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ABSTRACT

One ideal of configuration management is to specify only desired behavior in a high-level
language, while an automatic configuration management system assures that behavior on an
ongoing basis. We call a self-managing subsystem of this kind a closure. To better understand the
nature of closures, we implemented an HTTP service closure on top of an Apache web server.
While the procedure for building the server is imperative in nature, and the configuration language
for the original server is declarative, the language for the closure must be transactional; i.e., based
upon predictable and verifiable atomic changes in behavioral state. We study the desirable
properties of such transactional configuration management languages, and conclude that these
languages may well be the key to solving the change management problem for network
configuration management.

Introduction

HTTP servers are complex applications. In craft-
ing a valid configuration file for a server such as
Apache, there are many options, often with cryptic
names and unclear meanings. Choices for many
options seem not to matter to the end-user, e.g., the
exact locations of content hierarchies within the
filesystem. Choices for other options have critical
effects, such as whether to allow CGI programs within
a particular directory to execute. Simple typos in the
configuration file can be difficult to locate and have
unpredictable results. Thus, to assure reliable service,
many configuration changes must be made by an
experienced system administrator.

We manage an HTTP server cluster where the
majority of responsible system administrators and
content providers have historically been relatively
inexperienced students. As a result, there has been
considerable service downtime due to misconfigura-
tion of the server, giving content files inappropriate
names or MIME types, inappropriately protecting con-
tent, and even allowing servers in the cluster to differ
in configuration.

Content providers often make serious errors in
naming files and setting permissions for HTTP con-
tent. Either content is protected too restrictively to be
available, or content protections are permissive
enough to pose a security risk. Users also have diffi-
culties ensuring that files have extensions that match
their content. Typical examples include inadvertently
exposing private contents of scripts by giving them
incorrect extensions or filing them in an inappropriate
directory, or making content directories world-
writable, thus posing a security risk.

Naive editing of HTTP configuration files can
also cause unexpected and costly downtime for web

servers. When many virtual domains inhabit one
server, one configuration error can be catastrophic, as
it will bring down all of the domains. In practice, it
can take a lot of time to recover from an error if
changes have not been carefully tracked. At times,
low-traffic virtual domains have been down for weeks
due to undocumented changes that had hidden effects.

An HTTP Closure

We seek to solve this problem by surrounding
our HTTP service with a closure, as described in [17].
A closure is a self-managing component of an other-
wise open system. We intended our closure to:

1. Allow relatively untrained users to reliably cre-
ate relatively complex configurations involving
virtual domains and aliases.

2. Allow reliable creation and deletion of virtual
domains.

3. Ensure appropriate protections and MIME
types for content.

4. Protect against unauthorized changes to content
or configuration.

To accomplish this, we had to make a radical departure
from the way HTTP servers are usually administered.

At the beginning, we were inspired by several
related projects. DryDock [20] is a content-manage-
ment system that allows the submission of web pages
to a web server, after they have checked by a human
being. While it provides some desired features, includ-
ing content validity checking, DryDock is more of a
content checking and approval method than a web
server configuration tool. TemplateTree II [30] can
help configure the webserver configuration file, by
automatically filling in blanks in a pre-determined
template, but seems to stop short of being able to han-
dle advanced features such as virtual domains. Each of
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the virtual domains requires the addition of a new tem-
plate to the file. Charlie [38] is a content-mapping web-
server in which URL’s are explicitly mapped to files by
a declaration file, and service is not determined by
filesystem structure. Our initial goal was to combine
these ideas into a reasonable HTTP closure in which:

1. Content is specified by mappings between
URLs and files (Charlie).

2. The appropriate configuration is generated
from intermediate data (TemplateTree II).

3. Content is checked for type validity before
being published (DryDock).

Our hope was that the resulting synthesis would
be easier to use than any of its predecessors.

Recently, others have attempted part of this
process independently. The Virtualmin [9] environ-
ment within the Webmin [8] web-based administrative
environment solves the problem of defining virtual
servers neatly, but does not deal with the problems of
content management and assuring that content is pro-
vided with correct MIME types, etc. Both Virtualmin
and Linuxconf [19] support dynamically changing the
modules that are loaded into Apache, though to our
knowledge they do not address the dependency issues
we discovered in trying to accomplish this. A third
management environment, Comanche [32], was
unavailable to us except in source form at time of
writing, and we lack knowledge of its capabilities.

Web server
configuration

Document
repository

Web server

Http request

Http
response

Human user

Process control

Figure 1: Typical interactions between a user/admin-
istrator and web server, where arrows indicate
information flow.

HTTP servers are typically administered through
direct access to configuration files and documents
(Figure 1). One edits a server configuration file
directly and then places content directly into directo-
ries that the server should expose to the outside world.
The configuration file serves not only as a means of
control, but also as documentation of defaults and
other performance characteristics of the web server.
Without fairly complete knowledge of the contents of
this configuration file, it can be difficult to publish
content. Since the document repository is edited
directly, users must also have a good grasp of file pro-
tections within the server environment. Current
approaches to this problem include simplified graphi-
cal user interfaces that expose only part of the capabil-
ities of the configuration file [9, 32].

The configuration of the Apache web server is
described by the contents of several files (Figure 2),

where arrows indicate couplings between data in dif-
fering files or structures. In order for the server to
respond correctly to a request, several parts of the con-
figuration must agree in intent. For example, in the
figure, to answer the request for URI http://www.foo.edu/,
it must be true that:

/some/where/index.html

...content...

TypesConfig /etc/mime.types

<VirtualHost 192.168.0.1:80>
  DocumentRoot /some/where
  ServerName www.foo.edu
  DirectoryIndex index.cgi
                 index.html
</VirtualHost>

<Directory /some/where>
  Options all
  Order allow,deny
  Allow from all
</Directory>

httpd.conf Filesystem

/etc/mime.types

text/html   html htm

Content-type: text/html

...content...

Server output

http://www.foo.edu/

Request URI

Figure 2: Configuration constraints required in order
to answer a request properly on an Apache web
server, where lines indicate required agreements
between data values.

1. www.foo.edu is a valid virtual domain.
2. www.foo.edu maps to the server’s address.
3. www.foo.edu’s content is stored in the directory

/some/where.
4. It is permissible to publish the content of the

directory /some/where.
5. The request is for a directory rather than a file.
6. In returning data for a directory, one first

checks for an ‘‘index file’’ that represents direc-
tory content.

7. index.html is an appropriate file.
8. index.html exists in the directory /some/where.
9. index.html is readable to the web server.

10. index.html has MIME type text/html because of
the .html extension.

If any of these assertions is not true, the request
fails. In the figure, many of these constraints are indi-
cated by lines between configuration data that must
agree in value.

The net effect of this scheme of constraints is that
an Apache server can be quite difficult for a novice to
administrate. There are several reasons for this:

1. The effect of a particular declaration depends
on other declarations; one needs to understand
the global configuration in order to understand
the effect of a local declaration.

2. The configuration language – in an attempt to
be easy to type – is filled with seemingly con-
venient defaults that make a configuration file
difficult to interpret.

3. Often several distributed declarations determine
whether content is provided correctly. For
example, in order to serve a directory, one must
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specify its protections as a directory, its map-
ping as a URL, and its MIME type mapping (if
different from the default).

