order to
thoroughly leverage administrator expertise; an admin-
istrator should be able to manage syslogd using the same
basic commands as telnetd.

The service model must be extensible. New
types of services, increased diagnosability, and
expanded meta-configuration should be easy to sup-
port with no required enhancements to existing service
descriptions.

Relationships between services are more com-
plex than start time requirements. Many services are
written carefully to be resilient to failure of their
dependencies. For example, a well written networking
application does not need to be restarted when a tran-
sient nameservice failure occurs. However, starting
even a defensively-coded application without name-
service availability is usually futile. Thus, a rich
dependency declaration is required to encompass both
startup and failure scenarios.

Services then are restarted according to their
dependencies following either hardware or software
failure. A service restart must be attempted following
any type of failure, such as a critical process exit, an
uncorrectable memory error or other hardware error, a
software coredump or premature exit, or an admin-
istrator accidentally killing the wrong process. Any
dependents of that service must be restarted if they
specify intolerance to dependency failures.

When a service cannot be automatically repaired
after a fault, the system must provide significant aids to
manual diagnosis, and trace failure back to the respon-
sible component. When software failures can be traced
back to the initial fault, this information as well as as
much data as possible about the specific fault must be
provided to the administrator so that he can spend his
time repairing the fault rather than debugging an error
in a dependent service. For example, if an application
cannot start because the filesystem containing the
application data was unable to mount, the system
should point to the filesystem as the root cause of the
fault, rather than incorrectly indicting the application.

The other critical component of a service man-
agement interface is its handling of service configura-
tion data. We identified a set of meta-configuration,
which is similar across a large set of services. For
example, one critical pieces of meta-configuration
captures whether a service is supposed to be running
on a specific system. Common tools should be pro-
vided for meta-configuration, while still retaining the
flexibility for services to provide their own complex
application-specific configuration.

Meta-configuration must be available via a com-
mon command set and API across all services. This
allows rapid development of higher-level administra-
tion tools which need no application knowledge to

perform common tasks. Service-specific configuration
can also be stored in a format accessible by this API,
but the choice to transition to the new configuration
store is up to the application developer depending on
their compatibility requirements. Through the com-
mon commands, configuration rollback is provided.
An administrator should be able to undo configuration
or meta-configuration changes which rendered a ser-
vice unstartable.

A few constraints were also required for a practi-
cal implementation in an operating system with strong
compatibility requirements:

• No application binary changes required for
basic participation in the framework.

• Compatibility for existing init.d services. The
vast majority of services must continue to
work, to account for lag time in new feature
adoption by software developers.

Extending UNIX Processes to Software Services

SMF formalizes software ‘‘services’’, and intro-
duces the tools to create, observe, manage and auto-
matically restart them. A service is a long-lived soft-
ware object (typically, a daemon) with a name, a clear
error boundary, start and stop methods, and depen-
dency relationships to other services on the system.

A service may be composed of zero, one, or
many processes. A comprehensive software service
model must allow all of these process models, and
take each into account when defining failures. We’ll
first consider a typical UNIX service which only has
one process. These services are relatively straightfor-
ward to manage and monitor. The single process
makes process-to-service mapping easy to understand,
as no complex lineage from parents to children needs
to be tracked. If the process exits, the service is no
longer being provided and must be restarted. Still,
without a new mechanism to track process faults, most
monitoring implementations would require services
forgo the traditional reparent-to-init step.

Even simple services can consist of multiple pro-
cesses. For example, the Sendmail service usually
includes two processes. Failure of either process
should cause the service to be restarted. Traditional
models for determining the relationship between these
two processes fall down: they both re-parent them-
selves to init, breaking monitoring implementations
which rely on the parent-child relationship. Aside
from the process name, it is difficult to tell they’re
both part of the same service.

Finally, we have a set of services which only
appear transiently during the startup process. Usually,
they exist to execute a command or small set of com-
mands which change configuration state, such as
informing the kernel about certain configuration
parameters. It is important for SMF to understand a
priori that a lack of long-running processes in these
transient services does not constitute a fault.

19th Large Installation System Administration Conference (LISA ’05) 227

Solaris Service Management Facility: Modern System Startup and Administration Adams, et al.

