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ABSTRACT

Hosts in a well-architected enterprise infrastructure are self-administered; they perform their
own maintenance and upgrades. By definition, self-administered hosts execute self-modifying
code. They do not behave according to simple state machine rules, but can incorporate complex
feedback loops and evolutionary recursion.

The implications of this behavior are of immediate concern to the reliability, security, and
ownership costs of enterprise and mission-critical computing. In retrospect, it appears that the
same concerns also apply to manually-administered machines, in which administrators use tools
that execute in the context of the target disk to change the contents of the same disk. The self-
modifying behavior of both manual and automatic administration techniques helps explain the
difficulty and expense of maintaining high availability and security in conventionally-administered
infrastructures.

The practice of infrastructure architecture tool design exists to bring order to this self-
referential chaos. Conventional systems administration can be greatly improved upon through
discipline, culture, and adoption of practices better fitted to enterprise needs. Creating a low-cost
maintenance strategy largely remains an art. What can we do to put this art into the hands of
relatively junior administrators? We think that part of the answer includes adopting a well-proven
strategy for maintenance tools, based in part upon the theoretical properties of computing.

In this paper, we equate self-administered hosts to Turing machines in order to help build a
theoretical foundation for understanding this behavior. We discuss some tools that provide mech-
anisms for reliably managing self-administered hosts, using deterministic ordering techniques.

Based on our findings, it appears that no tool, written in any language, can predictably
administer an enterprise infrastructure without maintaining a deterministic, repeatable order of
changes on each host. The runtime environment for any tool always executes in the context of the
target operating system; changes can affect the behavior of the tool itself, creating circular
dependencies. The behavior of these changes may be difficult to predict in advance, so testing is
necessary to validate changed hosts. Once changes have been validated in testing they must be
replicated in production in the same order in which they were tested, due to these same circular
dependencies.

The least-cost method of managing multiple hosts also appears to be deterministic ordering.
All other known management methods seem to include either more testing or higher risk for each
host managed.

This paper is a living document; revisions and discussion can be found at Infrastructures.Org,
a project of TerraLuna, LLC.

Foreword
by Steve Traugott

In 1998, Joel Huddleston and I suggested that an
entire enterprise infrastructure could be managed as
one large ‘‘enterprise virtual machine’’ (EVM) [boot-
strap]. That paper briefly described parts of a manage-
ment toolset, later named ISconf [isconf]. This toolset,
based on relatively simple makefiles and shell scripts,
did not seem extraordinary at the time. At one point in
the paper, we said that we would likely use cfengine
[cfengine] the next time around – I had been following
Mark Burgess’ progress since 1994.

That 1998 paper spawned a web site and com-
munity at Infrastructures.Org. This community in turn
helped launch the Infrastructure Architecture (IA)
career field. In the intervening years, we’ve seen the
Infrastructures.Org community grow from a few
dozen to a few hundred people, and the IA field blos-
som from obscurity into a major marketing campaign
by a leading systems vendor.

Since 1998, Joel and I have both attempted to
use other tools, including cfengine version 1. I’ve
also tried to write tools from scratch again several
times, with mixed success. We have repeatedly hit
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indications that our 1998 toolset was more optimized
than we had originally thought. It appears that in
some ways Joel and I, and the rest of our group at
the Bank, were lucky; our toolset protected us from
many of the pitfalls that are laying in wait for IAs.

One of these pitfalls appears to be deterministic
ordering; I never realized how important it was until I
tried to use other tools that don’t support it. When left
without the ability to concisely describe the order of
changes to be made on a machine, I’ve seen a marked
decrease in my ability to predict the behavior of those
changes, and a large increase in my own time spent
monitoring, troubleshooting, and coding for excep-
tions. These experiences have shown me that loss of
order seems to result in lower production reliability
and higher labor cost.

The ordered behavior of ISconf was more by
accident than design. I needed a quick way to get a
grip on 300 machines. I cobbled a prototype together
on my HP100LX palmtop one March ’94 morning,
during the 35-minute train ride into Manhattan. I used
‘make’ as the state engine because it’s available on
most UNIX machines. The deterministic behavior
‘make’ uses when iterating over prerequisite lists is
something I didn’t think of as important at the time – I
was more concerned with observing known dependen-
cies than creating repeatable order.

Using that toolset and the EVM mindset, we were
able to repeatedly respond to the chaotic international
banking mergers and acquisitions of the mid-90’s. This
response included building and rebuilding some of the
largest trading floors in the world, launching on sched-
ule each time, often with as little as a few months’
notice, each launch cleaner than the last. We knew at
the time that these projects were difficult; after trying
other tool combinations for more recent projects I think
I have a better appreciation for just how difficult they
were. The phrase ‘‘throwing a truck through the eye of
a needle’’ has crossed my mind more than once. I don’t
think we even knew the needle was there.

At the invitation of Mark Burgess, I joined his
LISA 2001 [lisa] cfengine workshop to discuss what
we’d found so far, with possible targets for the
cfengine 2.0 feature set. The ordering requirement
seemed to need more work; I found ordering surpris-
ingly difficult to justify to an audience practiced in the
use of convergent tools, where ordering is often con-
sidered a constraint to be specifically avoided [couch,
eika-sandnes]. Later that week, Lance Brown and I
were discussing this over dinner, and he hit on the idea
of comparing a UNIX machine to a Turing machine.
The result is this paper.

Based on the symptoms we have seen when com-
paring ISconf to other tools, I suspect that ordering is a
keystone principle in automated systems administra-
tion. Lance and I, with a lot of help from others, will
attempt to offer a theoretical basis for this suspicion.

We encourage others to attempt to refute or support this
work at will; I think systems administration may be
about to find its computer science roots. We have also
already accumulated a large FAQ for this paper – we’ll
put that on the website. Discussion on this paper as well
as related topics is encouraged on the infrastructures
mailing list at http://Infrastructures.Org .

Why Order Matters

There seem to be (at least) several major reasons
why the order of changes made to machines is impor-
tant in the administration of an enterprise infrastructure:

A ‘‘circular dependency’’ or control-loop problem
exists when an administrative tool executes code that
modifies the tool or the tool’s own foundations (the
underlying host). Automated administration tool design-
ers cannot assume that the users of their tool will always
understand the complex behavior of these circular
dependencies. In most cases we will never know what
dependencies end users might create; see assertions
§A.40 and §A.46 in the ‘Turing Equivalence’ section of
this paper.

A test infrastructure is needed to test the behavior
of changes before rolling them to production. No tool
or language can remove this need, because no testing is
capable of validating a change in any conditions other
than those tested. This test infrastructure is useless
unless there is a way to ensure that production machines
will be built and modified in the same way as the test
machines; see ‘The Need for Testing’ section.

It appears that a tool that produces deterministic
order of changes is cheaper to use than one that per-
mits more flexible ordering. The unpredictable behav-
ior resulting from unordered changes to disk is more
costly to validate than the predictable behavior pro-
duced by deterministic ordering; see §A.58. Because
cost is a significant driver in the decision-making pro-
cess of most IT organizations, we will discuss this
point more in the next section.

Local staff must be able to use administrative
tools after a cost-effective (i.e., cheap and quick) turn-
over phase. While senior infrastructure architects may
be well-versed in avoiding the pitfalls of unordered
change, we cannot be on the permanent staff of every
IT shop on the globe. In order to ensure continued
health of machines after rollout of our tools, the tools
themselves need to have some reasonable default
behavior that is safe if the user lacks this theoretical
knowledge; see §A.40 and §A.54.

This business requirement must be addressed by
tool developers. In our own practice, we have been
able to successfully turnover enterprise infrastructures
to permanent staff many times over the last several
years. Turnover training in our case is relatively sim-
ple, because our toolsets have always implemented
ordered change by default. Without this default behav-
ior, we would have also needed to attempt to teach
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advanced techniques needed for dealing with
unordered behavior, such as inspection of code in
vendor-supplied binary packages; see the ‘Right Pack-
ages, Wrong Order’ section.

A Prediction

‘‘Order Matters’’ when we care about both qual-
ity and cost while maintaining an enterprise infrastruc-
ture. If the ideas described in this paper are correct,
then we can make the following prediction:

The least-cost way to ensure that the behavior of
any two hosts will remain completely identical is
always to implement the same changes in the
same order on both hosts.

This sounds very simple, almost intuitive, and
for many people it is. But to our knowledge, isconf
[isconf] is the only generally-available tool which
specifically supports administering hosts this way.
There seems to be no prior art describing this princi-
ple, and in our own experience we have yet to see it
specified in any operational procedure. It is trivially
easy to demonstrate in practice, but has at times been
surprisingly hard to support in conversation, due to the
complexity of theory required for a proof.

Note that this prediction does not apply only to
those situations when you want to maintain two or
more identical hosts. It applies to any computer-using
organization that needs cost-effective, reliable opera-
tion. This includes those that have many unique pro-
duction hosts; see ‘The Need for Testing.’ The ‘Con-
gruence’ section discusses this further, including sin-
gle-host rebuilds after a security breach.

This prediction also applies to disaster recovery
(DR) or business continuity planning. Any part of a
credible DR procedure includes some method of
rebuilding lost hosts, often with new hardware, in a
new location. Restoring from backups is one way to
do this, but making complete backups of multiple
hosts is redundant – the same operating system com-
ponents must be backed up for each host, when all we
really need are the user data and host build procedures
(how many copies of /bin/ls do we really need on
tape?). It is usually more efficient to have a means to
quickly and correctly rebuild each host from scratch.
A tool that maintains an ordered record of changes
made after install is one way to do this.

This prediction is particularly important for those
organizations using what we call self-administered
hosts. These are hosts that run an automated configura-
tion or administration tool in the context of their own
operating environment. Commercial tools in this cate-
gory include Tivoli, Opsware, and CenterRun [tivoli,
opsware, centerrun]. Open-source tools include
cfengine, lcfg, pikt, and our own isconf [cfengine, lcfg,
pikt, isconf]. We will discuss the fitness of some of
these tools later – not all appear fully suited to the task.