To simplify this process, we took direct control
of content directories and configuration file away from
the user. These are instead controlled by an interven-
ing layer that mediates between user and server (Fig-
ure 3).1 The user interacts directly only with an image
of the document repository and a command inter-
preter. This interpreter keeps track of its state and
maintains a private document repository of its own to
which a user does not have access. User commands
cause copying from the user’s space into the closure’s
space in order to publish a document.

Web server
configuration

Document
repository

Web server

Http request

Http
response

Document
hierarchy
prototype

Closure
configuration

Closure

Human user

Process control

Figure 3: A closure mediates between the user and the Apache configuration, reducing complexity of the configura-
tion process.

It might seem that we have just made the process
of publishing more difficult, but in fact we have made
it much less error-prone. At several steps during the
publishing process, validity checks are made to the
document and configuration requests. These checks
include:

1. Does the name of each virtual domain correctly
map to a valid interface via DNS?

2. Does each file’s MIME type roughly agree with
its content, as indicated by file magic number-
ing?

3. Do HTML files contain correct HTML?

Once a document passes these validity checks, it
is published reliably, because the closure will take care
of placing it in a proper location and protecting it so
that the web server can see it. Also, a validate com-
mand checks that the web server configuration and all
content have not been edited by unauthorized people,
by comparing cached MD5 checksums against check-
sums of current data.

This closure consists of three components:
1. A setup script that initializes the closure on a

prebuilt server.
2. An agent that interprets the command language

and makes changes in configuration over time.
3. A command language for describing changes to

make in service.
1Some authors would call this ‘‘middleware.’’ ‘‘Middle-

ware’’ is perhaps one of the most abused terms in the mod-
ern computing lexicon. As we provide not an API but in-
stead a message-passing interface, the term ‘‘middleware’’
does not seem to accurately apply.

We chose to place our closure around an Apache
web server running inside RedHat Linux 9.0. We
assumed that the underlying system would be newly
built and functioning on the network prior to invoca-
tion of the closure. In an actual closure, all systems
with which the closure will interact must also be clo-
sures, in order to maintain overall integrity. Since this
was our very first closure (which, in hindsight, was
probably too ambitious), we had to settle for interact-
ing with an already functioning system.

The initial ‘‘build script’’ determines a few
aspects of pre-existing system configuration, such as
where the Apache web server is located, whether cer-
tain applications are installed on the system, and other
vital data necessary in order to construct the closure.
The script then creates a managed structure on the disk
that has restricted permissions. This structure contains
a startup/shutdown script for the web server, a docu-
ment root, a (private) space for storing closure logs
and data files, and a default configuration. Data files
include definitions of virtual domains, access rights
for users and directories, MD5 checksums of configu-
ration and submitted files, and boilerplate configura-
tion segments describing defaults. Internal data is
stored in the Perl Data::Storable format.

After the build script does its work, a command
interpreter takes commands and modifies the resulting
service automatically. This interpreter is a perl script
that acts as a command line interface. This interface is
responsible for all ongoing management of the HTTP
service. In order to make the closure easy to use for
both system administrators and end users (who may
not be familiar with computer-related concepts), we
decided to create a very limited command set that
should be able to provide all the functionality neces-
sary for a typical multiple-domain server.

Most of this process is straightforward; difficul-
ties arose mainly in designing an appropriate command
language with which to converse with the closure.
Coming up with an appropriate language took consid-
erable thought and required nontrivial changes in the
way we think about server configuration as a process.

Command Language 1.X
Our initial command language was patterned

after the structure of Apache’s configuration file
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httpd.conf. We decided upon a minimal language with
typical commands like the following:
assert foo.bar.com

declares a virtual host and readies it to serve content.
retract foo.bar.com

removes a virtual host from the server, along with all
content that it provides.
post /home/prod

http://foo.bar.com/products

makes the directory /home/prod on the current machine
appear to be the web directory http://foo.bar.com/products .
post /home/couch/foo.html

http://foo.bar.com/foo.html

makes the file /home/couch/foo.html appear as the URL
http://foo.bar.com/foo.html. Each URL is associated with
a unique directory in a private managed space, and
each posted file or directory content is copied there to
isolate it from further changes by the user. The type of
the first argument – file or directory – determines what
post does. In the case of a directory, post copies all
subdirectories recursively.
retract http://foo.bar.com/products

removes any association between that URL and a con-
tent directory. It erases content previously associated
with the URL via a post command.
retract http://foo.bar.com/foo.html

removes the mapping that results in content for the
above URL. As described in [17], a web server is a
mapping between URLs and content; the user need
only specify that mapping and the closure takes over
to assure it.

Ambiguity
At this point, progress on the project ground to a

halt due to seemingly insurmountable difficulties
within the command language. Ambiguity arose in the
command language as a direct effect of defaults in the
underlying httpd.conf, as well as default behavior for
the corresponding HTTP protocol. This ambiguity has
several effects:

1. The causal effect of many commands is unclear
or determined by context.

2. One needs to understand the history of all com-
mands in effect to know exactly what a single
command will do.

3. It is possible for one command to override part
of another, so that the resulting state cannot be
reached via any other sequence.

As the simplest example, consider:
post /home/foo.html to

http://www.foo.com

Should this make /home/foo.html available as
http://www.foo.com/foo.html or as http://www.foo.com? In
the latter case, should the file /home/foo.html be
renamed to index.html or left alone in the directory?
Then consider:

post /home/foo to http://www.foo.com

If /home/foo is a file, this has a potentially different
effect than if /home/foo is a directory. But we cannot
know which it is from the command itself. Finally,
consider:
post /home/index.html to

http://www.foo.com/index.html
post /home/index.cgi to

http://www.foo.com/index.cgi

Which of these will be the directory index? The result of
answering these questions in any reasonable way was that
the effects of the seemingly simple command language
were hideously complex to document and understand.

Creating content for a web server requires com-
plete knowledge of its conventions, including which
filenames have special meanings or interpretations.
These defaults are set in httpd.conf. Without complete
knowledge of the defaults, the user cannot create content
properly. By abstracting the defaults into a command
language rather than a file, we made the defaults invisi-
ble, and thus rendered the problem more difficult than
before. We concluded that we had not simplified the
problem of managing httpd.conf; we had actually made
the management process more difficult than before!
Appropriate Closure Language

The key to these quandaries was to carefully
describe desirable attributes of the command language
and then redesign to these requirements. But we did
not understand the optimal properties of such a com-
mand language, and only had the httpd.conf format as
an example. Its properties include:

1. Minimization of ink: all that is unspecified has
(reasonable) defaults.

2. Hierarchy: everything is laid out in a carefully
designed multi-level hierarchy.

3. Scoping: the intent of commands depends upon
the context in which they are entered.

4. Ordering: ordering of certain commands,
including protections, changes intent within the
configuration file.

These properties ease the loop of interacting
directly with the configuration file, but do not ease the
process of incrementally describing a configuration
through individual and atomic commands. The design
of httpd.conf presumes that the administrator has global
knowledge of the contents of the whole configuration
file. Our closure users, operating from outside the clo-
sure, have no such knowledge.