In order to monitor the health for all three types
of services, SMF introduces a kernel interface called a
contract. A process contract allows a userland process
to register an interest in a process and all of its chil-
dren. The process receives reliable events when
important changes occur, such as when all processes
in the contract exit, a hardware error occurs in any of
the processes, any processes in the contract coredump,
or any process in the contract receives a fatal signal.
All processes on the system must belong to a process
contract, and all children of a process are part of the
same contract until one creates a new contract.

Service restarters are responsible for managing
software services. A restarter can use process con-
tracts to receive and respond to fault events for a ser-
vice. Usually, a restarter will write a process contract
for each new service it creates. Thus, events for each
service will be sent individually to the restarter, where
it can make decisions about how to respond to contract
events and administrative requests. Each process can
fail separately, but it is the restarter’s job to decide
how a process failure should affect the service.

Figure 1: Contract model for software services.

A restarter determines how to interact with a ser-
vice through its meta-configuration, which is stored in
the SMF re p o s i t o r y. The SMF repository stores persis-
tent configuration and meta-configuration values as well
as shorter-lived status information about each service.
Each service has a common set of meta-configuration:

• The service name, in the form of a Fault Man-
aged Resource Identifier (FMRI) is the unique
identifier of the service on the system. The full
FMRI for the sendmail service is: svc:/net-
work/smtp: sendmail, but abbreviations like
‘‘sendmail’’ are available for interactive use.

• Service dependencies specify the relationships
between services.

• Method specifications tell the restarter how to
invoke the services, and may include invoca-
tions for start, stop, etc.

• The restarter defined by the service is responsi-
ble for starting, stopping, and restarting the ser-
vice. Most services are managed by the default
restarter, svc.startd. We’ve also implemented
inetd as a service restarter.

• Services can optionally include localized,
human readable descriptions and documenta-
tion references.

A service may also use the SMF repository to
store simple configuration information. This allows
application and system service developers to avoid
maintaining configuration file parsers for small, sim-
ple configurations.

We developed a comprehensive state model for
managing services, which are always in one of the fol-
lowing states: uninitialized, offline, online, degraded,
disabled, and maintenance. These states have a consis-
tent definition regardless of the service model.

State Significance
Uninitialized The initial state for all services.

After evaluation by its restarter, the
restarter will move the service to a
maintenance, offline, or disabled
state.

Disabled The service has been disabled and
is not running.

Offline The service is enabled, but is not
yet running. Often, a service will
remain offline due to an unsatisfied
dependency.

Online The service is enabled, has started
successfully and is currently run-
ning.

Degraded The service is enabled, currently
running but may be functioning at
a limited capacity (e.g., reduced
performance). The precise defini-
tion of degraded is service-specific.

Maintenance The service is unavailable and can-
not be automatically repaired by
SMF. Administrative intervention
is required to repair the service and
clear the fault.

Table 1: State model for managing services.

Services transition between these states either
because of administrative action (system startup, service
enable, service disable), or service error (core dump,
starting too rapidly, hardware fault). The service’s abil-
ity to transition to a given state is always additionally
influenced by the states of its dependencies.

To implement the service state model, SMF
includes service restarters, which are themselves system

228 19th Large Installation System Administration Conference (LISA ’05)

Adams, et al. Solaris Service Management Facility: Modern System Startup and Administration

services (and hence subject to the state model). In our
current work, a master restarter (svc.startd) and one del-
egated restarter (inetd) have been developed. While
each of these are concerned with the restart of UNIX
processes, the restarter architecture also allows imple-
mentation of non-process-based service models [6].
Each service restarter is responsible for defining appro-
priate transitions between the available SMF states.

Figure 2: svc.startd state transitions.

Service Development

The meta-configuration and other simple service
configuration are delivered onto the system by a small
XML file, known as a service manifest. When the sys-
tem starts up, the individual manifests are imported
into the main SMF repository. The configuration of
the system, including administrative customizations
and run-time service data is stored in the repository
and accessed by a common set of commands and
APIs. The repository also provides the transactional
semantics required for recovery on failure as well as
the previous configuration snapshots which allow for
configuration rollback.

In order to deliver an SMF-aware service, the
administrator or software developer is required to cre-
ate a service manifest. The manifest must include the
meta-configuration for the service: a service name, the
required methods, all dependency information, docu-
mentation references, and any other configuration to
be stored in the repository.

SMF currently provides two restarters: svc.startd, the
master restarter, and inetd, the inet service restarter. Both
restarters require service definition through a manifest.