This prediction applies to those organizations
which still use an older practice called ‘‘cloning’’ to

create and manage hosts. In cloning, an administrator
or tool copies a disk image from one machine to
another, then makes the changes needed to make the
host unique (at minimum, IP address and hostname).
After these initial changes, the administrator will often
make further changes over the life of the machine.
These changes may be required for additional func-
tionality or security, but are too minor to justify re-
cloning. Unless order is observed, identical changes
made to multiple hosts are not guaranteed to behave in
a predictable way (§A.47). The procedure needed for
properly maintaining cloned machines is not substan-
tially different from that described in the section on
‘Describing Disk State.’

This prediction, stated more formally in §A.58,
seems to apply to UNIX, Windows, and any other
general-purpose computer with a rewritable disk and
modern operating system. More generally, it seems to
apply to any von Neumann machine with rewritable
nonvolatile storage.

Management Methods

All computer systems management methods can
be classified into one of three categories: divergent,
convergent, and congruent.
Divergence

Divergence (Figure 1) generally implies bad
management. Experience shows us that virtually all
enterprise infrastructures are still divergent today.
Divergence is characterized by the configuration of
live hosts drifting away from any desired or assumed
baseline disk content.

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�������������
�������������
�������������

�������������
�������������
�������������

Actual

TargetD
is

k 
St

at
e

Time
Figure 1: Divergence.

One quick way to tell if a shop is divergent is to
ask how changes are made on production hosts, how
those same changes are incorporated into the baseline
build for new or replacement hosts, and how they are
made on hosts that were down at the time the change
was first deployed. If you get different answers, then
the shop is likely divergent.

The symptoms of divergence include unpre-
dictable host behavior, unscheduled downtime, unex-
pected package and patch installation failure, unclosed
security vulnerabilities, significant time spent ‘‘firefight-
ing,’’ and high troubleshooting and maintenance costs.

The causes of divergence are generally that class
of operations that create non-reproducible change.
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Divergence can be caused by ad hoc manual changes,
changes implemented by two independent automatic
agents on the same host, and other unordered changes.
Scripts which drive rdist, rsync, ssh, scp, [rdist, rsync,
ssh] or other change agents as a push operation [boot-
strap] are also a common source of divergence.
Convergence

Convergence (Figure 2) is the process most senior
systems administrators first begin when presented with
a divergent infrastructure. They tend to start by manu-
ally synchronizing some critical files across the
diverged machines, then they figure out a way to do
that automatically. Convergence is characterized by the
configuration of live hosts moving towards an ideal
baseline. By definition, all converging infrastructures
are still diverged to some degree. (If an infrastructure
maintains full compliance with a fully descriptive base-
line, then it is congruent according to our definition, not
convergent; see the ‘Congruence’ section.
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Figure 2: Convergence.

The baseline description in a converging infras-
tructure is characteristically an incomplete description
of machine state. You can quickly detect convergence
in a shop by asking how many files are currently
under management control. If an approximate answer
is readily available and is on the order of a few hun-
dred files or less, then the shop is likely converging
legacy machines on a file-by-file basis.

A convergence tool is an excellent means of
bringing some semblance of order to a chaotic infras-
tructure. Convergent tools typically work by sampling
a small subset of the disk – via a checksum of one or
more files, for example – and taking some action in
response to what they find. The samples and actions
are often defined in a declarative or descriptive lan-
guage that is optimized for this use. This emulates and
preempts the firefighting behavior of a reactive human
systems administrator – ‘‘see a problem, fix it.’’
Automating this process provides great economies of
scale and speed over doing the same thing manually.

Convergence is a feature of Mark Burgess’ Com-
puter Immunology principles [immunology]. His
cfengine is in our opinion the best tool for this job
[cfengine]. Simple file replication tools [sup, cvsup,
rsync] provide a rudimentary convergence function,
but without the other action semantics and fine-
grained control that cfengine provides.

Because convergence typically includes an inten-
tional process of managing a specific subset of files,
there will always be unmanaged files on each host.
Whether current differences between unmanaged files
will have an impact on future changes is undecidable,
because at any point in time we do not know the entire
set of future changes, or what files they will depend on.

It appears that a central problem with convergent
administration of an initially divergent infrastructure is
that there is no documentation or knowledge as to
when convergence is complete. One must treat the
whole infrastructure as if the convergence is incom-
plete, whether it is or not. So without more informa-
tion, an attempt to converge formerly divergent hosts
to an ideal configuration is a never-ending process. By
contrast, an infrastructure based upon first loading a
known baseline configuration on all hosts, and limited
to purely orthogonal and non-interacting sets of
changes, implements congruence (defined in the next
section). Unfortunately, this is not the way most shops
use convergent tools such as cfengine.

The symptoms of a convergent infrastructure
include a need to test all changes on all production
hosts, in order to detect failures caused by remaining
unforeseen differences between hosts. These failures
can impact production availability. The deployment
process includes iterative adjustment of the configura-
tion tools in response to newly discovered differences,
which can cause unexpected delays when rolling out
new packages or changes. There may be a higher inci-
dence of failures when deploying changes to older
hosts. There may be difficulty eliminating some of the
last vestiges of the ad-hoc methods mentioned in the
section on ‘Divergence.’ Continued use of ad-hoc and
manual methods virtually ensures that convergence
cannot complete.

Wi t h all of these faults, convergence still provides
much lower overall maintenance costs and better relia-
bility than what is available in a divergent infrastructure.
Convergence features also provide more adaptive self-
healing ability than pure congruence, due to a conver-
gence tool’s ability to detect when deviations from base-
line have occurred. Congruent infrastructures rely on
monitoring to detect deviations, and generally call for a
rebuild when they have occurred. We discuss the secu-
rity reasons for this in the ‘Congruence’ section.

We have found apparent limits to how far con-
vergence alone can go. We know of no previously
divergent infrastructure that, through convergence
alone, has reached congruence. This makes sense;
convergence is a process of eliminating differences on
an as-needed basis; the managed disk content will
generally be a smaller set than the unmanaged content.
In order to prove congruence, we would need to sam-
ple all bits on each disk, ignore those that are user
data, determine which of the remaining bits are rele-
vant to the operation of the machine, and compare
those with the baseline.
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In our experience, it is not enough to prove via
testing that two hosts currently exhibit the same
behavior while ignoring bit differences on disk; we
care not only about current behavior, but future behav-
ior as well. Bit differences that are currently deemed
not functional, or even those that truly have not been
exercised in the operation of the machine, may still
affect the viability of future change directives. If we
cannot predict the viability of future change actions,
we cannot predict the future viability of the machine.

Deciding what bit differences are ‘‘functional’’ is
often open to individual interpretation. For instance,
do we care about the order of lines and comments in
/etc/inetd.conf? We might strip out comments and
reorder lines without affecting the current operation of
the machine; this might seem like a non-functional
change, until two years from now. After time passes,
the lack of comments will affect our future ability to
correctly understand the infrastructure when designing
a new change. This example would seem to indicate
that even non-machine-readable bit differences can be
meaningful when attempting to prove congruence.

Unless we can prove congruence, we cannot val-
idate the fitness of a machine without thorough test-
ing, due to the uncertainties described in §A.25. In
order to be valid, this testing must be performed on
each production host, due to the factors described in
§A.47. This testing itself requires either removing the
host from production use or exposing untested code to
users. Without this validation, we cannot trust the
machine in mission-critical operation.

Congruence

Congruence (Figure 3) is the practice of maintain-
ing production hosts in complete compliance with a
fully descriptive baseline (see the section on ‘Describ-
ing Disk State’). Congruence is defined in terms of disk
state rather than behavior, because disk state can be
fully described, while behavior cannot (§A.59).
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Figure 3: Congruence.

By definition, divergence from baseline disk
state in a congruent environment is symptomatic of a
failure of code, administrative procedures, or security.
In any of these three cases, we may not be able to
assume that we know exactly which disk content was
damaged. It is usually safe to handle all three cases as
a security breach: correct the root cause, then rebuild.

You can detect congruence in a shop by asking
how the oldest, most complex machine in the infras-
tructure would be rebuilt if destroyed. If years of
sysadmin work can be replayed in an hour, unat-
tended, without resorting to backups, and only user
data need be restored from tape, then host manage-
ment is likely congruent.

Rebuilds in a congruent infrastructure are com-
pletely unattended and generally faster than in any
other; anywhere from ten minutes for a simple work-
station to two hours for a node in a complex high-
availability server cluster (most of that two hours is
spent in blocking sleeps while meeting barrier condi-
tions with other nodes).

Symptoms of a congruent infrastructure include
rapid, predictable, ‘‘fire-and-forget’’ deployments and
changes. Disaster recovery and production sites can be
easily maintained or rebuilt on demand in a bit-for-bit
identical state. Changes are not tested for the first time
in production, and there are no unforeseen differences
between hosts. Unscheduled production downtime is
reduced to that caused by hardware and application
problems; firefighting activities drop considerably. Old
and new hosts are equally predictable and maintainable,
and there are fewer host classes to maintain. There are
no ad-hoc or manual changes. We have found that con-
gruence makes cost of ownership much lower, and reli-
ability much higher, than any other method.

Our own experience and calculations show that
the return-on-investment (ROI) of converting from
divergence to congruence is less than 8 months for
most organizations; see Figure 4. This graph assumes
an existing divergent infrastructure of 300 hosts,
2%/month growth rate, followed by adoption of con-
gruent automation techniques. Typical observed values
were used for other input parameters. Automation tool
rollout began at the 6-month mark in this graph, caus-
ing temporarily higher costs; return on this investment
is in 5 months, where the manual and automatic lines
cross over at the 11 month mark. Following crossover,
we see a rapidly increasing cost savings, continuing
over the life of the infrastructure. While this graph is
calculated, the results agree with actual enterprise
environments that we have converted. There is a CGI
generator for this graph at Infrastructures.Org, where
you can experiment with your own parameters.

Congruence allows us to validate a change on
one host in a class, in an expendable test environment,
then deploy that change to production without risk of
failure. Note that this is useful even when (or espe-
cially when) there may be only one production host in
that class.