In effect, the syntax of httpd.conf had corrupted
our thinking. Used to being able to look at the whole
file to answer questions, we presumed that our com-
mands could be patterned after the edits we make to
the file and the file copying that we would do without
the closure in place. This patterning made configura-
tion more difficult rather than easier. In fact, the exact
conveniences and defaults – that make httpd.conf easy
to use when one is editing it directly – make a transac-
tional language difficult to use.
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To be easy to use, our command language has to
have several somewhat different properties:

1. Clarity: the intent of a command should be
immediately clear from its form.

2. Independence: to the extent possible, com-
mands should be independent of one another to
avoid conflicts, ambiguities, and difficulties in
determining effects. In particular, global
defaults should not be subject to change.

3. Declarative syntax: Each command represents a
state to preserve, rather than an action to perform.
a. Commands should be idempotent, i.e.,

repeating a command twice in a row
should have the same behavioral effect as
doing it once.

b. Commands should be stateless, i.e., the
behavioral effect of doing a command
should not depend upon prior executions
of the same command, even if these execu-
tions occurred in the remote past. A state-
less command is always idempotent; state-
lessness is a stronger condition.

Reducibility to assertions: Either an assertion is
in effect or not; there is no such thing as being
‘‘1/2 in effect.’’ A command that conflicts with
a previous command undoes (‘‘retracts’’) the
effect of the conflicting command. Equiva-
lently, any sequence of assertions and retrac-
tions is equivalent with a subsequence consist-
ing of assertions alone.

4. Representability: at any time, one should be
able to get an idea of all commands currently in
effect, to understand global contents. Ideally,
the representation should be a conflict-free
description of the current state of the service, in
terms of the unordered list of commands cur-
rently in effect. In particular, the representation
of service should be free of retractions.

These properties actually arise from mathemati-
cal models that we will describe later. For now, it suf-
fices to mention that statelessness and reducibility to
assertions imply representability. The remainder of the
requirements, clarity and independence, contribute to
ease of use.

Statelessness means that a command does not
depend upon prior invocations of itself to do its work.
Stateless commands cannot be incremental in nature,
but must deal with absolute quantities. For example,
incrementing a counter is not a stateless command.
The reason that statelessness is important is that the
user may not have knowledge of prior commands or
pre-existing configuration. While a stateful command
may have indeterminate results, a stateless command
has (roughly) the same effect regardless of when it is
executed. The user need not remember anything in
order to know what its effect is.

Representability means that at any time, one can
describe the closure via the commands that are currently
in effect, which is typically a smaller list than the whole

sequence of commands since the closure was created.
Reducibility to assertions means in addition that the
commands currently in effect do not have to contain
retract statements, because conflicts cause conflicting
assertions to completely disappear from a representation.
Command Language 2.X and Beyond

These considerations caused subtle but profound
changes in our command language that both resolve
ambiguities and make it easier to use than making
manual changes to configuration files and web con-
tent. We are currently in the process of implementing
these changes.

1. Commands either augment or retract the effects
of other commands. The effect of issuing a con-
flicting command is to retract the commands
with which it conflicts. To assure this, we dep-
recated using post for files (except for indexes),
and required its use on directories, where it
recursively applies to subdirectories. In version
1, retracting a directory does not retract its sub-
directories; in version 2, subdirectories are
retracted as well.

2. When overriding the MIME type for a specific
file, the command does not affect other files
with the same extension. In version 1, a MIME-
type override applied to all of the files of that
type in a folder. This caused confusing changes
in default MIME-types when new files were
uploaded. To assure clarity of intent, the over-
ride is now specific to each single file.

Other profound changes are yet to be imple-
mented. The above ideals for language imply that the
indexing process for a directory should be independent
of its content. One should be able to specify an index
for an empty directory, or have a directory with no
index. In the latter case, one gets a ‘‘permission
denied’’ error instead of a directory listing. This effect
is accomplished by adding the special keyword index
to a post command for the index file.

Thus we plan to change the concept of index
from being a file with the word index as its name, to
being a file with any name that just happens to be
bound to a directory as a listing operation. This index
file can have any name, and be of any file type. This
change provides a significant increase in flexibility
over the old style, while disambiguating the most frus-
trating of problems when faced with the problem of
insuring consistent operations. If no index file is
selected, then either an error page is returned by
default, or the security on the system can be made
more lax and allow one to display the contents of the
requested directory.
Critique

Our current closure does its intended job well,
but there are many shortcomings. While several are
simply new features to be implemented, some require
a relatively deep rethinking of how we interact with
systems that provide web content.
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First, while the intent of a configuration can be
represented by a list of commands, repeating the com-
mands will not produce the exact same HTTP service.
There is no guarantee that the source directories have
not changed in the meantime. Repeating the same set
of commands that created the service will instead
result in an updated service based upon changes in the
source directories. Indeed, what we seem to have
implemented is the opposite of a content-staging sys-
tem such as DryDock; we included no protection
against inadvertent changes of the source repository.

Many issues for dynamic content have yet to be
resolved. Various programs, such as Gallery [39], cre-
ate and/or modify files within the web hierarchy by
themselves, which constitutes performing operations
outside of the closure. This kind of interaction is not
supported in our model, and though it is tolerated, per-
haps should not be allowed at all.

The closure deals very poorly with dynamic con-
tent stored within the document repository. Repeating
commands used to set up a repository will erase any
dynamic content created in the meantime within the
repository by the action of CGIs. This content is not
even accessible to the user unless exposed by the web
server, and any files posted via the closure will be
automatically made read-only.

It could be argued that this fascism is not a bug,
but a feature; it strictly enforces utilizing external
databases to store dynamic content rather than local
server files. This is indeed the ‘‘best practice’’ for
managing dynamic content, according to many web
programmers.

In fact, we can find no reasonable solution to
supporting this behavior of CGIs. If we allow dynamic
content in document directories, it must be protected
from subsequent post commands (that, in normal oper-
ation, will delete that content). But if we ignore such
files, then the effect of post is not stateless.

Ideally, CGIs should use external data sources
for dynamic content. The couplings between CGIs and
external data sources should be managed by the clo-
sure itself, though the best language for accomplishing
this is unknown. Another rather deep question is how
to handle enforcing integrity constraints for data
sources outside the closure, such as databases utilized
by CGI scripts. If we do force all programmers to uti-
lize databases, how do we assure that their scripts bind
to functional and allowed data sources? While the
Microsoft .NET framework makes this kind of check-
ing easier by separating data source bindings from
programs, no such solution exists for Linux and
Apache.

Finally, this closure was our very first closure,
and thus had no other closures with which to converse
(unlike the ideal web service closure described in
[17]). Thus our closure must check for external depen-
dencies itself, and cannot correct deficiencies that it

finds in its environment. For example, the assert com-
mand checks whether the domain being asserted
points to this machine in name service, but cannot
assure that by modifying the name server. Instead, it
must refuse to perform the assert.
Future Work

Plenty of additional work needs to be done on
this prototype before it is appropriate for production
use. Among the most obvious extensions is to be able
to handle ssl (HTTPS) traffic as well as HTTP. This
will require improving how the closure deals with
constraints. One tricky part of handling ssl, for exam-
ple, is that one must enforce the constraint that only
one virtual server bound to each address can have ssl
capabilities. Currently, one must explicitly disable one
ssl instance before asserting another.