To provide a smooth upgrade path, service mani-
fest creation can be an automatic step for inetd.conf ser-
vices. We provide the inetconv utility to convert
entries from inetd.conf to service manifests on operat-
ing system upgrade and allow administrators to con-
vert entries subsequently added to the file. This is
made easy by the well-specified service model for
inetd services, and the fact that their dependencies are
well known: inetd itself must be started, and rpc ser-
vices require rpcbind.

Manifest creation for init.d scripts remains a man-
ual process. The set of information required is well-
defined, however two specific questions cannot be
answered programmatically:

1) What are this service’s dependencies? While
we might be able to imagine a run-time checker
or code analyzer for dependencies, these depen-
dencies are often subtle and strongly tied to
configuration. Automatic application depen-
dency analysis would be a fascinating research
topic of its own.

The service author is usually best equipped to
define the dependencies precisely. However,
any consumer of the service can usually specify
a dependency set that is sufficient for normal
operation.

19th Large Installation System Administration Conference (LISA ’05) 229

Solaris Service Management Facility: Modern System Startup and Administration Adams, et al.

2) What is this service’s runtime behaviour? Does
it have long-running processes that must be
monitored, or is a lack of associated processes
considered normal?

<service_bundle type=’manifest’ name=’SUNWcsr:utmpd’>
<service

name=’system/utmp’
type=’service’
version=’1’>

<create_default_instance enabled=’true’ />

<single_instance/>

<dependency
name=’milestone’
grouping=’require_all’
restart_on=’none’
type=’service’>
<service_fmri value=’svc:/milestone/sysconfig’ />

</dependency>

<dependent
name=’utmpd_multi-user’
grouping=’optional_all’
restart_on=’none’>
<service_fmri value=’svc:/milestone/multi-user’ />

</dependent>

<exec_method
type=’method’
name=’start’
exec=’/lib/svc/method/svc-utmpd’
timeout_seconds=’60’ />

<exec_method
type=’method’
name=’stop’
exec=’:kill’
timeout_seconds=’60’ />

<stability value=’Unstable’ />

<template>
<common_name>

<loctext xml:lang=’C’> utmpx monitoring
</loctext>

</common_name>
<documentation>

<manpage title=’utmpd’ section=’1M’ manpath=’/usr/share/man’ />
<manpage title=’utmpx’ section=’4’ manpath=’/usr/share/man’ />

</documentation>
</template>

</service>
</service_bundle>

Figure 3: utmpd manifest.

The service manifest author is required to specify
dependencies in the manifest. Dependencies define ser-
vice startup order as well as the restart relationships
between services. A dependency is said to be satisfied
if all conditions of its definition are met. There can be
multiple dependencies for each service and each depen-
dency may declare interest in multiple services. Two
attributes of a dependency aside from the actual ser-
vices in the dependency must be defined. The grouping
specifies how the state of the services specified in the

dependency are evaluated to determine whether a
dependency is satisfied:

• require_all: all named services are running
(online or degraded)

• require_any: at least one named service is run-
ning (online or degraded)

• optional_all: all named services must be either
running (online or degraded), disabled, in main-
tenance, or not present on the system

• exclude_all: all named services must be either
disabled, offline, in maintenance, or absent

The restart_on property determines which events
should cause the service to be stopped:

• none: required only when the service is started

230 19th Large Installation System Administration Conference (LISA ’05)

Adams, et al. Solaris Service Management Facility: Modern System Startup and Administration

• error: stop the service if the dependency fails due
to hardware, software or administrative error

• restart: stop the service if the dependency stops
for any reason

• refresh: stop the service if the dependency stops
or is refreshed

Explicit dependency specification makes parallel
service startup easy, regardless of whether the system is
booting for the first time, or if a set of services had failed
and are being restarted. Services are always started as
soon as their dependencies are satisfied, so maximum
parallelism for starting services is always achieved.

Unifying application deployment also provides a
single location for access to advanced features. A ser-
vice can be run with limited Privileges [11], or as an
unprivileged or non-root user. Service management
privileges may be given to authorized users without
giving them full root access. A service may be bound
to specific resource management limit and goal sets.
All of this can be specified as service configuration
with no code changes to the application itself (see Fig-
ure 4). Management of Solaris Zones [9] is simpler as
SMF is available to each zone administrator.

svccfg -s <svc> setprop start/user = astring: daemon
svccfg -s <svc> setprop start/group = astring: daemon
svcadm refresh <svc>
svcadm restart <svc>

Figure 4: Configuring a service to run as ‘‘daemon’’ user and group.