A congruence tool typically works by maintain-
ing a journal of all changes to be made to each
machine, including the initial image installation. The
journal entries for a class of machine drive all changes
on all machines in that class. The tool keeps a lifetime
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record, on the machine’s local disk, of all changes that
have been made on a given machine. In the case of
loss of a machine, all changes made can be recreated
on a new machine by ‘‘replaying’’ the same journal;
likewise for creating multiple, identical hosts. The
journal is usually specified in a declarative language
that is optimized for expressing ordered sets and sub-
sets. This allows subclassing and easy reuse of code to
create new host types; see ‘Describing Disk State.’

Figure 4: Cumulative costs for fully automated (congruent) versus manual administration.

There are few tools that are capable of the
ordered lifetime journaling required for congruent
behavior. Our own isconf (described in its own sec-
tion) is the only specifically congruent tool we know
of in production use, though cfengine, with some care
and extra coding, appears to be usable for administra-
tion of congruent environments. We discuss this in
more detail in the ‘Cfengine Techniques’ section.

We recognize that congruence may be the only
acceptable technique for managing life-critical sys-
tems infrastructures, including those that:

• Influence the results of human-subject health
and medicine experiments

• Provide command, control, communications,
and intelligence (C3I) for battlefield and
weapons systems environments

• Support command and telemetry systems for
manned aerospace vehicles, including space-
craft and national airspace air traffic control

Our personal experience shows that awareness of
the risks of conventional host management techniques
has not yet penetrated many of these organizations.
This is cause for concern.

Ordered Thinking

We have found that designers of automated sys-
tems administration tools can benefit from a certain
mindset:

Think like a kernel developer, not an application
programmer.

A good multitasking operating system is designed
to isolate applications (and their bugs) from each other
and from the kernel, and produce the illusion of inde-
pendent execution. Systems administration is all about
making sure that users continue to see that illusion.

Modern languages, compilers, and operating sys-
tems are designed to isolate applications programmers
from ‘‘the bare hardware’’ and the low-level machine
code, and enable object-oriented, declarative, and other
high-level abstractions. But it is important to remember
that the central processing unit(s) on a general-purpose
computer only accepts machine-code instructions, and
these instructions are coded in a procedural language.
High-level languages are convenient abstractions, but
are dependent on several layers of code to deliver
machine language instructions to the CPU.

In reality, on any computer there is only one pro-
gram; it starts running when the machine finishes
power-on self test (POST), and stops when you kill
the power. This program is machine language code,
dynamically linked at runtime, calling in fragments of
code from all over the disk. These ‘‘fragments’’ of
code are what we conventionally think of as applica-
tions, shared libraries, device drivers, scripts, com-
mands, administrative tools, and the kernel itself – all
of the components that make up the machine’s operat-
ing environment.

None of these fragments can run standalone on
the bare hardware – they all depend on others. We
cannot analyze the behavior of any application-layer
tool as if it were a standalone program. Even kernel
startup depends on the bootloader, and in some operat-
ing systems the kernel runtime characteristics can be
influenced by one or more configuration files found
elsewhere on disk.
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This perspective is opposite from that of an appli-
cation programmer. An application programmer ‘‘sees’’
the system as an axiomatic underlying support infras-
tructure, with the application in control, and the kernel
and shared libraries providing resources. A kernel
developer, though, is on the other side of the syscall
interface; from this perspective, an application is some-
thing you load, schedule, confine, and kill if necessary.

On a UNIX machine, systems administration
tools are generally ordinary applications that run as
root. This means that they, too, are at the mercy of the
kernel. The kernel controls them, not the other way
around. And yet, we depend on automated systems
administration tools to control, modify, and occasion-
ally replace not only that kernel, but any and all other
disk content. This presents us with the potential for a
circular dependency chain.

A common misconception is that ‘‘there is some
high-level tool language that will avoid the need to
maintain strict ordering of changes on a UNIX
machine.’’ This belief requires that the underlying run-
time layers obey axiomatic and immutable behavioral
laws. When using automated administration tools we
cannot consider the underlying layers to be axiomatic;
the administration tool itself perturbs those underlying
layers; see the ‘Circular Dependencies’ section.

Inspection of high-level code alone is not
enough. Without considering the entire system and its
resulting machine language code, we cannot prove
correctness. For example:
print "hello\n";

This looks like a trivial-enough Perl program; it
‘‘obviously’’ should work. But what if the Perl inter-
preter is broken? In other words, a conclusion of
‘‘simple enough to easily prove’’ can only be made by
analyzing low-level machine language code, and the
means by which it is produced.

‘‘Order Matters’’ because we need to ensure that
the machine-language instructions resulting from a set
of change actions will execute in the correct order,
with the correct operands. Unless we can prove pro-
gram correctness at this low level, we cannot prove
the correctness of any program. It does no good to
prove correctness of a higher-level program when we
do not know the correctness of the lower runtime lay-
ers. If the high-level program can modify those under-
lying layers, then the behavior of the program can
change with each modification. Ordering of those
modifications appears to be important to our ability to
predict the behavior of the high-level program. (Put
simply, it is important to ensure that you can step off
of the tree limb before you cut through it.)

The Need for Testing

Just as we urge tool designers to think like kernel
developers, we urge systems administrators to think

like operating systems vendors – because they are. Sys-
tems administration is actually systems modification;
the administrator replaces binaries and alters configura-
tion files, creating a combination which the operating
system vendor has never tested. Since many of these
modifications are specific to a single site or even a sin-
gle machine, it is unreasonable to assume that the ven-
dor has done the requisite testing. The systems admin-
istrator must perform the role of systems vendor, testing
each unique combination – before the users do.

Due to modern society’s reliance on computers,
it is unethical (and just plain bad business practice) for
an operating system vendor to release untested operat-
ing systems without at least noting them as such. Bet-
ter system vendors undertake a rigorous and exhaus-
tive series of unit, system, regression, application,
stress, and performance testing on each build before
release, knowing full well that no amount of testing is
ever enough (§A.9). They do this in their own labs; it
would make little sense to plan to do this testing on
customers’ production machines.

And yet, IT shops today habitually have no dedi-
cated testing environment for validating changed operat-
ing systems. They deploy changes directly to production
without prior testing. Our own experience and informal
surveys show that greater than 95% of shops still do
business this way. It is no wonder that reliability, secu-
rity, and high availability are still major issues in IT.

We urge systems administrators to create and use
dedicated testing environments (§A.42), not inflict
changes on users without prior testing, and consider
themselves the operating systems vendors that they
really are. We urge IT management organizations to
understand and support administrators in these efforts;
the return on investment is in the form of lower labor
costs and much higher user satisfaction. Availability of
a test environment enables the deployment of auto-
mated systems administration tools, bringing major
cost savings; see Figure 4.

A test environment is useless until we have a
means to replicate the changes we made in testing
onto production machines. ‘‘Order matters’’ when we
do this replication; an earlier change will often affect
the outcome of a later change. This means that
changes made to a test machine must later be
‘‘replayed’’ in the same order on the machine’s pro-
duction counterpart; see §A.45.

Testing costs can be greatly reduced by limiting
the number of unique builds produced; this holds true
for both vendors and administrators. This calls for
careful management of changes and host classes in an
IT environment, with an intent of limiting prolifera-
tion of classes; see §A.41.

Note that use of open-source operating systems
does not remove the need for local testing of local
modifications. In any reasonably complex infrastruc-
ture, there will always be local configuration and non-
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packaged binary modifications which the community
cannot have previously exercised. We prefer open
source; we do not expect it to relieve us from our
responsibilities though.

Ordering HOWTO

Automated systems administration is very
straightforward. There is only one way for a user-side
administrative tool to change the contents of disk in a
running UNIX machine – the syscall interface. The
task of automated administration is simply to make
sure that each machine’s kernel gets the right system
calls, in the right order, to make it be the machine you
want it to be.

Describing Disk State

If there are N bits on a disk, then there are 2N

possible disk states. In order to maintain the baseline
host description needed for congruent management,
we need to have a way to describe any arbitrary disk
state in a highly compressed way, preferably in a
human-readable configuration file or script. For the
purposes of this description, we neglect user data and
log files – we want to be able to describe the root-
owned and administered portions of disk. ‘‘Order Mat-
ters’’ whether creating or modifying a disk:

A concise and reliable way to describe any arbi-
trary state of a disk is to describe the procedure
for creating that state.

This procedure will include the initial state (bare-
metal build) of the disk, followed by the steps used to
change it over time, culminating in the desired state.
This procedure must be in writing, preferably in
machine-readable form. This entire set of information,
for all hosts, constitutes the baseline description of a
congruent infrastructure. Each change added to the
procedure updates the baseline. See the ‘Congruence’
section.

There are tools which can help you maintain and
execute this procedure. See the ‘Example Tools and
Techniques’ section, particularly ‘Baseline Manage-
ment in ISconf.’

While it is conceivable that this procedure could
be a documented manual process, executing these
steps manually is tedious and costly at best. (Though
we know of many large mission-critical shops which
try.) It is generally error-prone. Manual execution of
complex procedures is one of the best methods we
know of for generating divergence.

The starting state (bare-metal install) description
of the disk may take the form of a network install
tool’s configuration file, such as that used for Solaris
Jumpstart or RedHat Kickstart. The starting state
might instead be a bitstream representing the entire
initial content of the disk (usually a snapshot taken
right after install from vendor CD). The choice of
which of these methods to use is usually dependent on

the vendor-supplied install tool – some will support
either method, some require one or the other.

How to Break an Enterprise

A systems administrator, whether a human or a
piece of software (§A.36), can easily break an enter-
prise infrastructure by executing the right actions in
the wrong order. In this section, we will explore some
of the ways this can happen.

Right Commands, Wrong Order

First we will cover a trivial but devastating
example that is easily avoided. This once happened to
a colleague while doing manual operations on a
machine. He wanted to clean out the contents of a
directory which ordinarily had the development
group’s source code NFS mounted over top of it. Here
is what he wanted to do:
umount /apps/src
cd /apps/src
rm -rf .
mount /apps/src

Here’s what he actually did:
umount /apps/src

... umount fails, directory in use;
while resolving this, his pager goes
off, he handles the interrupt, then...

cd /apps/src
rm -rf .

Needless to say, there had also been no backup
of the development source tree for quite some time . . .

