DigSig: Run-time Authentication of
Binaries at Kernel Level

Axelle Apvrille — Trusted Logic
David Gordon — Ericsson
Serge Hallyn — 1BM LTC

Makan Pourzandi — Ericsson
Vincent Roy — Ericsson

ABSTRACT

This paper presents a Linux kernel module, DigSig, which helps system administrators
control Executable and Linkable Format (ELF) binary execution and library loading based on the
presence of a valid digital signature. By preventing attackers from replacing libraries and sensitive,
privileged system daemons with malicious code, DigSig increases the difficulty of hiding illicit

activities such as access to compromised systems.

DigSig provides system administrators with an efficient tool which mitigates the risk of
running malicious code at run time. This tool adds extra functionality previously unavailable for
the Linux operating system: kernel level RSA signature verification with caching and revocation

of signatures.

Introduction

In the past years, the economical impact of mal-
ware-like viruses and worms has regularly increased.
Even though the target platform of many malware is
Windows, with the increasing popularity of Linux as a
desktop platform and its wide use as public server, the
risk of seeing viruses or Trojans developed for this
platform is rapidly growing.

These malware can be installed on the system
through different sources. On desktop systems, a
major source of malware lies in careless users who
introduce viruses, worms, Trojans, or other nuisances
through email attachments or internet downloads of
Trojaned software.

On server side, very often, vulnerabilities like
buffer overflows in public services are exploited by
the attacker to install rootkits to replace system bina-
ries and libraries with Trojaned versions. These rootk-
its are then used to assure a continued access to a com-
promised machine and mask attacker’s illicit activity.
For instance, the Remote Shell Trojan (RST) infects all
ELF binaries of the /bin directory, offering a backdoor
process with a command shell at the privilege level of
the invoking user.

Even though there are actually different origins to
the spread of these malware, the final result is often the
same, an unauthorized binary running on the system.

To mitigate this risk, system administrators com-
monly deploy restrictive solutions such as firewalls,
virus scanners, or intrusion detection tools. Although
those tools do have positive impact on system security,
they have proven to be insufficient; a firewall for
instance is usually incapable of detecting covert channels.

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

Papers such as [1] have already raised the alarm, and
[2] even compares firewalls to the French Maginot
line.! Virus scanners and intrusion detection systems
also show several limits, such as their incapacity to
detect totally new viruses or intrusions. Indeed, their
detection engine most usually relies on an extensive
signature database, sometimes enhanced with an
heuristic algorithm to detect known viruses/intrusions
and their close cousins. This results in a time gap
between the first spread of new viruses and their char-
acterization through signatures. This gap can be used
by attackers to penetrate the internal network of the
company. In theory, only few systems based on users’
normal behavior or misuse detection model are capa-
ble of detecting brand new viruses; however, they are
more at research stage yet [5].

Supporting the concept of defense in depth, this
paper consequently proposes a new layer of defense to
existing mechanisms, named DigSig. Used in addition
to firewalls, virus scanners, or IDS, this paper high-
lights how DigSig can significantly increase security.
DigSig does not prevent malicious applications to be
installed on the system, but prevents their execution,
which is when they actually become dangerous.

The paper is organized as follows. First, we
describe how DigSig enforces digital signature verifi-
cation at ELF file loading time. Second, we explain
how system administrators would typically deploy
DigSig on one or several Linux hosts. Then, we focus
on the security aspects of this kernel module and in

For readers not familiar with the history of the second
world war, the German army went around the main French
defense line, called Maginot and defeated the French army
in 40 days!

59

DigSig: Run-time Authentication of Binaries at Kernel Level Apvrille, Gordon, Hallyn, Pourzandi, and Roy

what way it counters attacks. We analyze the perfor-
mance impacts of DigSig. Finally, we mention some
related work, including some complementary systems
DigSig might be added to.

DigSig Kernel Module

DigSig is implemented as a Linux kernel mod-
ule, which checks that loaded binaries and libraries
contain a valid digital signature. In the case of an
invalid signature for the binary or for any of its shared
libraries, the execution is aborted.