$ svcs
STATE STIME FMRI
[...]
legacy_run May_02 lrc:/etc/rc3_d/S81volmgt
legacy_run May_02 lrc:/etc/rc3_d/S84appserv
legacy_run May_02 lrc:/etc/rc3_d/S90samba
online May_02 svc:/system/svc/restarter:default
online May_02 svc:/network/pfil:default
online May_02 svc:/network/loopback:default
online May_02 svc:/system/filesystem/root:default
online May_02 svc:/system/filesystem/usr:default
[...]

Figure 5: Abbreviated svcs output, including legacy services.

$ svcs -x
svc:/network/smtp:sendmail (sendmail SMTP mail transfer agent)
State: maintenance since Tue May 10 18:35:41 2005
Reason: Method failed repeatedly.

See: http://sun.com/msg/SMF-8000-8Q
See: sendmail(1M)
See: /var/svc/log/network-smtp:sendmail.log

Impact: This service is not running.

Figure 6: Checking the sendmail service.

Service Administration

The primary benefit a unified service manage-
ment framework brings to system and service adminis-
tration is a meaningful system-level view of all critical
applications (see Figure 5). Services in an unexpected
state are sorted at the bottom of the output for simple
human consumption.

A primary goal of the SMF administrative model
is to make common questions about services easy to
answer and make common system administration
tasks simple to perform. To evaluate the simplicity of
the SMF model, the following provides examples of a
few of these questions that were particularly difficult
to answer in the init.d and inetd models prior to SMF.

What processes make up this service?
$ svcs -p sendmail
STATE STIME FMRI
online May_06 svc:/network/smtp:sendmail

May_06 9456 sendmail
May_06 9458 sendmail

What’s wrong with my system? (This will be covered
in more detail in the next section.) See Figure 6.

What services does my service require in order to
start? See Figure 7.

Which services won’t be able to run if I disable this
service? See Figure 8.

What services are available on this system? See Fig-
ure 9.

Messaging is also under the control of the
administrator rather than the service. Messages previ-
ously emitted to console are stored in a per-service
logfile, where they can be perused as part of post-
mortem debugging or other diagnosis. They won’t be
lost to an insufficient terminal buffer size.

SMF defines a specific set of common adminis-
trative actions which can be applied to services:

19th Large Installation System Administration Conference (LISA ’05) 231

Solaris Service Management Facility: Modern System Startup and Administration Adams, et al.

• enable – Mark the service as enabled and start
the service after all dependencies are satisfied.

• disable – Mark the service as disabled, stop the
service, and do not allow it to start again.

• refresh – Reload service configuration and run
the service’s refresh method (if a refresh
method is defined by the service).

$ svcs -d sendmail
STATE STIME FMRI
online Aug_12 svc:/system/identity:domain
online Aug_12 svc:/system/filesystem/local:default
online Aug_12 svc:/network/service:default
online Aug_12 svc:/milestone/name-services:default
online Aug_12 svc:/system/filesystem/autofs:default
online Aug_12 svc:/system/system-log:default

Figure 7: Determining services needed by sendmail.

$ svcs -D system-log
STATE STIME FMRI
disabled Aug_12 svc:/system/auditd:default
disabled Aug_12 svc:/application/print/server:default
disabled Aug_12 svc:/network/rarp:default
online Aug_12 svc:/milestone/multi-user:default
online 5:55:34 svc:/network/smtp:sendmail

Figure 8: Determining services which require system-log’s.

$ svcs -a
[...]
disabled Aug_12 svc:/network/iscsi_initiator:default
disabled Aug_12 svc:/system/metainit:default
disabled Aug_12 svc:/network/ipfilter:default
disabled Aug_12 svc:/network/rpc/nisplus:default
disabled Aug_12 svc:/network/nis/server:default
disabled Aug_12 svc:/network/ldap/client:default
[...]

Figure 9: Available service listing.