In this example, ‘‘correct order’’ includes some
concept of sufficient error handling. We show this
example because it highlights the importance of a
default behavior of ‘‘halt on error’’ for automatic sys-
tems administration tools. Not all tools halt on error
by default; isconf does.

Right Packages, Wrong Order

We in the UNIX community have long accused
Windows developers of poor library management, due
to the fact that various Windows applications often
come bundled with differing versions of the same
DLLs. It turns out that at least some UNIX and Linux
distributions appear to suffer from the same problem.

Jeffrey D’Amelia and John Hart [hart] demon-
strated this in the case of RedHat RPMs, both official
and contributed. They showed that the order in which
you install RPMs can matter, even when there are no
applicable dependencies specified in the package. We
don’t assume that this situation is restricted to RPMs
only – any package management system should be
susceptible to this problem. An interesting study
would be to investigate similar overlaps in vendor-
supplied packages for commercial UNIX distributions.

Detecting this problem for any set of packages
involves extensive analysis by talented persons. In the
case of [hart], the authors developed a suite of global
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analysis tools, and repeatedly downloaded and
unpacked thousands of RPMs. They still only saw
‘‘the tip of the iceberg’’ (their words). They intention-
ally ignored the actions of postinstall scripts, and they
had not yet executed any packaged code to look for
behavioral interactions.

Avoiding the problem is easier; install the pack-
ages, record the order of installation, test as usual, and
when satisfied with testing, install the same packages
in the same order on production machines.

While we’ve used packages in this example, we’d
like to remind the reader that these considerations apply
not only to package installation, but to any other change
that affects the root-owned portions of disk.

Circular Dependencies
There is a ‘‘chicken and egg’’ or bootstrapping

problem when updating either an automated systems
administration tool (ASAT) or its underlying founda-
tions (§A.40). Order is important when changes the
tool makes can change the ability of the tool to make
changes.

For example, cfengine version 2 includes new
directives available for use in configuration files.
Before using a new configuration file, the new version
of cfengine needs to be installed. The new client is
named ‘cfagent’ rather than ‘cfengine,’ so wrapper
scripts and crontab entries should also be updated, and
so on.

For fully automated operation on hundreds or
thousands of machines, we would like to be able to
upgrade cfengine under the control of cfengine
(§A.46). We want to ensure that the following actions
will take place on all machines, including those cur-
rently down:

1. fetch configuration file containing the follow-
ing instructions

2. install new cfagent binary
3. run cfkey to generate key pair
4. fetch new configuration file containing version

2 directives
5. update calling scripts and crontab entries

There are several ordering considerations here.
We won’t know that we need the new cfagent binary
until we do step 1. We shouldn’t proceed with step 4
until we know that 2 and 3 were successful. If we do 5
too early, we may break the ability for cfengine to
operate at all. If we do step 4 too early and try to run
the resulting configuration file using the old version of
cfengine, it will fail.

While this example may seem straightforward,
implementing it in a language which does not by
default support deterministic ordering requires much
use of conditionals, state chaining, or equivalent. If this
is the case, then code flow will not be readily apparent,
making inspection and edits error-prone. Infrastructure
automation code runs as root and has the ability to stop
work across the entire enterprise; it needs to be simple,

short, and easy for humans to read, like security-related
code paths in tools such as PGP or ssh.

If the tool’s language does not support ‘‘halt on
error ’’ by default, then it is easy to inadvertently allow
later actions to take place when we would have pre-
ferred to abort. Going back to our cfengine example, if
we can easily abort and leave the cfengine version 1
infrastructure in place, then we can still use version 1
to repair the damage.
Other Sources of Breakage

There are many other examples we could show,
some including multi-host ‘‘barrier ’’ problems. These
include:

• Updating ssh to openssh on hundreds of hosts
and getting the authorized_keys and/or protocol
version configuration out of order. This can
greatly hinder further contact with the target
hosts. Daniel Hagerty [hagerty] ran into this
one; many of us have been bitten by this at
some point.

• Reconfiguring network routes or interfaces
while communicating with the target device via
those same routes or interfaces. Ordering errors
can prevent further contact with the target, and
often require a physical visit to resolve. This is
especially true if the target is a workstation
with no remote serial console access. Again,
most readers have had this happen to them.

Example Tools and Techniques
While there are many automatic systems admin-

istration tools (ASAT) available, the two we are most
familiar with are cfengine and our own isconf
[cfengine, isconf]. In the next two sections, we will
look at these two tools with a focus on how each can
be used to create deterministic ordering.

In general, some of the techniques that seem to
work well for the design and use of most ASATs
include:

• Keep the ‘‘Turing tape’’ a finite size by holding
the network content constant (§A.23), or ver-
sioning it using CVS or another version control
tool [cvs, bootstrap]. This helps prevent some
of the more insidious behaviors that are a
potential in self-modifying machines (§A.40).

• Continuing in that vein, when using distributed
package repositories such as the public Debian
[debian] package server infrastructure, always
specify version numbers when automating the
installation of packages, rather than let the
package installation tool (in Debian’s case apt-
get) select the latest version. If you do not spec-
ify the package version, then you may intro-
duce divergence. This risk varies, of course,
depending on your choice of ‘stable’ or ‘unsta-
ble’ distribution, though we suspect it still
applies in ‘stable,’ especially when using the
‘security’ packages. It certainly applies in all
cases when you need to maintain your own
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kernel or kernel modules rather than using the
distributed packages.
We have experienced this repeatedly –
machines which built correctly the first time
with a given package list will not rebuild with
the same package list a few weeks later, due to
package version changes on the public servers,
and resulting unresolved incompatibilities with
local conditions and configuration file contents.
Remember, your hosts are unique in the world
– there are likely no others like them. Package
maintainers cannot be expected to test every
configuration, especially yours. You must retain
this responsibility. See ‘The Need for Testing.’
We use Debian in this example because it is a
distribution we like a lot; note that other pack-
age distribution and installation infrastructures,
such as the RedHat up2date system, also have
this problem.

• Expect long dependency or sequence chains
when building enterprise infrastructures. If an
ASAT can easily support encapsulation and
ordering of 10, 50, or even 100 complex atomic
actions in a single chain, then it is likely capa-
ble of fully automated administration of
machines, including package, kernel, build, and
even rebuild management. If the ASAT is cum-
bersome to use when chains become only two
or three actions deep, then it is likely most
suited for configuration file management, not
package, binary, or kernel manipulation.

ISconf Techniques
As mentioned in the Foreword, isconf originally

began life as a quick hack. Its basic utility has proven
itself repeatedly over the last eight years, and as adoption
has grown it is currently managing more production
infrastructures than we are personally aware of.

While we show some ISconf makefile examples
here, we do not show any example of the top-level
configuration file which drives the environment and
targets for ‘make.’ It is this top-level configuration
file, and the scripts which interpret it, which are the
core of ISconf and enable the typing or classing of
hosts. These top-level facilities also are what govern
the actions ISconf is to take during boot versus cron or
other execution contexts. More information and code
is available at ISconf.org and Infrastructures.Org.

We also do not show here the network fetch and
update portions of ISconf, and the way that it updates
its own code and configuration files at the beginning
of each run. This default behavior is something that
we feel is important in the design of any automated
systems administration tool. If the tool does not sup-
port it, end-users will have to figure out how to do it
safely themselves, reducing the usability of the tool.
ISconf Version 2

Version 2 of ISconf was a late-90’s rewrite to
clean up and make portable the lessons learned from

version 1. As in version 1, the code used was Bourne
shell, and the state engine used was ‘make.’

In Listing 1, we show a simplified example of
Version 2 usage. While examples related to this can be
found in [hart] and in our own makefiles, real-world
usage is usually much more complex than the example
shown here. We’ve contrived this one for clarity of
explanation.

In this contrived example, we install two pack-
ages which we have not proven orthogonal. We in fact
do not wish to take the time to detect whether or not
they are orthogonal, due to the considerations
expressed in §A.58. We may be tool users, rather than
tool designers, and may not have the skillset to deter-
mine orthogonality, as in §A.54.

These packages might both affect the same
shared library, for instance. Again according to [hart]
and our own experience, it is not unusual for two
packages such as these to list neither as prerequisites,
so we might gain no ordering guidance from the pack-
age headers either.

In other words, all we know is that we installed
package ‘foo,’ tested and deployed it to production, and
then later installed package ‘bar,’ tested it and deployed.
These installs may have been weeks or months apart.
All went well throughout, users were happy, and we
have no interest in unpacking and analyzing the contents
of these packages for possible reordering for any reason;
we’ve gone on to other problems.

Because we know this order works, we wish for
these two packages, ‘foo’ and ‘bar,’ to be installed in the
same order on every future machine in this class. This
makefile will ensure that; make always iterates over a
prerequisite list in the same order.

The touch $@ command at the end of each stanza
will prevent this stanza from being run again. The
ISconf code always changes to the timestamps directory
before starting ‘make’ (and takes other measures to con-
strain the normal behavior of ‘make,’ so that we never
try to ‘‘rebuild’’ this target either).

The class name in this case (Listing 1) is
‘Block12.’ You can see that ‘Block12’ is also made up
of many other packages; we don’t show the makefile
stanzas for these here. These packages are listed as pre-
requisites to ‘Block12,’ in chronological order. Note
that we only want to add items to the end of this list,
not the middle, due to the considerations expressed in
section §A.49.

In this example, even though we take advantage
of the Debian package server infrastructure, we specify
the version of package that we want, as in the introduc-
tion to the ‘Example Tools and Techniques’ section. We
also use a caching proxy when fetching Debian pack-
ages, in order to speed up our own builds and reduce
the load on the Debian servers to a minimum.

Note that we get ‘‘halt-on-error ’’ behavior from
‘make,’ as we wished for in ‘Right commands, Wrong

108 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Traugott & Brown Why Order Matters: Turing Equivalence in Automated Systems Administration

Order.’ If any of the commands in the ‘foo’ or ‘bar’
sections exit with a non-zero return code, then ‘make’
aborts processing immediately. The ‘touch’ will not
happen, and we normally configure the infrastructure
such that the ISconf failure will be noticed by a moni-
toring tool and escalated for resolution. In practice,
these failures very rarely occur in production; we see
and fix them in test. Production failures, by the defini-
tion of congruence, usually indicate a systemic, secu-
rity, or organizational problem; we don’t want them
fixed without human investigation.