When an ELF file is to be loaded into an exe-
cutable memory region, DigSig searches the file for a
signature section. If no such section is available, load-
ing is refused. Otherwise, DigSig hashes the contents
of all text and data segments, and compares the result
to the contents of the signature section decrypted with
a system’s public key. If values do not match, this
means the file was not signed with the corresponding
private key, or that it was modified after signing. In
such a situation, loading is refused.

An attacker who now attempts to replace ps, Is,
sshd, libc, or any other common rootkit target with
Trojaned versions will find these files cannot be exe-
cuted.

DigSig adds a new section into the ELF binary;
therefore, it works only with binaries with ELF for-
mat. As ELF is the predominate format in Linux sys-
tems, compiling a kernel with only ELF support
should not cause problems. In this article, whenever
mentioning binaries, only the case of ELF formatted
binaries is considered. At this time, DigSig also does
not cover the case of scripts. This is outside the scope
of this paper, but will be addressed in the future.

The following subsections detail the implementa-
tion of DigSig.
Signing the Binary

Before verifying the signature of a binary, the
binary needs to be signed and the signature stored in
order to retrieve it. Executables and libraries are ini-
tially signed offline, using the Debian userspace pack-
age BSign [3]. BSign embeds an RSA signature of all
text and data segments into a new ELF segment called
the “signature” segment (see Figure 1). Then, once
signed, the RSA private key is safely stored offline
and removed from the system, while the correspond-
ing public key is loaded in the DigSig kernel module.

Verifying the Signature of the Binary

At execution time, the DigSig kernel module ver-
ifies the signature of the binary/library. This requires
the following functionality at kernel level:

* Support for hash functions: The first step of
each digital signature consists of hashing the data
to sign. This is provided by the CryptoAPI,
which is part of Linux 2.6.x main stream kernels.

¢ Public key cryptography: This is in order to
verify the signature.

60

¢ Executable file loading mediation: This allows
us to verify a signature before running the
binary, and optionally refuse execution.

The RSA algorithm is used for verifying the signa-
ture of the binary. As there is currently no native imple-
mentation of RSA at kernel level, we had to import our
own implementation into the kernel. Yet, in cryptogra-
phy, re-inventing the wheel often turns out to be
extremely dangerous, so it was decided to use the well-
tested, GPL’ed GPG implementation of RSA and
port the necessary parts for use in kernel space. In order
to avoid bloating in the kernel, only 10% of the original
code of GPG has been imported. This code is currently
isolated in a specific directory (digsig/gnupg) of DigSig.

ELF header

Program header table

Text segment
Data segment

Section header table
e

> Sections

« BSign Section

Embeds an RSA
signature

ELF Binary

Figure 1: Sign signature section as added in an ELF
binary.

As for mediating the loading of executables,
DigSig uses the Loadable Security Modules (LSM)
architecture [6], which has now become an established
part of the kernel. It allows a module to define hooks
to annotate kernel objects with security data and medi-
ate access decisions for such objects. One such hook,
security_file_mmap, is called whenever mmap is called
to map a file to a memory region. This is done by
sys_execve to load binaries, as well as by dlopen to
load shared libraries. The mmap hook is consequently
a convenient location for DigSig to mediate exe-
cutable mapping of ELF binaries [7].

Caching and Revocation Lists

In order to increase performance of signature
verification, DigSig caches a list of binaries whose
signatures have already been verified. The first time

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

Apvrille, Gordon, Hallyn, Pourzandi, and Roy DigSig: Run-time Authentication of Binaries at Kernel Level

an ELF binary or library is loaded, its signature is ver-
ified. If the signature is correct, then the successful
signature verification is cached. In subsequent loads,
DigSig only checks the presence of this signature vali-
dation in the cache. This results in a significant
improvement in performance, as detailed later. If the
file is later opened for writing, the security_inode_per-
mission LSM hook will be triggered, to which DigSig
will respond by removing its signature from the cache.
The size of the signature verification cache can be
specified at module load time, but defaults to 512 sig-
nature verifications.

ELF ELF
binary or binary or
library | execute library | write

security’ file mmap security inode_permission

Remove
First signature
execution 7 from cache

No, check it is
in the cache
Yes
¥ Valid signature Cache
Verify signature Additto cache list of
valid
Invalid L signatures
signature Load binary
or Library

Figure 2: DigSig’s caching mechanism.