Separating indexing from directory contents is a
bit tricky, as Apache is designed to couple them
together. Currently the closure simply uses whatever
index file is present in each directory. Implementing
the ideal indexing scheme – in which indexing is com-
pletely separate from directory contents – requires
special care to avoid naming conflicts. This can be
handled by storing the index in a name that will not be
used otherwise (and cannot be easily entered as a
URL), such as ‘‘-->index<--.__html__’’. To avoid confu-
sion in choosing an extension matching the MIME
type of the index file, this file is a simple CGI script
that will read the real index content from a second
cryptic filename ‘‘-->content<--.__html__’’, and display
the contents, tagged with the appropriate MIME
header.

There are also problems in dynamically manag-
ing the modules that Apache loads and requires. A
true closure would need to analyze what the user
desires from the web server and load the necessary
modules by creating a dynamically generated list. We
thought we could look into the directory where the
modules are located and instruct Apache to load every
one it finds as a starting step. We discovered quickly
that certain modules are dependent upon others, that
the order in which these modules are loaded is impor-
tant, and that some modules conflict with and preclude
the use of others. For example, mod_proxy_ftp.so
requires mod_proxy.so to be loaded first or else loading
will fail; likewise loading mod_dav_fs.so will fail if
mod_dav.so is not loaded first. Using the current
scheme for loading modules, there is no way to know
in advance what dependencies, if any, a module actu-
ally has without trying to load it.

As a temporary solution, the list of modules to be
loaded had to be made static, along with the order in
which they are loaded. However, this means that the
functionality of the closure is currently severely lim-
ited, as there are no commands to the closure that can
expand the capabilities of the server.

Another ongoing issue is rights management.
Currently, a user can only be granted rights to edit a
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domain. In addition, we should be able to permit users
to update sections of a domain without having rights
to other sections. For example, we have started writing
code that will allow couch to edit http://www.foo-
bar.com/research, but restrict his access to other areas
of the domain.

Other low level issues, such as insuring that there
is adequate disk space for web content, need to be
addressed, though this may need to be performed by
talking to a disk closure that has yet to be written.
Since varying devices have different access speeds,
this could be a future concern, as some content may
need to be delivered at a much higher quality of ser-
vice (QoS) than other content, and one would want
those pages to be stored on faster access devices.

Lastly, we would like the application to be able
to handle not only a stand-alone web server; it should
also be able to scale to a grid or cluster type configura-
tion, which brings a whole new level of difficulties
and questions, but ultimately a far more powerful and
desirable closure.

Theoretical Background

While we were struggling with the implementa-
tion of the prototype closure, another struggle was
going on at a different level. Clearly, our language
evolved into something relatively useful from some-
thing relatively useless. But why do the above lan-
guage principles work, and what mathematics under-
lies the design decisions we made? In this section, we
explore some of the mathematical underpinnings of
closure language design, and tie this work into other
work on languages for configuration management. For
the non-mathematically inclined, this section can be
skipped without loss of continuity.

An overview of the results of this section is
shown in Figure 4. Statelessness of individual com-
mands leads to idempotence of sequences of com-
mands. The ability to remove retractions of commands
from a sequence and retain equivalent effect is called
‘‘reducibility to assertions.’’ This property, in combi-
nation with a semantic model that determines pre-
ferred order of operations, makes a sequence of com-
mands declarative in character. Statelessness of com-
mands, reducibility to declarations, and a one-one cor-
respondence between configurations and behaviors
give rise to Cfengine-like convergence of the declara-
tions, thought of as an operator upon configuration.

There is currently much controversy about
whether host configuration languages should be
imperative [24, 34, 35] or declarative [1, 4, 5, 6, 7, 10,
22, 23, 26, 27, 33]. A subset of a language is ‘‘impera-
tive’’ when it describes procedure or process: ‘‘what
should be done’’ as an interpretable set of instructions.
A subset of a language is ‘‘declarative’’ when it
describes ‘‘what the result should be’’ without specify-
ing the method or procedure with which this result is

accomplished. For example, saying ‘‘the car must be
blue’’ is a declarative statement, while ‘‘paint the car
blue’’ is an imperative procedure for assuring the truth
of the declarative statement. A particular language can
exhibit both properties, specifying some things imper-
atively and others declaratively.

Statelessness
of commands

Idempotence
of commands

Sequence
idempotence
of commands

Reducibility
of sequences
to assertions

Reducibility
of sequences
to declarations

Reducibility
of sequences

to convergence

Known order
of operations

+

+
One-one

correspondence
between

configurations
and behaviors

Declarations are
convergent as

behavioral
operator

+

Properties
of commands

Properties
of sequences

Semantics

Figure 4: Map of theoretical concepts and their rela-
tionships, where arrows indicate logical implica-
tion.

Tools support and encourage either imperative or
declarative thinking. Proponents of the ‘‘imperative’’
tools point out that specifications for these tools are
close to the way a human would manually configure a
system, while converting human instructions to declar-
ative language requires some reverse-engineering
[24]. Proponents of the ‘‘declarative’’ tools point out
that mechanism is not important; one should specify
results, not mechanism, and specifying anything more
limits flexible response of the configuration manage-
ment tool to changing requirements [1, 17]. In prac-
tice, a majority of seemingly declarative languages for
configuration management allow the direct execution
of imperative code as an option when declarative
mechanisms fail to be expressive enough [4, 5, 6, 7,
11, 13, 22, 23, 33].

While imperative and declarative mechanisms
both work well for creating an initial configuration,
neither imperative nor declarative mechanisms proves
sufficient to implement a closure as described in [17].
In both paradigms, there are serious problems in deal-
ing with changes in intent over time. Imperative man-
agement mechanisms suffer from script complexity; it
is difficult to make changes in these ‘‘build scripts’’
without mistakes [13]. Likewise, undisciplined
changes to declarative specifications can lead to unin-
tentional heterogeneity within large networks [17].
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Shortcomings of Imperative Scripts
Imperative mechanisms substitute order and

reproducibility for understanding of internal depen-
dencies. The script that builds a host is constructed
through intensive validation of its behavioral effects,
but what the script actually does typically remains
poorly understood. This leads to a change control
problem as the script is reused over a long lifecycle.
Due to lack of understanding of internal dependencies,
such scripts can only be safely modified by adding
stanzas to the end [24]. Re-imaging a host requires
cycling through all of its historical states, including all
errors in configuration made by previous scripts. The
only alternative is to start over from scratch and vali-
date a new script from the beginning.

The reason that ‘‘order matters’’ within the
imperative paradigm is that the implicit preconditions
for each stanza of a script are that all prior stanzas
have been executed in order. ISConf enforces this
order for hosts that miss an update by resuming stanza
execution exactly where the host last stopped execut-
ing them, executing missed stanzas before new ones.
In this way, the host passes through a sequence of
reproducible states, so that a final desirable state is
assured. If ISConf allowed hosts to skip stanzas,
scripts would break unpredictably, because the scripts’
preconditions would not be assured on hosts on which
stanzas were skipped.
Shortcomings of Declarative Languages

Further, careless use of declarative tools can lead
to exactly the kind of unpredictable heterogeneity that
the imperative tools like ISConf are designed to avoid.
Consider configuration elements A, B, and C with ini-
tial values A = a, B = b, C = c and configuration files
(declarations) dA,dB,dC. Suppose that

1. dA sets A = a′ and leaves all else alone.
2. dB sets B = b′ and leaves all else alone.
3. dC sets C = c′ and leaves all else alone.