Block12: cvs ntp foo lynx wget \
serial_console bar sudo mirror_rootvg

foo:
apt-get -y install foo=0.17-9
touch $@

bar:
apt-get -y install bar=1.0.2-1
echo apple pear > /etc/bar.conf
touch $@
...

Listing 1: ISconf makefile package ordering example.

ISconf Version 3

ISconf version 3 was a rewrite in Perl, by Luke
Kanies. This version adds more ‘‘lessons learned,’’
including more fine-grained control of actions as
applied to target classes and hosts. There are more lay-
ers of abstraction between the administrator and the
target machines; the tool uses various input files to
generate intermediate and final file formats which
eventually are fed to ‘make.’

One feature in particular is of special interest for
this paper. In ISconf version 2, the administrator still
had the potential to inadvertently create unordered
change by an innocent makefile edit. While it is possi-
ble to avoid this with foreknowledge of the problem,
version 3 uses timestamps in an intermediate file to
prevent it from being an issue.

The problem which version 3 fixes can be repro-
duced in version 2 as follows; refer to Listing 1. If
both ‘foo’ and ‘bar’ have been executed (installed) on
production machines, then the administrator adds
‘baz’ as a prerequisite to ‘bar,’ then this would qualify
as ‘‘editing prior actions’’ and create the divergence
described in (§A.49).

ISconf version 3, rather than using a human-
edited makefile, reads other input files which the
administrator maintains, and generates intermediate
and final files which include timestamps to detect the
problem and correct the ordering.

ISconf Version 4

ISconf version 4, currently in prototype, repre-
sents a significant architectural change from versions
1 through 3. If the current feature plan is fully imple-
mented, version 4 will enable cross-organizational col-
laboration for development and use of ordered change

actions. A core requirement is decentralized develop-
ment, storage, and distribution of changes. It will
enable authentication and signing, encryption, and
other security measures. We are likely to replace
‘make’ with our own state engine, continuing the
migration begun in version 3. See ISconf.Org for the
latest information.

Baseline Management in ISconf

In the ‘Congruence’ section, we discussed the
concept of maintaining a fully descriptive baseline for
congruent management. In the ‘Describing Disk State’
section, we discussed in general terms how this might
be done. In this section, we will show how we do it in
isconf.

First, we install the base disk image, usually
using vendor-supplied network installation tools. We
discuss this process more in [bootstrap]. We might
name this initial image ‘Block00’. Then we use the
process we mentioned in the ‘ISconf Version 2’ sec-
tion to apply changes to the machine over the course
of its life. Each change we add updates our concept of
what is the ‘baseline’ for that class of host.

As we add changes, any new machine we build
will need to run isconf longer on first boot, to add all
of the accumulated changes to the Block00 image.
After about forty minutes’ worth of changes have built
up on top of the initial image, it helps to be able to
build one more host that way, set the hostname/IP to
‘baseline,’ cut a disk image of it, and declare that new
image to be the new baseline. This infrequent snapshot
or checkpoint not only reduces the build time of future
hosts, but reduces the rebuild time and chance of error
in rebuilding existing hosts – we always start new
builds from the latest baseline image.

In an isconf makefile, this whole process is
reflected as in Listing 2. Note that whether we cut a
new image and start the next install from that, or if we
just pull an old machine off the shelf with a Block00
image and plug it in, we’ll still end up with a Block20
image with apache and a 2.2.12 kernel, due to the way
the makefile prerequisites are chained.

This example shows a simple, linear build of
successive identical hosts with no ‘‘branching’’ for
different host classes. Classes add slightly more com-
plexity to the makefile. They require a top-level con-
figuration file to define the classes and target them to
the right hosts, and they require wrapper script code to
read the config file.

There is a little more complexity to deal with
things that should only happen at boot, and that can
happen when cron runs the code every hour or so.
There are examples of all of this in the isconf-2i pack-
age available from ISconf.Org.

Cfengine Techniques

Cfengine is likely the most popular purpose-built
tool for automated systems administration today. The

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 109



Why Order Matters: Turing Equivalence in Automated Systems Administration Tr a u g o t t & Bro w n

cfengine language was optimized for dynamic prerequi-
site analysis rather than long, deterministic ordered sets.

While the cfengine language wasn’t specifically
optimized for ordered behavior, it is possible to
achieve this with extra work. It should be possible to
greatly reduce the amount of effort involved, by using
some tool to generate cfengine configuration files
from makefile-like (or equivalent) input files. One
good starting point might be Tobias Oetiker’s Tem-
plateTree II [oetiker].

Automatic generation of cfengine configuration
files appears to be a near-requirement if the tool is to
be used to maintain congruent infrastructures; the
class and action-type structures tend to get relatively
complex rather fast if congruent ordering, rather than
convergence, is the goal.

# 01 Feb 97 - Block00 is initial disk install from vendor cd,
# with ntp etc. added later
Block00: ntp cvs lynx ...
# 15 Jul 98 - got tired of waiting for additions to Block00 to build,
# cut new baseline image, later add ssh etc.
Block10: Block00 ssh ...
# 17 Jan 99 - new baseline again, later add apache, rebuild kernel, etc.
Block20: Block10 apache kernel-2.2.12 ...

Listing 2: Baseline management in an ISconf makefile.

Other gains might be made from other features
of cfengine; we have made progress experimenting
with various helper modules, for instance. Another
technique that we have put to good use is to imple-
ment atomic changes using very small cfengine
scripts, each equivalent to an ISconf makefile stanza.
These scripts we then drive within a deterministically
ordered framework.

In the cfengine version 2 language there are new
features, such as the FileExists() evaluated class func-
tion, which may reduce the amount of code. So far,
based on our experience over the last few years in trial
attempts, it appears that a cfengine configuration file
that does the same job as an ISconf makefile would
still need anywhere from two to three times the num-
ber of lines of code. We consider this an open and
evolving effort though – check the cfengine.org and
Infrastructures.Org websites for the latest information.

Brown/Traugott Turing Equivalence

If it should turn out that the basic logics of a
machine designed for the numerical solution of
differential equations coincide with the logics of
a machine intended to make bills for a depart-
ment store, I would regard this as the most amaz-
ing coincidence that I have ever encountered.
– Howard Aiken, founder of Harvard’s Computer

Science department and architect of the IBM/
Harvard Mark I.

Turing equivalence in host management appears
to be a new factor relative to the age of the computing

industry. The downsizing of mainframe installations
and distribution of their tasks to midrange and desktop
machines by the early 1990’s exposed administrative
challenges which have taken the better part of a
decade for the systems administration community to
understand, let alone deal with effectively.

Older computing machinery relied more on dedi-
cated hardware rather than software to perform many
administrative tasks. Operating systems were limited
in their ability to accept changes on the fly, often
requiring recompilation for tasks as simple as adding
terminals or changing the time zone. Until recently,
the most popular consumer desktop operating system
still required a reboot when changing IP address.

In the interests of higher uptime, modern ver-
sions of UNIX and Linux have eliminated most of
these issues; there is very little software or configura-
tion management that cannot be done with the
machine ‘‘live.’’ We have evolved to a model that is
nearly equivalent to that of a Universal Turing
Machine, with all of its benefits and pitfalls. To avoid
this equivalence, we would need to go back to shutting
operating systems down in order to administer them.
Rather than go back, we should seek ways to go fur-
ther forward; understanding Turing equivalence
appears to be a good next step.

This situation may soon become more critical,
with the emergence of ‘‘soft hardware.’’ These sys-
tems use Field-Programmable Gate Arrays to emulate
dedicated processor and peripheral hardware. Newer
versions of these devices can be reprogrammed, while
running, under control of the software hosted on the
device itself [xilinx]. This will bring us the ability to
modify, for instance, our own CPU, using high-level
automated administration tools. Imagine not only acci-
dentally unconfiguring your Ethernet interface, but
deleting the circuitry itself . . .

We have synthesized a thought experiment to dem-
onstrate some of the implications of Turing equivalence
in host management, based on our observations over the
course of several years. The description we provide here
is not as rigorous as the underlying theories, and much
of it should be considered as still subject to proof. We do
not consider ourselves theorists; it was surprising to find
ourselves in this territory. The theories cited here pro-
vided inspiration for the thought experiment, but the goal
is practical management of UNIX and other machines.
We welcome any and all future exploration, pro or con.
See the ‘Conclusion and Critique’ section.
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In the following description of this thought experi-
ment, we will develop a model of system administration
starting at the level of the Turing machine. We will
show how a modern self-administered machine is equiv-
alent to a Turing machine with several tapes, which is in
turn equivalent to a single-tape Turing machine. We will
construct a Turing machine which is able to update its
own program by retrieving new instructions from a net-
work-accessible tape. We will develop the idea of con-
figuration management for this simpler machine model,
and show how problems such as circular dependencies
and uncertainty about behavior arise naturally from the
nature of computation.

We will discuss how this Turing machine relates
to a modern general-purpose computer running an auto-
matic administration tool. We will introduce the impli-
cations of the self-modifying code which this arrange-
ment allows, and the limitations of inspection and test-
ing in understanding the behavior of this machine. We
will discuss how ordering of changes affects this behav-
ior, and how deterministically ordered changes can
make its behavior more deterministic.

We will expand beyond single machines into the
realm of distributed computing and management of
multiple machines, and their associated inspection and
testing costs. We will discuss how ordering of changes
affects these costs, and how ordered change apparently
provides the lowest cost for managing an enterprise
infrastructure.

Readers who are interested in applied rather than
mathematical or theoretical arguments may want to
review the previous sections or skip to the conclusion.

A.1 – A Turing machine (Figure 5) reads bits from
an infinite tape, interprets them as data according to a
hardwired program and rewrites portions of the tape
based on what it finds. It continues this cycle until it
reaches a completion state, at which time it halts [tur-
ing].