The introduction of a signature validation cache
might seem like a step toward a binary whitelist. In
particular, it might seem a simpler solution to elimi-
nate digital signatures altogether, and keep only a
whitelist of acceptable binaries and libraries. Files on
the whitelist would be executable but not writable, and
files not on the whitelist would not be executable. This
approach would eliminate the need to verify crypto-
graphic signatures on each file on the first load. How-
ever, the DigSig approach has several advantages.
First, files with cached signature validations that are
not being executed can still be written to. Their signa-
ture validation will merely be removed from the
cache. Second, the signature validation cache need not
be updated to install new libraries or executables.
Therefore, software can be installed and upgraded on a
live system, and a DigSig system in many ways acts as
a normal Linux system. Third, the signature validation
cache cannot be edited from user-space, preventing
attacks against the cache that an editable whitelist
might be subject to. Fourth, a DigSig system can use a
relatively small cache, as its sole purpose is perfor-
mance improvement. A pure whitelist system would
need to keep entries for every binary and library.

DigSig also implements a signature revocation
list, initialized at startup and checked before each sig-
nature verification. When programs that were previ-
ously signed with the correct private key are later

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

found to contain vulnerabilities, their signature may be
revoked by adding them to the revocation list. This is
particularly convenient because it eliminates the need
to generate a new key pair and resign all binaries and
libraries on the system just for a few revocations. The
revocation list is communicated to DigSig using the
sysfs filesystem, by writing to the /sys/digsig/digsig_
revoke file.

Therefore, DigSig allows the binaries to be eas-
ily updated over time. This simplifies the evolution of
the system over time which is a major requirement for
many systems where the binaries can be changed or
added over the lifetime of the system.

Deploying DigSig

DigSig requires neither kernel patching nor re-
compilation of the binaries. Therefore, there are no
major changes in the system necessary to deploy
DigSig.

DigSig installation requires three initial steps:

1. Generate an asymmetric key pair (for instance
using GPG).
2. Sign all trusted binaries and libraries (with

BSign).

3. Modify the system startup procedure to load

DigSig.

From a deployment point of view, the first step
raises the issue of key storage. Obviously the private
key should be kept confidential. To this end, Bsign
suggests it should be kept on a removable physical
support such as a floppy disk or a flash memory key or
a read-only CDROM. It is also a good idea to keep a
hash of the public key, for instance using shalsum, to
check that an attack hasn’t replaced the real public key
with another one. This approach is particularly conve-
nient in centralized networks where users connect
from remote terminals onto a single application server:
DigSig only needs to be deployed on the server to
secure execution of all users. However, in networks of
individual PCs or laptops, a compromise needs to be
made between having one key per host (good security,
but perhaps a burden for administrators) and having a
single shared key for all (security issue: if one host is
compromised, all are). Such issues are not specific to
DigSig, but general to PKI.

As for the second step, signing all binaries and
libraries can easily be done through the following
command:

bsign -s -v -I -i / -e /proc \

-e /dev -e /boot -e

/usr/X11R6/1ib/modules
It takes about an hour to sign all binaries of a Fedora
Core 1 installation using Bsign 0.4.5 on a Pentium 4
2.2 GHz with 512 MB of RAM. Note that the revoca-
tion list system reduces the need for re-signing the
whole system. This fact is particularly important for
systems that wish to offer uninterrupted service.

61

DigSig: Run-time Authentication of Binaries at Kernel Level Apvrille, Gordon, Hallyn, Pourzandi, and Roy

The third step only requires minor modification
of the operating system’s startup files. Automatic
loading of the DigSig kernel module can be achieved
by adding DigSig to /etc/modules, and appropriate
options in /etc/modutils.

Security Considerations

In this section, a short security analysis of
DigSig is conducted to help system administrators
understand under what circumstances DigSig does or
does not increase security. This assists system admin-
istrators in deciding the best approach in deployment.

DigSig operates as a kernel module. It thus
requires root privileges for loading and unloading the
module, and assumes the secrecy of the DigSig private
key, the integrity of its public key, root access to the
system, and the Linux kernel itself are not compro-
mised. For the rest of the study, these requirements are
taken for granted; however, please note this is not
always the case (see the section on related work).