Suppose that at any time, a distinct subset of
hosts is down (unreachable). At the end of applying
dA, dB, dC in sequence, there are now eight kinds of
hosts in the network:

1. A = a′, B = b′, C = c′: Up during dA, dB, dC.
2. A = a, B = b′, C = c′: Down during dA; up dur-

ing dB, dC.
3. A = a′, B = b, C = c′: Down during dB; up dur-

ing dA, dC.
4. A = a, B = b, C = c′: Down during dA, dB; up

during dC.
5. A = a′, B = b′, C = c: Down during dC; up dur-

ing dA, dB.
6. A = a, B = b′, C = c: Down during dA, dC; up

during dB.
7. A = a′, B = b, C = c: Down during dB, dC; up

during dA.
8. A = a, B = b, C = c: Down during dA, dB, dC.

As time goes on, the unintentional heterogeneity
gets worse, a factor of two at a time, every time a sta-
tion is unavailable for an update.

Two Principles
The above observations can be summarized as

two related principles of configuration management
that apply to any such process:

Principle 1 Once one controls or manages a
thing, one cannot forget over time that it is con-
trolled or managed.2

For example, ‘‘forgetting’’ that A is managed above
leads to a heterogeneous population of hosts with two
differing values of A [18]. More generally,

Principle 2 The discipline with which one
changes a declarative configuration file is as
important to effective configuration management
as the accuracy with which the file expresses
intent.

Tools that generate the whole configuration for each
host each time [1, 2, 10, 22, 23, 26, 27, 33] neatly
avoid this problem, at the cost of being somewhat lim-
ited in scope and unable to handle large changes such
as software subsystem installation and removal.
Transactional Languages

With these goals in mind, we defined a new kind
of configuration language that has both imperative and
declarative aspects.

Definition 1 A transactional configuration lan-
guage is one in which configuration is expressed
as a sequence of atomic (indivisible) changes in
behavior from a given and known base state.

For purposes of analysis, a transactional language has
at least two basic primitives, assert and retract.3 The
command
assert {behavior}

causes a behavior to be exhibited, while
retract {behavior}

causes the behavior to become absent. This choice of
primitives is arbitrary but allows us to discuss several
effects of transactional language easily. The transac-
tions might as well be SQL queries into databases or
even XQUERYs into XML.

A transactional language has somewhat of an
imperative quality to it, because order sometimes mat-
ters, e.g., the order of assert and retract for the same
behavior determines whether that behavior is present.
The key to our argument and work is that it is also
possible – by design – to give the transactional lan-
guage a declarative flavor as well.
Reducibility to Assertions

At present, our language has no constraints; most
any kind of assert and retract statements are allowed.
Our next job is to make it possible to simplify com-
plex command sequences.

2‘‘Be careful what you command, my son. A command,
once given, must be repeated forever.’’ – Duke Leto Atrei-
des, Frank Herbert’s Dune

3Any resemblance to the primitives with the same names in
the programming language Prolog is purely intentional.
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Definition 2 A transactional language L contain-
ing only assert and retract statements is reducible
to assertions if for any sequence of assert and
retract statements, there is a subsequence of assert
statements alone that has the exact same behav-
ioral effect.

Reducibility means that an assertion cannot apply
‘‘halfway.’’ If there is a state in which a retraction can-
cels part of an assertion, then the assertion is ‘‘half
right.’’ In a  reducible language, retractions cancel
assertions either fully or not at all.

As an example of a non-reducible language, sup-
pose that directory indexing is turned on by default
and one must manually retract the behavior after
asserting the contents of the directory. To make this
language reducible to assertions, indexing instead
must be off by default.

Reducibility has a subtle but important effect
upon language. If a language is reducible, the results
of any set of transactions can be expressed with ‘‘posi-
tive language’’: what should happen, without mention
of what should not happen. Since retractions are order-
dependent, but assertions typically are not, making a
language reducible to assertions has the primary effect
that one can express behavioral outcomes in largely
order-independent fashion.

Reducibility to Declarations

The ability to eliminate retractions from a lan-
guage is just one kind of reducibility:

Definition 3 Let L be a transactional language
and let

P = {(sa, sb) | sa, sb ö L}
be a partial order on elements of L, where
(sa, sb) ö P exactly when sa must precede sb.
Then L is reducible to declarations if for every
sequence of transactions (t1, . . . , tn), there is a
subset D = {d1, . . . , dk} ä {t1, . . . , tn} of the set
of transactions (where duplicates are eliminated),
where for every total ordering (e1, . . . , ek) of D
consistent with the partial order P, the behav-
ioral result of applying the sequence (e1, . . . , ek)
is the same as that of applying the sequence
(t1, . . . , tn).

This is a complex and perhaps overly wordy way of
expressing a relatively simple idea. A transactional
language is reducible to declarations if for every
sequence of transactions in the language, there is a
subset that does the same thing in any reasonable
order in which it is applied. In writing down this sub-
set, ‘‘order does not matter’’ because we already know
the partial order P describing how to appropriately
order execution of the particular transactions within
the subset.

For example, suppose that we have the following
transactions:

assert A
assert A.X
assert B
assert B.Y
retract B

and the partial order:
{ (assert A, assert A.X),
(assert B, assert B.Y) }

meaning that one must create A or B before creating
their substructures A.X or B.Y. Suppose that retract B
retracts the substructure as well; this is allowed. Then
we can write an equivalent set of operations as the set
{ assert A.X, assert A } where the order of this set is
unimportant, because we know that assert A.X must
follow assert A from the partial order. In our closure,
the order constraints are that one must post the con-
tents of parent directories before posting subdirecto-
ries; the effect is identical to that in this example.

Whether a language is ‘‘declarative’’ depends
upon what we know about the elements of that lan-
guage and their sequencing. If we are absolutely sure
of the appropriate sequences, the order of writing
down the elements does not matter; we can resort
them into an appropriate order later. A transactional
language is reducible to declarations if we can elimi-
nate conflicts from the sequence of declarations so
that order does not matter in the resulting reduced set.

Statelessness

While our task requires operations that are reduc-
ible to declarations, this is not quite enough:

Definition 4 A transaction or sequence of trans-
actions p is idempotent if repeating p twice in
succession has the same effect as executing p
once.

In other words, once p is successful, doing p again
does nothing. More generally,

Let L be a set of commands. A is stateless if for
any command p ö L and any sequence q1, . . . ,
qn ö L, applying p followed by q1, . . . , qn fol-
lowed by p has the same effect as the sequence
q1, . . . , qn, p. In other words, the initial execution
of p before the sequence does not matter.

Statelessness trivially implies idempotence.

The reason statelessness is important is that it is
related to idempotence of sequences:

Definition 5 A set of commands L is sequence-
idempotent if for any sequence of commands
p1, . . . , pn from L, applying the sequence twice
has the same effect as applying it once.

This is important because

Proposition 1 If L is stateless, then A is
sequence-idempotent, i.e., the set of all
sequences of commands taken from L is idempo-
tent.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 221



Experience in Implementing an HTTP Service Closure Schwartzberg and Couch

The proof of this is contained in [16]. This fact allows
us to translate between descriptions of a configuration
that are command-based and those that are instead
declarative:

Definition 6 A language L is reducible to con-
vergence if it is reducible to declarations and the
declarations, used upon the closure, are idempo-
tent as a sequence.