$ id
uid=37436(lianep) gid=10(staff)
$ grep lianep /etc/user_attr
lianep::::auths=solaris.smf.manage
$ svcs sendmail
STATE STIME FMRI
disabled 18:51:56 svc:/network/smtp:sendmail
$ svcadm enable sendmail
$ svcs sendmail
STATE STIME FMRI
online 18:52:43 svc:/network/smtp:sendmail
$ svcadm refresh sendmail
$ svcs sendmail
STATE STIME FMRI
online 18:52:55 svc:/network/smtp:sendmail
$ svccfg -s sendmail delpg autofs
svccfg: Permission denied.

Figure 10: Delegating service management authorizations.

• restart – Stop the service, then start it after its
dependencies are satisfied.

• clear – Mark a service in the maintenance state
as repaired, and if it is enabled allow it to start
after all its dependencies are satisfied.

Administrators use svcadm to perform these
administrative actions. Administrative intent is always

preserved; disabling a service is guaranteed to persist
across even patch and upgrade boundaries, where that
was difficult in the past. The separation of administrative
action and service state allows easier evaluation when
system state doesn’t match the administrative desire.

The use of a single API to take administrative
action and change service configuration allows one
point for security enforcement. Thus, SMF interoper-
ates intimately with Role Based Access Control [11]
mechanisms. It is easy to give a user just the ability to
take action on a service (e.g., restart the service), but
not change the service’s configuration (see Figure 10).
An administrator may also delegate authorizations with
more granularity, giving privilege for an application

232 19th Large Installation System Administration Conference (LISA ’05)

Adams, et al. Solaris Service Management Facility: Modern System Startup and Administration

administrator to only manage and change the configura-
tion of a single service [10].

Finally, system security can be easily configured
by creating a profile, which explicitly specifies which
services are enabled and disabled on a system. To sat-
isfy the common system configuration goal of no
unencrypted network login services running, we pro-
vide the limited networking profile. Applying this pro-
file explicitly disables all unencrypted network login
services and enables other important services like ssh
(see Figure 11).

svcs telnet
STATE STIME FMRI
online 17:49:15 svc:/network/telnet:default

cd /var/svc/profile/
cat generic_limited_net.xml
<service_bundle type=’profile’ name=’generic_limited_net’

xmlns:xi=’http://www.w3.org/2003/XInclude’ >
[...]
<service name=’network/ssh’ version=’1’ type=’service’>
<instance name=’default’ enabled=’true’/>

</service>
[...]
<service name=’network/telnet’ version=’1’ type=’service’>
<instance name=’default’ enabled=’false’/>

</service>
[...]
</service_bundle>

svccfg apply generic_limited_net.xml
svcs telnet
STATE STIME FMRI
disabled 17:49:40 svc:/network/telnet:default

Figure 11: Viewing and applying the limited network profile.

$ svcs -xv
svc:/system/filesystem/local:default (Local filesystem mounts)
State: maintenance since Tue Sep 27 19:03:43 2005
Reason: Start method exited with $SMF_EXIT_ERR_FATAL.

See: http://sun.com/msg/SMF-8000-KS
See: /var/svc/log/system-filesystem-local:default.log

Impact: 23 dependent services are not running:
svc:/system/sysidtool:net
svc:/network/rpc/bind:default
svc:/network/nfs/status:default
svc:/network/nfs/nlockmgr:default
svc:/network/nfs/client:default
svc:/system/filesystem/autofs:default
[...]

Figure 12: Service diagnosis of filesystem mount failure.

Service Diagnosis and Self-Healing

svcs -x is a quantum leap forward in diagnosing
problems with systems. It provides a very powerful par-
adigm. It describes what’s going on in plain language
with simplified output. It includes documentation refer-
ences, as direct access to more information speeds the
repair process. It points to an online knowledgebase;
the website link included in the output contains the
most up-to-date information on how to resolve the

specific problem seen. Finally, svcs -x gives an assess-
ment of the impact of each problems. If the specific
issue effects no other services, that is stated explicitly.
If other services are affected, svcs -xv will list them.

As the system (through dependency information)
can determine the root cause of the problem, it can
point the administrator directly to the component that
must be repaired (see Figure 12).

In many cases, though, the administrator never
needs to handle an error manually. Failure of a service
due to hardware error, software bug, or administrative
error can usually be resolved by restarting the service.
This is handled automatically, with no administrative
intervention. SMF also logs the error cause, to the
extent it is known at the time of failure. This automatic
recovery significantly reduces administrative costs.