It is important to understand DigSig has not been
designed for vendors but rather for system administra-
tors. System administrators have total control over
what should, or shouldn’t, execute on the machines
they administrate. There is no way a vendor can hope
to lock up a given machine to a given software unless
with the system administrator’s consent. In brief,
DigSig targets more prevention against attackers than
DRM or software version management. Its two major
goals are the following:

1. If a binary has been signed, no one can modify
the binary without the modification being
detected.

2. Nobody can execute or load an ELF binary or
library unless it has been signed.

However, note DigSig cannot protect a system
from vulnerabilities within legitimately installed and
signed software. Let’s see how DigSig achieves secu-
rity. First, we detail how DigSig prevents modification
of ELF binaries. Second, we examine the case of
libraries. Finally, we analyze the security of the signa-
ture caching and revocation mechanisms.

As described earlier, when a file with a cached sig-
nature verification is opened for writing, the signature
verification is removed from the cache. However, this
does not protect files that are still being executed. Fortu-
nately, the second protection comes from the Linux ker-
nel itself: the kernel forbids executing a file that is
opened for writing and reciprocally. This is accom-
plished by calling deny_write_access(file) kernel hook,
and even the superuser is subject to such restrictions.

Unfortunately, the same defense is not extended to
shared libraries. Worse, the deny_write_access function
is not exported to kernel modules. DigSig must there-
fore implement its own protection for libraries, which it
does very similarly to the kernel. It blocks any attempt
to mmap a library with executable permission if that

62

library is already open for writing. If the mmap suc-
ceeds, then DigSig increments a usage counter for the
inode. So long as the usage counter shows the file to be
in use as a library by some process, no one, including
the superuser, may open the file for writing.

Under some circumstances, these defenses may
still not be sufficient. In particular, deny_write_access
(file) and the DigSig shared library writer lock work by
marking the VFS inode. They are therefore restricted
to a single machine. An NFS mounted file being exe-
cuted on one client, for instance, could be modified on
the server or on any other client. To reduce this threat,
DigSig does not cache signature verifications for NFS
mounted files. However, this does not protect NFS
mounted files while they are in use.

As for the signature caching mechanism, one
might fear it introduces a possible attack point. How-
ever, since the cache is stored in kernel memory, user
space programs cannot directly insert fraudulent sig-
nature validations. Signatures may be added to the
cache only through a non-exported function dsi_cache_
signature, which is only called in one place, when a
signature has in fact been validated during dsi_file_
mmap. While a user-space application cannot directly
inject fraudulent signature validations, a Trojan kernel
module could of course do so by directly manipulating
memory. However, a Trojan kernel module could also
stop DigSig altogether [10], so this is not a valid argu-
ment against signature caching.

Finally, it is important to note the signature revo-
cations open the possibility of denial of service. It is
vital that an attacker not be able to add valid signa-
tures to the revocation list. To ensure this, DigSig
restricts access to the communication interface (/sys/digsig/
digsig_revoke) to root, so that only root can provide
revocation lists to DigSig. As a further precaution,
revocation lists can only be appended to before DigSig
begins enforcing; that is, before a public key is pro-
vided. Care should therefore be taken to ensure that
DigSig is enabled before the system is exposed to
threats, such as before a network connection is
enabled if the network is the primary means of attack.
Additionally, the integrity of the collection of revoca-
tions must be guarded. For instance, they can be stored
on a read-only media (such as a cdrom), or simply
signed by GPG.

Performance

Figure 3 presents DigSig’s overhead according to
the execution time. In the following, all measures are
done with a key size of 1024 bits for the RSA algo-
rithm and use of SHA-1. The overhead induced by
DigSig grows linearly with the size of executables.
However, the gradient is very small: approximately
only 0.0016 microsecond per byte.

This is not believed to be critical because unlike
Windows operating systems, Unix systems only have
few very large executables. As a matter of fact, a typical

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

Apvrille, Gordon, Hallyn, Pourzandi, and Roy DigSig: Run-time Authentication of Binaries at Kernel Level

Debian Woody workstation only shows 1.8% of exe-
cutables and libraries above 512 KB.