In other words, given any sequence (t1, . . . , tn), ti ö L,
there is a subset d1, . . . , dk such that if (e1, . . . , ek) is an
ordering of d1, . . . , dk conforming to the partial order
P, applying the sequence (e1, . . . , ek) twice does noth-
ing different than applying it once. In particular,
applying this sequence to the configured closure does
nothing at all, while applying it to an unconfigured
closure reconstructs the closure’s current state.

Thus we have the immediate result that:

Proposition 2 If L is both reducible to declara-
tions and stateless, then L is reducible to conver-
gence.

This is a trivial corollary to Proposition 1. Note that
statelessness is a sufficient but not necessarily
required condition for sequence idempotence, so that
it is a sufficient but not necessarily required condition
for being reducible to convergence.

Finally, we relate this to behavior of the overall
closure:

Proposition 3 Suppose that there is a one-to-one
correspondence between behaviors and configura-
tions, and that L is a set of transactions that
change configuration. Suppose that L is reducible
to convergence, (t1, . . . , tn) is a sequence of opera-
tions in A reducible to the declarations
{d1, . . . , dk}, and (e1, . . . , ek) is one order of
d1, . . . , dk compliant with the partial order P. Then
the operator e1

. . . ek formed by applying e1, . . . , ek
in order is convergent in the sense of [4, 5, 6, 7],
i.e., it is idempotent as a sequence and inter-
changeable with the sequence t1 . . . tn in assuring
the same behaviors.

Proof: Given (t1, . . . , tn), we know that L is reducible
to convergence, so that (e1, . . . , ek) exists by defini-
tion. We also know that from a behavioral standpoint,
applying e1

. . . ek has the same behavioral effect as
applying t1 . . . tn. Since there is a one-to-one map
between behavior and configuration, these also there-
fore assert the exact same configuration. Since e1

. . . ek
is idempotent, it will not change that configuration. tu

This is a bit tricky, as one must require a corre-
spondence between behavior and configuration. In
cases where gratuitous differences exist between con-
figuration and behavior, we can still get into a state
where u1

. . . uk is not idempotent while t1 . . . tn is. For
example, consider the transactions:
t1 = { A:=B }
t2 = { B:=4 }

and suppose that the value of A affects behavior but

the value of B does not. Due to this, t1t2 is reducible to
t1, but applying the sequence t1t2t1 results in differing
behavior than applying (t1t2) alone. There are two
solutions to this: either disallow use of non-behavioral
values in transactions [18], or limit one’s self to a defi-
nition of configuration in which non-behavioral values
do not appear.

Impact of Statelessness and Reducibility

The purport of the above mathematical discus-
sion is that if the commands in a language are state-
less, then reducibility to convergence implies repro-
ducibility of effect, i.e., the reduction suffices as a
declaration of state. There are several benefits of hav-
ing a configuration language with these properties:

1. At all times, it is possible to express the effect
of a sequence of commands in the same lan-
guage that the commands use themselves. This
eliminates the problem of ‘‘semantic distance’’
[13] in which the language used to declare state
differs substantively from the language used to
assure it.

2. This effect is expressed in terms of positive and
non-conflicting assertions.

3. In a recovery situation, these assertions suffice
as commands to reproduce current state.

These are desirable properties for any language,
but statelessness would seem a very strong condition
upon a language. What kinds of languages have we
eliminated from consideration?

A stateless language is simply one in which all
assertions are made with absolute (constant) values for
parameters (or, at least, parameters that can be con-
verted unambiguously to absolute form, such as rela-
tive pathnames). A stateless language cannot allow
incrementing or decrementing a configuration parame-
ter, or base one parameter’s value upon that of another.
This is a stateful (and non-idempotent) change by
nature (i.e., pp ≠ p).

More subtle, the identity of the parameter that
gets set by an operation p cannot be a function of
some other setting. Suppose we have parameters A, B,
C, and that the operation p sets B to 1 if A is 0, and C
to 1 otherwise. Suppose that A is initially 0 and the
operation q is A: =  1. Then pqp has a different effect
(A = 1, B = 1, C = 1) than qp (A = 1, B = 0, C = 1),
violating statelessness.

Stateless Transactions and XML
It would seem that reducibility to assertions and

statelessness impose rather extreme limits on what a
command language can do. An immediate question
about stateless transactions is whether one can create a
set of representable (reducible and stateless) transac-
tions that can maintain any kind of configuration file.
Most configuration files are hierarchical in structure,
and any reasonably consistent hierarchical structure
can be expressed by an XML document type definition
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(DTD), so it suffices to show that one can correctly
maintain the contents of XML files via stateless and
reducible transactions.

The allowable forms of an XML document are
described by its Document Type Definition (DTD).
The DTD describes the allowable contents of each
kind of XML node by a DTD rule. This rule expresses
the structure of allowable content for the node as a
regular expression in which tokens are node labels.
There are three constructions one can use to make a
DTD rule:

1. Sequencing: the expression ‘‘A,B,C’’ matches a
sequence of nodes: a node named A followed
by a node named B followed by a node named
C.

2. Alternation: ‘‘A|B|C’’ matches exactly one of A,
B, or C.

3. Repetition: ‘‘A*’’ matches zero or more copies
of a node named A in sequence. This is the
‘‘Kleene star’’ operator.

More complex specifications are regular expres-
sions containing the above operators, e.g., one can say
that a node named A contains either a node named B or
a sequence of nodes named C followed by a node
named D by describing A’s content via the regular
expression pattern ‘‘B|(C*,D)’’. This is described in a
DTD by the rule
<!ELEMENT A (B|(C*,D))>

This rule allows XML such as
<A>
<B>...</B>
</A>

and
<A>
<C>...</C>
<C>...</C>
<D>...</D>
</A>

but disallows XML such as
<A>
<C>...</C>
</A>

(because C cannot appear alone inside A in the above
rule). Here ... in the text represents content conforming
to (yet to be described) rules for the content of C and
D. Other DTD constructions, including + for ‘‘one or
more instances,’’ are expressible using these construc-
tions: A+ is just ‘‘A,A*’’.

Without loss of generality and to ease notation,
we do not consider element ATTRIBUTE declarations in
XML. These are easily modeled as subordinate ele-
ments of the element to which they apply.

Our initial try at defining XML transactions will
be based upon the XPATH language for identifying
nodesets within XML files. Every XML file contains
nodes that contain other nodes as content. In the file
<foo>

<bar>
<goo>1</goo>
<cat>3</cat>
<goo>4</goo>

</bar>
</foo>

there are five nodes, including one foo, one bar, two
goos, and one cat. A nodeset within an XML file is a
set of nodes within the file having common attributes.
XPATH is a language for identifying nodesets, using a
notation similar to that used to identify files within a
filesystem. For example, the XPATH /foo/bar refers to
all nodes named bar within a top-level node named
foo, while /foo/bar[2] refers to the second such node
named bar in sequence. The special component * refers
to a component with any name; /foo/*[5] refers to the
fifth component of the content of foo with any name.
While this simple subset of XPATH suffices for our
discussion, there are many other options too numerous
to cover here. All that we need to remember for now is
that an XPATH determines a set of nodes within the
document for which the assertion controls resulting
content. This set of nodes is uniquely determined by
the current content of an XML document and an
XPATH, and may be empty.