To implement service restartability, SMF needed a
way to detect when an error occurred in the service.
Contracts provide a generic mechanism to express a
relationship between a process and the kernel-managed
resources it depends upon. The process contract allows

19th Large Installation System Administration Conference (LISA ’05) 233

Solaris Service Management Facility: Modern System Startup and Administration Adams, et al.

development of sophisticated restarters, which create a
fault boundary around a set of processes, and receive
and respond to events on processes within that boundary.

Implicit in service recovery is that the framework
itself must also be fully restartable in the face of fail-
ures. An error of any user-land framework component
all the way back to init can be caught, and the frame-
work component itself will be restarted (see Figure
13). A transactional repository is required in order to
implement the algorithms which recover from failure
at any point.

Figure 13: SMF framework restart relationships.

Systems with sophisticated hardware error han-
dling [7] make software recovery after error even
more critical. Prior to SMF, the operating system
developer when handling a hardware failure was given
only a few unenviable options: kill the affected
process and risk cascading failure, or restart the entire
system. The operating system could not determine the
broader effect of a faulted cell on a DIMM without
inter-service dependency information. SMF manages
error flow between services so that failures can be
handled gracefully, by shutting down only affected
processes and services which depend upon them.

Availability

The first version of the Service Management
Facility is an integrated component of the Solaris 10
Operating System, released in January 2005. Themost
recent copy of Solaris may be obtained free of charge
at http://www.sun.com/software/solaris/ .

The Service Management Facility is also an inte-
gral part of OpenSolaris, which may be downloaded as
source or binaries at http://opensolaris.org/os/ . The
OpenSolaris SMF community contains information
and discussion about service development and man-
agement in Solaris and OpenSolaris: http://opensolaris.
org/os/community/smf/.

Experience

The first proof of concept and vetting of the
design occurred when transitioning approximately 100
system services from their init.d script components into
SMF. We wanted to confirm certain aspects of the
SMF design, as well as take advantage of SMF bene-
fits for Solaris service administration. The majority of
services delivered as part of the Solaris operating sys-
tem were migrated to SMF as part of its initial integra-
tion. We’ll explore this case study here.

A small engineering team was responsible for
creating nearly all of the 100 manifests for system ser-
vices. A major lesson was that once a developer gains
familiarity with the SMF model, manifest creation
tends to take no more than a few hours per service,
often including necessary testing. Experience with one
manifest is directly leveraged for subsequent manifest
creation. The fundamentals for basic service coopera-
tion in SMF are relatively easy to grasp and do not
seem to require significant training. The more sophis-
ticated aspects of the service model tend to not be
explored by the average service author, which we
interpreted as success in our goal to make simple ser-
vices easy to define.

As expected, the most challenging part of mani-
fest creation was researching proper dependencies for
each service. Sometimes the initial dependency analy-
sis was incomplete – but, both point fixes for signifi-
cant problems and longer term dependency additions
to fill gaps were easy to perform.

We learned that someone familiar with the ser-
vice implementation will be able to write a signifi-
cantly better manifest than someone merely conversant
in the service. A service manifest written by an end-
user of the software is sufficient for that user’s config-
uration, but not all potential uses and configuration of
the service. Encouraging service authors to write

234 19th Large Installation System Administration Conference (LISA ’05)

Adams, et al. Solaris Service Management Facility: Modern System Startup and Administration

manifests for their software has significant value, even
when a basic manifest has already been written.

Console interaction was more of a challenge than
anticipated. When system startup was serial, console
ownership was easy as it simply passed linearly from
one script to another. SMF’s parallel startup required
tracking the console owner at all times, in case a sys-
tem maintenance mode (also known as sulogin) was
required to repair the system. The console ownership
problem is a compelling reason for Solaris to provide
access to the standard console login prompt as early in
the boot sequence as possible. This convention is par-
ticularly helpful in a repair scenario because as much
of the system as possible is available for use during
the repair, rendering the repair environment less
restrictive and more familiar.

Confirming the SMF design with critical system
services started early in the boot sequence was likely a
bit painful for the very early adopters. However, the
lessons learned through actual service debugging
informed significant usability enhancements which
may not have been given the attention they deserved
had SMF been an optional feature used only for a
small subset of services.

Conclusions

A full-featured application and system service
management infrastructure must reduce management
complexity, increase application availability, and save
administrators time. In order to provide all of these
capabilities for a wide range of application models, the
service must be elevated to a first-class administrative
object which can be observed and managed. The Ser-
vice Management Facility provides all of these bene-
fits while requiring no changes to application binaries.