As DigSig’s signature verification is performed
once, at the beginning of load time, it is important to
note that its induced overhead naturally decreases for
long-lived applications. Yet, on Unix systems, admin-
istrators and users keep on executing small commands
such as Is, cp and cd. In such cases, the cost of signa-
ture verification is amortized by DigSig’s signature
cache (see the second section).

Kernel without DigSig
real 0m0.004s
user 0m0.000s
Sys 0m0.001s

DigSig without caching
real 0m0.041s
user 0m0.000s
sys 0m0.038s

DigSig with caching
real 0m0.004s
user 0m0.000s

sys 0m0.002s
Figure 4: Time required for ““/bin/Is -Al”.

The efficiency of the caching system is demon-
strated by Figure 4. This figure displays the average
execution time, in seconds, when running a typical textt-
tls -Al command 100 times, using the Unix time com-
mand. The benchmark was run on a Linux 2.6.6 kernel
with a Pentium 4 2.2 Ghz, 512 MB of RAM. As signa-
ture validation occurs in execve, DigSig’s overhead is
expected to show up during system time (sys). The
benchmark results clearly highlight the improvement:
there is now hardly any impact when DigSig is used.

Finally, to provide a better insight into the actual
impact of DigSig on real workloads, three kernel com-
piles were timed on a non-DigSig system, and three on
a digsig system. The tests were performed using a
2.6.7 kernel on a Pentium 4 2.4 GHz with 512 MB of
RAM. The kernel being compiled was a 2.6.4 kernel,
and the same .config was used for each compile. Each
compile was preceded by a “make clean”. Results are
shown at Figure 5. The first execution time, both with
and without DigSig, appears to reflect extra time
needed to load the kernel source data files from disk.

Kernel without DigSig
real Sys
19m21.890s 1m27.992s
19m 9.276s 1m26.584s
19m 9.464s 1m26.191s
19m 7.717s 1m25.799s

Kernel with DigSig
real Sys
19m19.957s 1m?28.541s
19m 7.485s 1m26.832s
19m 7.883s 1m26.549s
19m 6.494s 1m26.618s
Figure 5: Time required for 2.6.4 kernel “make”.

Related Work

This section presents a few related tools that more
or less have the same goals as DigSig, but also supple-
mentary work that can be used together with DigSig.

As previously stated, on a security point of view,
DigSig assumes the root account has not been compro-
mised. In circumstances where this is unacceptable, there
are ways to circumvent this requirement.

4.5e+06 T T

4e+06

3.5e+06

3e+06 -

2.5e+06 -

2e+06 -

Executable size (bytes)

1.5e+06 |-

le+06 |

500000 [

' "PIotPerf.&at" —

0 10 20

30
Digsig overhead (ms)

40 50 60 70

Figure 3: DigSig overhead (ms) for the first load (without caching) per executable size (bytes).

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

63

DigSig: Run-time Authentication of Binaries at Kernel Level Apvrille, Gordon, Hallyn, Pourzandi, and Roy

One solution, well known in the Linux domain,
relies on SELinux [9]. This security enhanced Linux
proposes an implementation of Mandatory Access
Control policies, where access control on objects is set
according to their sensitivity and not necessarily by
their owner. An immediate consequence to this model
is that root becomes much less powerful. On “nor-
mal” Unix operating systems, root is a super user with
super powers. With SELinux, root does not necessar-
ily have access to all objects; this limits risks in case
of root compromise. Permissions are specified at a
very fine grained level and include access to files,
shared memory, POSIX capabilities, and sockets,
among others. SELinux could be used in addition to
DigSig, to provide the needed secrecy and integrity
guarantees of DigSig keys and revocation lists, even in
the case of a root compromise.

Another alternative relies on Trusted Computing
solutions, such as the specifications provided by the
Trusted Computing Group (TCG) [11]. In TCG, nor-
mal PC architecture is enhanced with a small security
hardware called the Trusted Platform Module. In par-
ticular, the TPM offers protected storage of data, irre-
mediably binding data to Platform Configuration Reg-
isters (PCRs). The secret stored on the TPM may only
be retrieved by the TPM owner if the configuration of
the PC (held in PCRs) hasn’t changed. This offers two
levels of protection in case of root compromise. First,
the TPM owner and root are not necessarily the same
person. Second, if root account has been compro-
mised, most of the time this is due to a malicious
application (a rootkit) has been installed. Fortunately,
installing a rootkit impacts the PC’s configuration, so
the TPM forbids retrieval of secrets it stores. Sample
implementations of trusted computing on Linux can be
found in [12, 13, 14].