A.2 – Because a Turing machine’s program is
hardwired, it is common practice to say that the pro-
gram describes or is the machine. A Turing machine’s
program is stated in a descriptive language which we
will call the machine language. Using this language,
we describe the actions the machine should take when
certain conditions are discovered. We will call each
atom of description an instruction. An example
instruction might say:

If the current machine state is ‘s3’, and the tape
cell at the machine’s current head position con-
tains the letter ‘W’, then change to state ‘s7’,
overwrite the ‘W’ with a ‘P’, and move the tape
one cell to the right.

Each instruction is commonly represented as a
quintuple; it contains the letter and current state to be
matched, as well as the letter to be written, the tape
movement command, and the new state. The instruc-
tion we described above would look like:

s3,W → s7,P,r

Note that a Turing machine’s language is in no way
algorithmic; the order of quintuples in a program listing
is unimportant; there are no branching, conditional, or
loop statements in a Turing machine program.

10110100101101001011000110100101010

s0,1:s3,0,Rs0,1:s3,0,R
s4,0:s7,1,L
s2,0:s2,1,L

AB

current_state=s2

Figure 5: Turing machine block diagram; the
machine reads and writes an infinite tape and
updates an internal state variable based on a hard-
wired or stored ruleset.

A.3 – The content of a Turing tape is expressed
in a language that we will call the input language. A
Turing machine’s program is said to either accept or
reject a given input language, if it halts at all. If our
Turing machine halts in an accept state, (which might
actually be a state named ‘accept’) then we know that
our program is able to process the data and produce a
valid result – we have validated our input against our
machine. If our Turing machine halts because there is
no instruction that matches the current combination of
state and cell content (§A.2), then we know that our
program is unable to process this input, so we reject. If
we never halt, then we cannot state a result, so we can-
not validate the input or the machine.

A.4 – A Universal Turing Machine (UTM) is able
to emulate any arbitrary Turing machine. Think of this
as running a Turing ‘‘virtual machine’’ (TVM) on top of
a host UTM. A UTM’s machine language program
(§A.2) is made up of instructions which are able to read
and execute the TVM’s machine language instructions.
The TVM’s machine language instructions are the
UTM’s input data, written on the input tape of the UTM
alongside the TVM’s own input data (Figure 6).

TVM DataTVM Program

UTM Tape

Figure 6: The tape of a Universal Turing Machine
(UTM) stores the program and data of a hosted
Tu r i n g Vi r t u a l Machine (TVM).

Any multiple-tape Turing machine can be repre-
sented by a single-tape Turing machine, so it is equally
valid to think of our Universal Turing Machine as hav-
ing two tapes; one for TVM program, and the other for
TVM data.

A Universal Turing Machine appears to be a useful
model for analyzing the theoretical behavior of a ‘‘real’’
general-purpose computer; basic computability theory
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seems to indicate that a UTM can solve any problem
that a general-purpose computer can solve [church].

A.5 – Further work by John von Neumann and
others demonstrated one way that machines could be
built which were equivalent in ability to Universal Tur-
ing Machines, with the exception of the infinite tape size
[vonneumann]. The von Neumann architecture is con-
sidered to be a foundation of modern general purpose
computers [godfrey].

A.6 – As in von Neumann’s ‘‘stored program’’
architecture, the TVM program and data are both stored
as rewritable bits on the UTM tape (§A.4, Figure 6).
This arrangement allows the TVM to change the
machine language instructions which describe the TVM
itself. If it does so, our TVM enjoys the advantages (and
the pitfalls) of self-modifying code [nordin].

A.7 – There is no algorithm that a Turing
machine can use to determine whether another specific
Turing machine will halt for a given tape; this is
known as the ‘‘halting problem.’’ In other words, Tur-
ing machines can contain constructions which are dif-
ficult to validate. This is not to say that every machine
contains such constructions, but that that an arbitrary
machine and tape chosen at random has some chance
of containing one.

A.8 – Note that, since a Turing machine is an
imaginary construct [turing], our own brain, a pencil,
and a piece of paper are (theoretically) sufficient to
work through the tape, producing a result if there is
one. In other words, we can inspect the code and
determine what it would do. There may be tools and
algorithms we can use to assist us in this [laiten-
berger]. We are not guaranteed to reach a result though
– in order for us to know that we have a valid machine
and valid input, we must halt and reach an accept
state. Inspection is generally considered to be a form
of testing.

Inspection has a cost (which we will use later):
Cinspect

This cost includes the manual labor required to
inspect the code, any machine time required for execu-
tion of inspection tools, and the manual labor to exam-
ine the tool results.

A.9 – There is no software testing algorithm that is
guaranteed to ensure fully reliable program operation
across all inputs – there appears to be no theoretical
foundation for one [hamlet]. We suspect that some of
the reasons for this may be related to the halting prob-
lem (§A.7), Gödel’s incompleteness theorem [godel],
and some classes of computational intractability prob-
lems, such as the Traveling Salesman and NP complete-
ness [greenlaw, garey, brookshear, dewdney].

In practice, we can use multiple test runs to
explore the input domain via a parameter study, equiv-
alence partitioning [richardson], cyclomatic complex-
ity analysis [mccabe], pseudo-random input, or other
means. Using any or all of these methods, we may be

able to build a confidence level for predictability of a
given program. Note that we can never know when
testing is complete, and that testing only proves incor-
rectness of a program, not correctness.

Te s t i n g cost includes the manual labor required to
design the test, any machine time required for execu-
tion, and the manual labor needed to examine the test
results:

Ctest

A.10 – For software testing to be meaningful, we
must also ensure code coverage. Code coverage
requirements are generally determined through some
form of inspection (§A.8), with or without the aid of
tools. Coverage information is only valid for a fixed
program – even relatively minor code changes can
affect code coverage information in unpredictable
ways [elbaum]. We must repeat testing (§A.9) for
every variation of program code.

To ensure code coverage, testing includes the
manual labor required to inspect the code, any
machine time required for execution of the coverage
tools and tests, and the manual labor needed to exam-
ine the test results. Because testing for coverage
includes code inspection, we know that testing is more
expensive than inspection alone:

Ctest > Cinspect

A.11 – Once we have found a UTM tape that
produces the result we desire, we can make many
copies of that tape, and run them through many identi-
cal Universal Turing Machines simultaneously. This
will produce many simultaneous, identical results.
This is not very interesting – what we really want to
be able to do is hold the TVM program portion of the
tape constant while changing the TVM data portion,
then feed those differing tapes through identical
machines. The latter arrangement can give us a form
of distributed or parallel computing.

A.12 – Altering the tapes (§A.11) presents a prob-
lem though. We cannot in advance know whether these
altered tapes will provide valid results, or even reach
completion. We can exhaustively test the same program
with a wide variety of sample inputs, validating each of
these. This is fundamentally a time-consuming, pseudo-
statistical process, due to the iterative validations nor-
mally required. And it is not a complete solution (§A.9).

A.13 – If we for some reason needed to solve
slightly different problems with the distributed machines
in §A.11, we may decide to use slightly different pro-
grams in each machine, rather than add functionality to
our original program. But using these unique pro-
grams would greatly worsen our testing problem. We
would not only need to validate across our range of
input data (§A.9), but we would also need to repeat
the process for each program variant (§A.10). We
know that testing many unique programs will be more
expensive than testing one:

Cmany > Ctest

112 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Traugott & Brown Why Order Matters: Turing Equivalence in Automated Systems Administration

A.14 – It is easy to imagine a Turing Machine
that is connected to a network, and which is able to
use the net to fetch data from tapes stored remotely,
under program control. This is simply a case of a mul-
tiple-tape Turing machine, with one or more of the
tapes at the other end of a network connection.

A.15 – Building on §A.14, imagine a Turing Vir-
tual Machine (TVM) running on top of a networked
Universal Turing Machine (UTM) (§A.4). In this case,
we might have three tapes; one for the TVM program,
one for the TVM data, and a third for the remote net-
work tape. It is easy to imagine a sequence of TVM
operations which involve fetching a small amount of
data from the remote tape, and storing it on the local
program tape as additional and/or replacement TVM
instructions (§A.6). We will name the old TVM
instruction set A. The set of fetched instructions we
will name B, and the resulting merger of the two we
will name AB. Note that some of the instructions in B
may have replaced some of those in A (Figure 7).
Before the fetch, our TVM could be described (§A.2)
as an A machine, after the fetch we have an AB
machine – the TVM’s basic functionality has changed.
It is no longer the same machine.

����
����
����

����
����
����

BA AB
Figure 7: Instruction set B partially overlays instruc-

tion set A, creating set AB.

A.16 – Note that, if any of the instructions in set
B replace any of those in set A, (§A.15), then the
order of loading these sets is important. A TVM with
the instruction set AB will be a different machine than
one with set BA (Figure 8).
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Figure 8: Instruction set BA is created by loading B
before A; A partially overlays B this time.

A.17 – It is easy to imagine that the TVM in
§A.15 could later execute an instruction from set B,
which could in turn cause the machine to fetch another
set of one or more instructions in a set we will call C,
resulting in an ABC machine:

����
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����C ABCAB

Figure 9: If instructions from set AB load C, then
ABC results.

A.18 – After each fetch described in §A.17, the
local program and data tapes will contain bits from (at
least) three sources: the new instruction set just copied
over the net, any old instructions still on tape, and the

data still on tape from ongoing execution of all previ-
ous instructions.

A.19 – The choice of next instruction to be fetched
from the remote tape in §A.17 can be calculated by the
currently available instructions on the local program
tape, based on current tape content (§A.18).

A.20 – The behavior of one or more new instruc-
tions fetched in §A.17 can (and usually will) be influ-
enced by other content on the local tapes (§A.18). With
careful inspection and testing we can detect some of the
ways content will affect instructions, but due to the
indeterminate results of software testing (§A.9), we may
never know if we found all of them.

A.21 – Let us go back to our three TVM instruc-
tion sets, A, B, and C (§A.17). These were loaded
over the net and executed using the procedure
described in §A.19. Assume we start with blank local
program and data tapes. Assume our UTM is hard-
wired to fetch set A if the local program tape is found
to be blank. If we then run the TVM, A can collect
data over the net and begin processing it. At some
point later, A can cause set B to be loaded. Our local
tapes will now contain the TVM data resulting from
execution of A, and the new TVM machine instruc-
tions AB. If the TVM later loads C, our program tape
will contain ABC.