SMF reduces complexity by unifying and simpli-
fying common administrative tasks across a broad set
of applications. It increases application availability by
detecting many critical errors and recovering from
them automatically. Finally, it saves administrators
time; when automatic recovery from failures is impos-
sible, a complete management interface guides the
administrator to the faulty component.

Author Biographies

Jonathan Adams joined Sun Microsystems, Inc.
in Menlo Park four years ago, where he is a software
developer in the Solaris Kernel Development group.
His areas of expertise include memory allocation,
inter-process communication, and debuggability.
Reach him electronically at jonathan.adams@sun.com .

David Bustos graduated from the California
Institute of Technology in 2002 with a BS in computer
science. Since then he has worked in the Solaris oper-
ating system engineering group at Sun Microsystems,
in Menlo Park, California.

Stephen Hahn is a Senior Staff Engineer in the
Solaris Kernel Technologies group at Sun Microsystems.

His recent work has been focused on service and
resource management at the operating system level,
particularly in building foundations for automated
resource managers. His research interests are broad,
and include describing meaningful application interde-
pendencies, predictable systems behaviour, open
source development processes, and implementing high
performance sort algorithms. He received his Ph.D. in
Theoretical Physics from Brown University, before
joining Sun in 1997.

David Powell is a member of the Solaris kernel
group at Sun Microsystems. In his six years at Sun, he
has worked to improve the debuggability, availability,
and approachability of Solaris, specifically focusing
on inter-process communication and expressing
dependencies between system resources and their con-
sumers. He received his Sc.B. in Computer Science
from Brown University

Liane Praza is a Staff Engineer in the Solaris
Kernel Development group at Sun Microsystems.
She’s been at Sun since 1997, with areas of of exper-
tise including the Solaris administration model, ser-
vice and resource management, self-healing services,
and clustered devices and filesystems. She received
her B.S. in Computer Science from Purdue University.
Reach her electronically at liane.praza@sun.com .

Acknowledgments

The SMF project was the work of a larger group
of people than this paper represents, and we are grate-
ful to everyone who worked to make this project pos-
sible. Dan Price, Dave Linder, and our USENIX shep-
herd, Tom Limoncelli, provided invaluable feedback
and encouragement for this paper.

References

[1] Mewburn, Luke, ‘‘The Design and Implementa-
tion of the NetBSD rc.d system,’’ Proceedings of
the FREENIX Track: 2001 USENIX Annual
Technical Conference, 2001.

[2] http://www.fastcoder.net/˜thumper/software/
sysadmin/chkconfig/ .

[3] Gooch, Richard, ‘‘Advanced Boot Scripts,’’ Pro-
ceedings of the Ottawa Linux Symposium, June,
2002.

[4] http://developer.apple.com/documentation/MacOSX/
Conceptual/BPSystemStartup/Articles/Laun-
chOnDemandDaemons.html .

[5] Bernstein, D. J., Daemontools, http://cr.yp.to/
daemontools.html .

[6] Skinner, Glenn, et al., ‘‘A Service Management
Facility for the Java Platform,’’ Proceedings of
the 2005 IEEE Services Computing Conference,
2005.

[7] Shapiro, Michael W., ‘‘Self-Healing in Modern
Operating Systems,’’ ACM Queue, Vol. 2, Num.
8, 2004.

19th Large Installation System Administration Conference (LISA ’05) 235

Solaris Service Management Facility: Modern System Startup and Administration Adams, et al.

[8] Candea, George, et al., ‘‘Recursive Restartabil-
ity: Turning the Reboot Sledgehammer into a
Scalpel,’’ Proceedings of the 8th Workshop on
Hot Topics in Operating Systems, 2001.

[9] Price, Daniel, et al., ‘‘Solaris Zones: Operating
System Support for Consolidating Commercial
Workloads,’’ Proceedings of the 18th Large
Installation System Administration Conferences
(LISA, ’04), 2004.

[10] Brunette, Glenn, Restricting Service Adminisra-
tion in the Solaris 10 Operating System, http://
www.sun.com/blueprints/0605/819-2887.pdf .

[11] Sun Microsystems, Inc., System Administration
Guide: Security Services, http://docs.sun.com/app/
docs/doc/816-4557 .

236 19th Large Installation System Administration Conference (LISA ’05)