SELinux and Trusted Computing largely encom-
pass DigSig’s goals. However, they offer practical
opportunities to supplement DigSig in stricter security
sensitive situations. On the other hand, disadvantages
of such solutions rely on their complexity, and on the
need for specific hardware in the case of trusted com-
puting. On the contrary, DigSig’s small size makes it
easy to install, configure or re-use.

DigSig may also be compared to similar tools
such as PaX [15] and ExecShield [16]. It is important
to note that PaX and ExecShield do not exactly have
the same goal as DigSig; they attempt to prevent soft-
ware exploits from being used to execute arbitrary
code. This is done by placing strict limits on mmaped
regions, and by using address space randomization. In
brief, PaX and Exec protect the system against
exploits of malicious code, while DigSig prevents
malicious code from being executed.

Tripwire is in some respects similar to DigSig. It
maintains a signature database of all files on a machine,
and notifies the administrator when some of them are

64

modified (possibly replaced by Trojaned versions for
instance). However there are two major differences
from DigSig. First, Tripwire works at user level, not
within the kernel. Second, it does not provide on-the-
fly verification of file signatures. For instance, there is
no way to trigger signature verification when a binary
is executed. So, Tripwire could more accurately be
compared to an off-line file integrity verification tool.

Closer to home, there is a Linux kernel patch
written by Greg Kroah-Hartman, from the IBM Linux
Technology Center. It is a proof of concept imple-
menting digital signatures in kernel modules. Although
it does not check binaries and has no use for caching, it
is complementary to DigSig in that the latter does not
check Linux kernel modules. The patch modifies a file
called module.c, which is responsible for kernel module
handling. Unfortunately, LSM does not provide any
hooks here. Overall, being a proof of concept, the
patch does not benefit from any form of benchmarking
or flexibility.

Availability

DigSig is available from SourceForge at http://
disec.sourceforge.net. It is available under the GNU
Public License version 2. BSign is available with the
Debian project, from http://packages.debian.org/unstable/
admin/bsign.html.

Conclusion

In this paper, a new tool, named DigSig, is pre-
sented. DigSig answers the needs of system adminis-
trators in terms of run-time security of Linux operat-
ing systems. It focuses on preventing execution of
malicious code (ELF binaries or libraries) by checking
an embedded RSA signature for each file. The imple-
mentation is based on LSM hooks and optimized with
a signature caching and revocation mechanism.

On a deployment point of view, the paper has
shown that DigSig introduces only little additional
installation and management effort. In particular, the
initial setup of the system which consists insigning all
valid binaries and libraries can be launched once and
for all by a single command. Future sporadic changes
on the system do not require this step and are handled
by DigSig’s signature revocation mechanism. From a
security point of view, the paper has also demonstrated
DigSig is believed to be safe, under reasonable
assumptions for most security environments.

DigSig has also been benchmarked, and the results
indeed show a very small overhead at load time (a few
nanoseconds per byte of executable’s size) and even
less with the signature caching mechanism. It is there-
fore reasonable to conclude DigSig should not impact
machine’s performance from an end-user point of view.

Finally, the paper has presented some other
related work. Some, such as SELinux and TCG, may
be used in addition of DigSig to supplement it. Others,

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

Apvrille, Gordon, Hallyn, Pourzandi, and Roy DigSig: Run-time Authentication of Binaries at Kernel Level

such as ExecShield, Tripwire, present similarities and
differences that make them suitable for other situa-
tions. To our knowledge, at this time, DigSig is the
only GPL’ed run-time executable signature verifica-
tion integrated to the Linux kernel.

In the future, we mainly hope to extend our work
to protect Linux systems against malicious shell scripts.

Acknowledgements

The authors would like to thank the LISA
reviewers for helpful comments about the extended
abstract. They also thank the LISA typesetter, Rob
Kolstad, for helpful information as well as for taking
the formatting concerns off our hands.