A.22 – If the networked UTM machine con-
structed in §A.21 always starts with the same (blank)
local tape content, and the remote tape content does
not change, then we can demonstrate that an A TVM
will always evolve to an AB, then an ABC machine,
before halting and producing a result.

A.23 – Assuming the network-resident data
never changes, we can rebuild our networked UTM at
any time and restore it to any prior state by clearing
the local tapes, resetting the machine state, and restart-
ing execution with the load of A (§A.21). The
machine will execute and produce the same intermedi-
ate and final results as it did before, as in §A.22.

A.24 – If the network-resident data does change,
though, we may not be able to rebuild to an identical
state. For example, if someone were to alter the net-
work-resident master copy of the B instruction set
after we last fetched it, then it may no longer produce
the same intermediate results and may no longer fetch
C (§A.19). We might instead halt at AB.

A.25 – Without careful (and possibly intractable)
inspection (§A.8), we cannot prove in advance whether
an BCA or CAB machine can produce the same result
as an ABC machine. It is possible that these, or other,
variations might yield the same result. We can validate
the result for a given input (§A.3). We would also need
to do iterative testing (§A.12) to demonstrate that multi-
ple inputs would produce the same result. Our cost of
testing multiple or partially ordered sequences is greater
than that required to test a single sequence:

Cpartial > Ctest
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A.26 – If the behavior of any instruction from B in
(§A.22) is in any way dependent on other content found
on tape (§A.18, §A.19, §A.20), then we can expect our
TVM to behave differently if we load B before loading
A (§A.16). We cannot be certain that a UTM loaded
with only a B instruction set will accept the input lan-
guage, or even halt, until after we validate it (§A.3).

A.27 – We might want to rollback from the load
or execution of a new instruction set. In order to do
this, we would need to return the local program and
data tape to a previous content. For example, if
machine A executes and loads B, our instruction set
will now be AB. We might rollback by replacing our
tape with the A copy.

A.28 – Due to (§A.26), it is not safe to try to roll-
back the instruction set of machine AB to recreate
machine A by simply removing the B instructions. Some
of B may have replaced A. The AB machine, while exe-
cuting, may have even loaded C already (§A.21), in
which case you won’t end up with A, but with AC. If
the AB machine executed for any period of time, it is
likely that the input data language now on the data tape
is only acceptable to an AB machine – an A machine
might reject it or fail to halt (§A.3). The only safe roll-
back method seems to be something similar to (§A.27).

A.29 – It is easy to imagine an automatic process
which conducts a rollback. For example, in §A.27,
machine AB itself might have the ability to clear its
own tapes, reset the machine state, and restart execu-
tion at the beginning of A, as in §A.23.

A.30 – But the system described in §A.29 will
loop infinitely. Each time A executes, it will load B,
then AB will execute and reset the local tapes again. In
practice, a human might detect and break this loop; to
represent this interaction, we would need to add a fourth
tape, representing the user detection and input data.

A.31 – It is easy to imagine an automatic process
which emulates a rollback while avoiding loops, with-
out requiring the user input tape in §A.30. For exam-
ple, instruction set C might contain the instructions
from A that B overlaid. In other words, installing C
will ‘‘rollback’’ B. Note that this is not a true rollback;
we never return to a tape state that is completely iden-
tical to any previous state. Although this is an imper-
fect solution, it is the best we seem to be able to do
without human intervention.

A.32 – The loop in §A.30 will cause our UTM to
never reach completion – we will not halt, and cannot
validate a result (§A.3). A method such as (§A.31) can
prevent a rollback-induced loop, but is not a true roll-
back – we never return to an earlier tape content. If
these, or similar, methods are the only ones available to
us, it appears that program-controlled tape changes
must be monotonic – we cannot go back to a previous
tape content under program control, otherwise we loop.

A.33 – Let us now look at a conventional appli-
cation program, running as an ordinary user on a cor-
rectly configured UNIX host. This program can be

loaded from disk into memory and executed. At no
time is the program able to modify the ‘‘master ’’ copy
of itself on disk. An application program typically
executes until it has output its results, at which time it
either sleeps or halts. This application is equivalent to
a fixed-program Turing machine (§A.1) in the follow-
ing ways: Both can be validated for a given input
(§A.3) to prove that they will produce results in a
finite time and that those results are correct. Both can
be tested over a range of inputs (§A.9) to build confi-
dence in their reliability. Neither can modify their own
executable instructions; in the UNIX machine they are
protected by filesystem permissions; in the Turing
machine they are hardwired. (We stipulate that there
are some ways in which §A.33 and §A.1 are not
equivalent – a Turing machine has a theoretically infi-
nite tape, for instance.)

A.34 – We can say that the application program in
§A.33 is running on top of an application virtual
machine (AVM). If the application is written in Java,
for example, the AVM consists of the Java Virtual
Machine. In Perl, the AVM is the Perl bytecode VM.
For C programs, the AVM is the kernel system call
interface. Low-level code in shared libraries used by a
C program uses the same syscall interface to interact
with the hardware – shared libraries are part of the C
AV M . A Perl program can load modules – these
become part of the program’s AVM. A C or Perl pro-
gram that uses the system() or exec() function calls
relies on any executables called – these other executa-
bles, then, are part of the C or Perl program’s AVM.
Any executables called via exec() or system() in turn
may require other executables, shared libraries, or other
facilities. Many, if not most, of these components are
dependent on one or more configuration files. These
components all form an AV M dependency chain for any
given application. Regardless of the size or shape of
this chain, all application programs on a UNIX machine
ultimately interact with the hardware and the outside
world via the kernel syscall interface.

A.35 – When we perform system administration
actions as root on a running UNIX machine, we can
use tools found on the local disk to cause the machine
to change portions of that same disk. Those changes
can include executables, configuration files, and the
kernel itself. Changes can include the system adminis-
tration tools themselves, and changed components and
configuration files can influence the fundamental
behavior and viability of those same executables in
unforeseen ways, as in §A.10, as applied to changes in
the AVM chain (§A.34).

A.36 – A self-administered UNIX host runs an
automatic systems administration tool (ASAT) period-
ically and/or at boot. The ASAT is an application pro-
gram (§A.33), but it runs as root rather than an ordi-
nary user. While executing, the ASAT is able to mod-
ify the ‘‘master ’’ copy of itself on disk, as well as the
kernel, shared libraries, filesystem layout, or any other
portion of disk, as in §A.35.
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A.37 – The ASAT described in §A.36 is equiva-
lent to a Turing Virtual Machine (§A.4) in the ways
described in §A.33. In addition, a self-administered
host running an ASAT is similar to a Universal Turing
Machine in that the ASAT can modify its own pro-
gram code (§A.6).

A.38 – A self-administered UNIX host connected to
a network is equivalent to a network-connected Universal
Tu r i n g Machine (§A.14) in the following ways: The
host’s ASAT (§A.36) can fetch and execute an arbitrary
new program as in §A.15. The fetched program can fetch
and execute another as in §A.17. Intermediate results can
control which program is fetched next, as in §A.19. The
behavior of each fetched program can be influenced by
the results of previous programs, as in §A.20.

A.39 – When we do administration via auto-
mated means (§A.36), we rely on the executable por-
tions of disk, controlled by their configuration files, to
rewrite those same executables and configuration files
(§A.35). Like the Universal Turing Machine in §A.32,
changes made under program control must be assumed
to be monotonic; non-reversible short of ‘‘resetting the
tape state’’ by reformatting the disk.

A.40 – An ASAT (§A.36) runs in the context of
the host kernel and configuration files, and depends
either directly or indirectly on other executables and
shared libraries on the host’s disk (§A.26).

The circular dependency of the ASAT AVM
dependency tree (§A.34) forces us to assume that, even
though we may not ever change the ASAT code itself,
we can unintentionally change its behavior if we
change other components of the operating system. This
is similar to the indeterminacy described in §A.20.

It is not enough for an ASAT designer to stati-
cally link the ASAT binary and carefully design it for
minimum dependencies. Other executables, their
shared libraries, scripts, and configuration files might
be required by ASAT configuration files written by a
system administrator – the tool’s end user.

When designing tools we cannot know whether
the system administrator is aware of the AVM depen-
dency tree (we certainly can’t expect them to have
read this paper). We must assume that there will be
circular dependencies, and we must assume that the
tool designer will never know what these dependen-
cies are. The tool must support some means of dealing
with them by default. We’ve found over the last sev-
eral years that a default paradigm of deterministic
ordering will do this.

A.41 – We cannot always keep all hosts identical;
a more practical method, for instance, is to set up classes
of machines, such as ‘‘workstation’’ and ‘‘mail server,’’
and keep the code within a class identical. This reduces
the amount of coverage testing required (§A.10). This
testing is similar to that described in §A.13.

A.42 – The question of whether a particular
piece of software is of sufficient quality for the job
remains intractable (§A.9).

But in practice, in a mission-critical environ-
ment, we still want to try to find most defects before
our users do. The only accurate way to do this is to
duplicate both program and input data, and validate
the combination (§A.3). In order for this validation to
be useful, the input data would need to be an exact
copy of real-world, production data, as would the pro-
gram code. Since we want to be able to not only vali-
date known real-world inputs but also test some possi-
ble future inputs (§A.9), we expect to modify and dis-
rupt the data itself.

We cannot do this in production. Application
developers and QA engineers tend to use test environ-
ments to do this work. It appears to us that systems
administrators should have the same sort of test facili-
ties available for testing infrastructure changes, and
should make good use of them.

A.43 – Because the ASAT (§A.36) is itself a
complex, critical application program, it needs to be
tested using the procedure in §A.42. Because the
ASAT can affect the operation of the UNIX kernel and
all subsidiary processes, this testing usually will con-
flict with ordinary application testing. Because the
ASAT needs to be tested against every class of host
(§A.41) to be used in production, this usually requires
a different mix of hosts than that required for testing
an ordinary application.

A.44 – The considerations in §A.43 dictate a
need for an infrastructure test environment for testing
automated systems administration tools and tech-
niques. This environment needs to be separate from
production, and needs to be as identical as possible in
terms of user data and host class mix.