The general form of an XML transaction is:
assert <nodeset> <content>

where <nodeset> specifies a set of nodes in the file to
transform (in XPATH notation) and <content> is XML
content that should replace any existing content in the
nodeset. <content> can be empty, in which case the
assertion has the effect of retracting content from the
node. The assertion succeeds if the requested transac-
tion is possible (the nodeset defined by the XPATH
<nodeset> is non-empty) and the resulting transformed
XML document conforms to the document’s DTD;
otherwise it fails and does nothing to the document at
all. Because DTDs describe the content allowable for
each node, and because each assertion provides that
content, either all replacements are legal or all replace-
ments fail, together.

For example, in the file
<foo>
<bar>
<goo>1</goo>
<cat>3</cat>
<goo>4</goo>

</bar>
</foo>

performing the command
assert /foo/bar/goo[2] <ho>5</ho>

would result in the document
<foo>
<bar>
<goo>1</goo>
<cat>3</cat>
<goo><ho>5</ho></goo>

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 223



Experience in Implementing an HTTP Service Closure Schwartzberg and Couch

</bar>
</foo>

(provided that the resulting document is acceptable
according to the DTD for the document). The XPATH
/foo/bar/goo[2] matches the second instance of goo
inside an instance of bar inside an instance of foo. The
XPATH /foo/bar/goo would match both instances, so
that the assertion
assert /foo/bar/goo <ho>5</ho>

will produce the document
<foo>
<bar>
<goo><ho>5</ho></goo>
<cat>3</cat>
<goo><ho>5</ho></goo>

</bar>
</foo>

Since one can re-assert the contents of the top-level
node (via assert /), every state of the XML file is reach-
able via such assertions. Also, such assertions are idem-
potent; either an assertion succeeds (if its total effect
conforms to the document’s DTD) or it does not succeed
and does nothing to the document. If it does or does not
succeed, repeating it immediately has the exact same
effect (because the whole assertion is variable-free).

It is a bit more difficult to see that

Proposition 4 The set of all possible assertions
A of the form
assert <nodeset> <content>
is stateless and reducible to assertions.

Proof: Consider a transaction T ö A and a sequence S
of transactions in A. Note that all content of T is con-
stant; there are no variables that can change state
within the transaction itself. Note also that no transac-
tion in A can change the number of elements in the
content of an element unless it also asserts all of the
content of that element.

Consider what happens when one applies TST in
sequence. Either the nodeset determined by the
XPATH in T changes or it stays the same. If it stays
the same, then T has the same effect by definition, so
that the first T need not be executed and T is stateless.
If the nodeset changes, however, it must have changed
as a result of assertions that change the whole content
of nodes. These assertions must override the prior val-
ues of T whenever they affect its nodeset. So in either
case, T is stateless. As T and S were arbitrary, the
whole language A is stateless.

A is trivially reducible to assertions, as it has no
retract statements at all! tu

Statelessness and Semantics

So far, we have a very awkward system for edit-
ing XML. It would be convenient to add two new
primitives
add <nodeset> <content>

and
subtract <nodeset> <content>

that augment and remove sequenced content from a
node. add puts new content into a sequence, while sub-
tract removes matching content from a sequence. The
success of both operations is again dependent upon con-
formance between the result and the document’s DTD.

Without further constraints, we no longer have
statelessness. To have statelessness, we must also have
idempotence, but the add primitive is not even idem-
potent; adding something twice results in two entries
for the item instead of one. For example, consider the
XML document
<foo>
<bar>
<goo>10</goo>
<goo>16</goo>

</bar>
</foo>

and the effect of two statements:
add /foo/bar <goo>20</goo>
add /foo/bar <goo>20</goo>

After these statements (and with no further con-
straints) the resulting document would contain:
<foo>
<bar>
<goo>10</goo>
<goo>16</goo>
<goo>20</goo>
<goo>20</goo>

</bar>
</foo>

instead of
<foo>
<bar>
<goo>10</goo>
<goo>16</goo>
<goo>20</goo>

</bar>
</foo>

(which would be the required result for a stateless add
operation).

The DTD for an XML document is syntactic; it
describes what can be written but not what the written
text means. What is missing from our model is a
notion of semantics that would tell us when two con-
figurations are equivalent. A model of semantics, in
turn, allows one to understand what add and subtract
should do in order to remain stateless.

Note that idempotence and statelessness are not
properties of what operations do, but of what the
results mean. If operations act on a configuration file
to produce the same contents, it is rather obvious that
they result in the same behavior. However, sequences
of operations that produce differing configuration files
may produce the same behavior, e.g., if the differences
in configuration do not produce differences in behavior.

224 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



Schwartzberg and Couch Experience in Implementing an HTTP Service Closure

In adding information to a sequence, one must
ask several questions. Does order of the sequence mat-
ter or not? Do duplicates matter, or does the first or last
instance of a duplicate override the others? What con-
stitutes a duplicate entry? These are semantic questions
that go beyond the simple syntax described by a DTD.

Preserving statelessness in using substructure
addition and subtraction is a matter of both under-
standing semantics and limiting operations to fit. If
members of a sequence are pure declarations, so that
order does not matter and duplicates are ignored, then
add and subtract should behave accordingly. Trying to
add a duplicate should have no effect.

More subtle, the semantic definition of a dupli-
cate often involves the notion of a unique key. For
example, suppose that in Apache we are defining
access rights to directories. Obviously, the directory to
which we are defining access constitutes a unique key;
we should not be able to define two different ideas of
protection for one directory.

This means that we need several context-sensi-
tive notions of what add and subtract should do.

1. If order of assertions matters and cannot be
inferred from assertion content, the game is
over. Language is imperative and statelessness
is impossible.

2. If order of assertions does not matter and dupli-
cates can occur, then add cannot be stateless,
because it is not even idempotent.

3. If order of assertions does not matter and dupli-
cates should not occur, the add command
should have the form
add <nodeset> <key> <content>

where <nodeset> determines a set of nodes on
which to operate, <key> is an XPATH relative to
each node that determines a key that should be
unique, and <content> is content to add. For
example, given the XML
<foo>
<bar>
<goo>10</goo>
<goo>16</goo>

</bar>
</foo>

the command
add /foo/bar goo <goo>10</goo>

does nothing at all, because 10 is already a key,
while
add /foo/bar goo <goo>20</goo>

results in the document
<foo>
<bar>
<goo>10</goo>
<goo>16</goo>
<goo>20</goo>

</bar>
</foo>

The extra goo in the assertion indicates that the
content of goo is the key that should be unique.

The moral of this section is that unless the XML
being created is truly a declaration (i.e., order does not
matter and duplicates should not exist), statelessness is
impossible in the transactional language that updates it.

Application to Configuration Management

The impact of this mathematical theory upon the
general problem of configuration management is sub-
tle but inescapable. So far, we have largely ignored the
problem of change management in host configuration
management. Generative tools (that create an entire
configuration from templates) largely avoid the issue
of change management by erasing everything and
starting over each time. However, these tools are rela-
tively limited in scope, as they cannot handle major
changes such as package management: installation and
removal of software subsystems. Convergent tools
allow one to become sloppy and forget that a compo-
nent is managed, while imperative tools deal poorly
with undoing changes.