Authors

Axelle Apvrille (axelle.apvrille@trusted-logic.fr)
is a senior computer security engineer, currently work-
ing for Trusted Logic, in Sophia Antipolis, France.She
received her computer science engineering degree in
1996 at ENSEIRB, Bordeaux, France, and then spe-
cialized in computer security working at MSI S.A. and
in research laboratories of StorageTek and Ericsson
Canada. She holds several patents and papers in maga-
zines and international conferences.Her main interests
are cryptography, security protocols and embedded
security.

David Gordon has a bachelor’s degree from the
university of Sherbrooke. His interests include secu-
rity and next-generation networks.

Serge Hallyn graduated from Hope College with
a B.S., and the College of William and Mary with
M.S. and Ph.D. in computer science. He currently
works with the security team at the IBM LTC in
Austin, TX. He can be reached at serue@us.ibm.com.

Makan Pourzandi (makan.pourzandi@erics-
son.ca) works for Ericsson Research Canada in the
Open Systems Research Department. His research
domains are security, cluster computing, and compo-
nent-based methods for distributed programming. He
received his doctoral degree on parallel computing in
1995 from the University of Lyon, France.

Vincent Roy is a student in electrical engineering
at the University of Sherbrooke. He worked at Erics-
son during summer 2004. He can be contacted at
gaspoucho@yahoo.com .

Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

Bibliography

[1] Loscocco, P., S. Smalley., P. Muckelbauer, R.
Taylor, S. Turner, and J. Farrell, “The Inevitability
of Failure: The Flawed Assumption of Security in
Modern Computing Environments,” Proceedings

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

of the 21st National Information Systems Security
Conference (NISSC), October 6-9, 1998.

[2] Frankston, W., Firewalls: The New Maginot Line,
http://www.frankston.com/public/Essays/Firewalls.
asp, February 1998.

[3] BSign Debian package, http://packages.debian.
org/stable/admin/bsign .

[4] Apvrille, A., M. Pourzandi, D. Gordon, and V.
Roy, “Stop Malicious Code Execution at Kernel
Level,” Linux World Magazine, Vol. 2, No. 1,
January 2004.

[5] Sinclair, C., L. Pierce, and S. P. Matzner, ““An
Application of Machine Learning to Network
Intrusion Detection,”” Proc. of 15th Annual
Computer Security Applications Conference
(ACSAC), Phoenix, Arizona, 1999.

[6] Linux Security-Module (LSM) Framework, http://
Ism.immunix.org .

[7] Tools Interface Standards and Manuals, ELF:
Executable and Linkable Format, http://www.x86.
org/intel.doc/tools.htm .

[8] The Distributed Security Infrastructure Project
(DSI), http://disec.sourceforge.net .

[9] NSA, Security Enhanced Linux, http://www.nsa.
gov/selinux/index.cfim .

[10] Truff, “Infecting Loadable Kernel Modules,”
Phrack Magazine, Vol. 11, No. 61, File 10/15,
August 2003.

[11] The Trusted Computing Group, http://www.
trustedcomputinggroup.org .

[12] Marchesini, J., S. Smith, O. Wild, and R. Mac-
Donald, Experimenting with TCPA/TCG
Hardware, Or How I Learned to Stop Worrying
and Love the Bear, Technical Report TR2003-476,
December 15th 2003.

[13] Sailer, R., Y. Zhang, T. Jaeger, and L. van Doorn,
Design and Implementation of a TCG-based
Integrity Measurement Architecture, 1BM
Research Report RC23064, January 16th, 2004.

[14] Safford, D., J. Kravitz, and L. van Doorn, ‘“Take
Control of TCPA,” Linux Journal, Issue 112,
http://www.linuxjournal.com/article.php?sid=
6633, August 2003.

[15] Busser, Peter, “Memory Protecting with PaX and
the Stack Smashing Protector,” Linux Magazine,
Issue 40, March 2004.

[16] Exec-Shield, http://people.redhat.com/mingo/
exec-shield .

[17] Kroah-Hartman, Greg, “Signed Kernel Modules,”
Linux Journal, Issue 117, http://www.linuxjournal.
com/article.php?sid=7130, January 2004.

65

66

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