In the sub-problem of managing the configura-
tion of a web server, change management is a central
concern, so that we must adjust our practice and lan-
guage to ease that task. The result, however, is that we
created a framework for change management that
applies to the more general problem of network con-
figuration management. In fact, we have created an
‘‘assembly language’’ that is the lowest level of a new
strategy for configuration management.

At its core, every configuration can be described
in terms of a set of assertions that are true at a given
time. In the simplest case, each assertion assigns val-
ues to one or more ‘‘configuration parameters.’’ Since
configuration values are always specified as absolute
quantities in assertions, such assertions are naturally
stateless. Most configuration management tools are
driven by configuration files containing only stateless
assertions of this kind.

By viewing the assertions in such a configuration
file as commands to be executed, the only thing we
have added in our model is a concept of retraction of
assertions. There is a constraint model that describes
which assertions conflict with which others, and a rule
that keeps current values consistent with one another,
e.g., for our web server, we know that asserting a new
index file for a directory is going to override the old
index declaration. If we retract a virtual server, then all
parameters for that server no longer exist.

If the command language is reducible to asser-
tions, no matter what incremental changes we make to
the overall configuration through further assertions,
the results remain precisely expressible as a set of
assertions. Further, the assertions are sequence-idem-
potent, so that repeating them has the same effect as
doing them once. Thus the list of valid assertions is a
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good substitute for the policy file found in many con-
figuration management systems.
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web server
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Figure 6: Parts of a complete HTTP closure, where the dotted box indicates completed prototypes.
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Policy
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Stateless
Transactions

Transactional
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Transaction
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Figure 5: A new model of configuration manage-
ment, in which low-level statements exhibit state-
lessness while upper levels encapsulate stateful
behavior.

This gives rise to a new model of configuration
management (see Figure 5). At the core, a transaction

engine interprets a stateless language. This engine
interprets stateless commands to effect requested
changes in overall configuration. This engine is
responsible for maintaining the list of valid assertions
and retracting conflicting assertions. This engine deals
with stateless commands only.

At the next level, stateful commands are trans-
lated into stateless commands for ease of use. While
the user thinks in relative terms (‘‘more space’’), the
transactional system must think in terms of absolute
requirements (‘‘2 MB’’). A simple memory mecha-
nism here makes the translation between relative and
absolute units.

At the third level, meta-commands describing
overall intent are translated into the assertions that cre-
ate that intent. ‘‘Become a web server’’ is translated
into the various assertions that cause that to happen.

This rather strange way of accomplishing configu-
ration management has a few rather obvious advantages:

1. The whole history of the configuration of the
machine is contained in one transaction stream.

2. At any time, there is a deterministic procedure
that can determine what configuration is in
effect at that time.

3. Storing the stream and its changes allows one
to roll back time, by replaying the stream or
selectively retracting the newest assertions,
backwards.

4. One can specify changes as incremental opera-
tions upon a pre-existing structure.
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5. Changes can come from multiple sources (e.g.,
different administrators or groups) and will be
disambiguated at implementation time.

6. At any time, there is a coherent picture of the
assertions currently in effect.

These observations are not true in general of
current convergent administrative tools, including
Cfengine. In Cfengine, changes are specified by
editing a monolithic file. There is no easy way to
undo a configuration step. It is difficult for multiple
people to collaborate on a single configuration without
conflicts. In order to implement such a mechanism,
Cfengine would have to have the ability to return a file
to the state before any edits have been applied.

This proposal needs much study before we
implement such a language, but is clearly implied by
our study of HTTP.
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on modules

Content
management

Module
management

Virtual
server

constraint
engine

Content
management

closure

Practical
constraints
on servers

Virtual
server

preferences

Module
configuration

Figure 7: Parts of the configuration management closure in Figure 6.

Conclusions

Work on this project has been a long road of dis-
covery. Ad-hoc creation of a closure language – based
upon a configuration language – led to much initial
confusion. The exact things that make a configuration
file easy to read make a command language confusing
and difficult to use. Disambiguating that language
required a mathematical approach: stateless com-
mands removed the quandaries posed by stateful syn-
tax. The result proves that for a limited problem
domain, closures exist.

But we are a very long way from coming to a com-
plete closure. A complete solution seems to have more
parts than we could have imagined initially(Figure 6).

1. To assure idempotence of operations, we need
content staging, and an independent repository
for staged data. There should be two content
hierarchies, one for actual provision and the
other a cached copy that allows restoring the
provided data, e.g., after a crash.

2. It is impossible to deal with dynamic content
written into the web hierarchy by traditional
means. This must be handled by some kind of
dynamic storage closure (that may be a data-
base, or perhaps something else).

3. We had much difficulty verifying that a
declared virtual server would work properly
according to information in DNS and DHCP.
We need the ability to converse with and nego-
tiate with DNS and DHCP closures in order to
determine whether declared virtual servers will
work properly.

As well, the actual configuration closure should
have several parts that are not currently present(Figure
7). A module management subsystem should allow
dynamic selection of modules, while a constraint
engine disallows impractical choices. Likewise, a vir-
tual server management subsystem should disallow vir-
tual server configurations that cannot work, e.g., declar-
ing more than one ssl server for a single IP address.

We also acknowledge that the end product may
not be a single http service closure, but several differ-
ing ones for different applications. Making the lan-
guage simple enough to use in one application may
preclude its use in another. For example, a closure
whose language is simple enough for use by untrained
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people may not be expressive enough to be appropri-
ate for experts.

This is only the beginning of our journey, and there
are several caveats for those who would follow this path.

1. First, beware of seemingly stateless languages
whose environment is stateful. In our language,
the act of copying files is stateless, but the files
themselves can change between copies. So the
copying commands are not truly idempotent.

2. Second, beware of implementing the top level
of a closure before the lower levels. We cannot
really assure behavior, because our closure is
not built on top of a foundation of lower-level
closures. Assurance and trust must rise from the
bottom levels rather than being imposed from
above. This is the obvious way to settle quan-
daries such as how to validate that virtual
servers will receive requests, etc.

3. Third, beware of making a closure that works
around limitations that should rightly be there
with good reason. We chose not to allow CGI
scripts to create dynamic content within the clo-
sure. This seems a limitation, but actually
reflects best practices for web content creation.
If CGIs ‘‘should’’ be using databases, why
should we allow them not to? Ideally these
CGIs should be communicating with ‘‘data per-
sistence closures,’’ otherwise known as data-
base management systems!

4. Creating a closure that reacts predictably to
configuration commands requires discipline in
creating the command set. But many more dis-
ciplines are required, and some features to
which we are accustomed in existing paradigms
– like CGI scripts editing server files – must
cease in order for the closure to become reliable.

In the final estimation, it remains unclear
whether closures are the solution to the complexity of
configuration management, and unclear whether rea-
sonable stateless languages exist for other applica-
tions. The most important lesson of this study is that
practice must adapt to allow closure to exist. Without
a fundamental change in language, the HTTP closure
would have been impossible to create.

Ours was not just a journey of software design,
but also of evolving thinking. The future of that think-
ing remains unknown. It is likely that as we try to cre-
ate practical closures, more radical shifts in thinking
and practice will be required. The answer seems to lie
in the simple statement that language must carefully
conform to needs. The need for simple subsystems
that are easily managed will no doubt lead to ‘‘paths
where no one thought.’’
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