A.45 – Changes made to hosts in the test environ-
ment (§A.44), once tested (§A.12), need to be trans-
ferred to their production counterpart hosts. When
doing so, the ordering precautions in §A.26 need to be
observed. Over the last several years, we have found
that if you observe these precautions, then you will see
the benefits of repeatable results as shown in §A.22. In
other words, if you always make the same changes first
in test, then production, and you always make those
changes in the same order on each host, then changes
that worked in test will work in production.

A.46 – Because an ASAT (§A.36) installed on
many machines must be able to be updated without
manual intervention, it is our standard practice to
always have the tool update itself as well as its own
configuration files and scripts. This allows the entire
system state to progress through deterministic and
repeatable phases, with the tool, its configuration files,
and other possibly dependent components kept in sync
with each other.

By having the ASAT update itself, we know that
we are purposely adding another circular dependency
beyond that mentioned in §A.40. This adds to the
urgency of the need for ordering constraints (§A.45).
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We suspect control loop theory applies here; this
circular dependency creates a potential feedback loop.
We need to ‘‘break the loop’’ and prevent runaway
behavior such as oscillation (replacing the same file
over and over) or loop lockup (breaking the tool so
that it cannot do anything anymore). Deterministically
ordered changes seem to do the trick, acting as an
effective damper.

We stipulate that this is not standard practice for
all ASAT users. But all tools must be updated at some
point; there are always new features or bug fixes
which need to be addressed. If the tool cannot support
a clean and predictable update of its own code, then
these very critical updates must be done ‘‘out of
band.’’ This defeats the purpose of using an ASAT,
and ruins any chance of reproducible change in an
enterprise infrastructure.

A.47 – Due to §A.25, if we allow the order of
changes to be A, B, C on some hosts, and A, C, B on
others, then we must test both versions of the resulting
hosts (§A.13). We may have inadvertently created two
host classes (§A.41); due to the risk of unforeseen inter-
actions we must also test both versions of hosts for all
future changes as well, regardless of ordering of those
future changes. The hosts may have diverged (see the
‘Divergence’ section).

A.48 – It is tempting to ask ‘‘Why don’t we just
test changes in production, and rollback if they don’t
work?’’ This does not work unless you are able to take
the time to restore from tape, as in §A.27. There’s also
the user data to consider – if a change has been applied
to a production machine, and the machine has run for
any length of time, then the data may no longer be
compatible with the earlier version of code (§A.28).
When using an ASAT in particular, it appears that
changes should be assumed to be monotonic (§A.39).

A.49 – It appears that editing, removing, or oth-
erwise altering the master description of prior changes
(§A.24) is harmful if those changes have already been
deployed to production machines. Editing previously-
deployed changes is one cause of divergence. A better
method is to always ‘‘roll forward’’ by adding new
corrective changes, as in §A.31.

A.50 – It is extremely tempting to try to create a
declarative or descriptive language L that is able to
overcome the ordering restrictions in §A.45 and
§A.49. The appeal of this is obvious: ‘‘Here are the
results I want, go make it so.’’

A tool that supports this language would work by
sampling subsets of disk content, similar to the way
our Turing machine samples individual tape cells
(§A.1). The tool would read some instruction set P,
written in language L by the sysadmin. While sam-
pling disk content, the tool would keep track of some
internal state S, similar to our Turing machine’s state
(§A.2). Upon discovering a state and disk sample that
matched one of the instructions in P, the tool could

then change state, rewrite some part of the disk, and
look at some other part of the disk for something else
to do. Assuming a constant instruction set P, and a
fixed virtual machine in which to interpret P, this
would provide repeatable, validatable results (§A.3).

A.51 – Since the tool in §A.50 is an ASAT
(§A.36), influenced by the AVM dependency tree
(§A.34), it is equivalent to a Turing Virtual Machine as
in §A.37. This means that it is subject to the ordering
constraints of §A.45 and §A.47. If the host is net-
worked, then the behavior shown in §A.15 through
§A.20 will be evident.

A.52 – Due to §A.51, there appears to be no lan-
guage, declarative or imperative, that is able to fully
describe the desired content of the root-owned, managed
portions of a disk while neglecting ordering and history.
This is not a language problem: The behavior of the lan-
guage interpreter or AVM (§A.34) itself is subject to
current disk content in unforeseen ways (§A.35).

We stipulate that disk content can be completely
described in any language by simply stating the com-
plete contents of the disk. Cloning, discussed in ‘A
Prediction,’ is an applied example of this case. This
class of change seems to be free of the circular depen-
dencies of an AVM; the new disk image is usually
applied when running from an NFS or ramdisk root
partition, not while modifying a live machine.

A.53 – A tool constructed as in §A.50 is useful
for a very well-defined purpose; when hosts have
diverged (§A.47) beyond any ability to keep track of
what changes have already been made. At this point,
you have two choices; rebuild the hosts from scratch,
using a tool that tracks lifetime ordering; or use a con-
vergence tool to gain some control over them.
Cfengine is one such tool.

A.54 – It is tempting to ask ‘‘Does every change
really need to be strictly sequenced? Aren’t some
changes orthogonal?’’ By orthogonal we mean that
the subsystems affected by the changes are fully inde-
pendent, non-overlapping, cause no conflict, and have
no interaction each other, and therefore are not subject
to ordering concerns.

While it is true that some changes will always be
orthogonal, we cannot easily prove orthogonality in
advance. It might appear that some changes are ‘‘obvi-
ously unrelated’’ and therefore not subject to sequenc-
ing issues. The problem is, who decides? We stipulate
that talent and experience are useful here, for good
reason: it turns out that orthogonality decisions are
subject to the same pitfalls as software testing.

For example, inspection (§A.8) and testing
(§A.9) can help detect changes which are not orthogo-
nal. Code coverage information (§A.10) can be used
to ensure the validity of the testing itself.

But in the end, none of these provide assurance
that any two changes are orthogonal, and like other
testing, we cannot know when we have tested or
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inspected for orthogonality enough. As in our Perl
example in the ‘Ordered Thinking’ section, inspection
of high-level code alone is not enough either; we can-
not assume that the underlying layers are correct.

Due to this lack of assurance, the cost of predict-
ing orthogonality needs to accrue the potential cost of
any errors that result from a faulty prediction. This
error cost includes lost revenue, labor required for
recovery, and loss of goodwill. We may be able to
reduce this error cost, but it cannot be zero – a zero
cost implies that we never make mistakes when ana-
lyzing orthogonality. Because the cost of prediction
includes this error cost as well as the cost of testing,
we know that prediction of orthogonality is more
expensive than either the testing or error cost alone:

Cpredict > Cerror

Cpredict > Ctest

A.55 – As a crude negative proof, let us take a
look at what would happen if we were to allow the
order of changes to be totally unsequenced on a pro-
duction host. First, if we were to do this, it is apparent
that some sequences would not work at all, and would
probably damage the host (§A.26). We would need to
have a way of preventing them from executing, proba-
bly by using some sort of exclusion list. In order to
discover the full list of bad sequences, we would need
to test and/or inspect each possible sequence.

This is an intractable problem: the number of
possible orderings of M changes is M!. If each
build/test cycle takes an hour, then any number of
changes beyond seven or eight becomes impractical –
testing all combinations of eight changes would require
4.6 years. In practice, we see change sets much larger
than this; the ISconf version 2i makefile for building
HACMP clusters, for instance, has sequences as long as
121 operations – that’s 121!/24/365, or 9.24*10196 years.
It is easier to avoid unsequenced changes.

The cost of testing and inspection required to
enable randomized sequencing appears to be greater
than the cost of testing a subset of all sequences
(§A.25), and greater than the testing, inspection, and
accrued error of predicting orthogonality (§A.54):

Crandom > Cpredict > Cpartial

A.56 – As a self-administering machine changes
its disk contents, it may change its ability to change its
disk contents. A change directive that works now may
not work in the same way on the same machine in the
future and vice versa (§A.26). There appears to be a
need to constrain the order of change directives in
order to obtain predictable behavior.

A.57 – In contrast to §A.52, a language that sup-
ports execution of an ordered set of changes appears to
satisfy §A.56, and appears to have the ability to fully
describe any arbitrary disk content, as in ‘Describing
Disk State.’

A.58 – In practice, sysadmins tend to make
changes to UNIX hosts as they discover the need for

them; in response to user request, security concern, or
bug fix. If the goal is minimum work for maximum
reliability, then it would appear that the ‘‘ideal’’
sequence is the one which is first known to work – the
sequence in which the changes were created and
tested. This sequence carries the least testing cost. It
carries a lower risk than a sequence which has been
partially tested or not tested at all.

The costs in §A.8, §A.9, §A.25, §A.54, and
§A.55 are related to each other as shown in Figure 10.
This leads us to these conclusions:

• Validating, inspecting, testing, and deploying a
single ordered sequence (Ctest) appears to be the
least-cost host change management technique.

• Adequate testing of partially-ordered sequences
(Cpartial) is more expensive.

• Predicting orthogonality between partial
sequences (Cpredict) is yet more expensive.

• The testing required to enable random change
sequences (Crandom) is more expensive than any
other testing, due to the N! combinatorial
explosions involved.

error

test ordered sequence

predict orthogonality

test partially ordered

enable random sequences

Figure 10: Relationship between costs of various order-
ing techniques; larger set size means higher cost.

A.59 – The behavioral attributes of a complex
host seem to be effectively infinite over all possible
inputs, and therefore difficult to fully quantify (§A.9).
The disk size is finite, so we can completely describe
hosts in terms of disk content, but we cannot com-
pletely describe hosts in terms of behavior. We can
easily test all disk content, but we do not seem to be
able to test all possible behavior.

This point has important implications for the
design of management tools – behavior seems to be a
peripheral issue, while disk content seems to play a
more central role. It would seem that tools which test
only for behavior will always be convergent at best.
Tools which test for disk content have the potential to
be congruent, but only if they are able to describe the
entire disk state. One way to describe the entire disk is
to support an initial disk state description followed by
ordered changes, as in ‘Describing Disk State.’

A.60 – There appears to be a general statement
we can make about software systems that run ‘‘on top
of ’’ others in a ‘‘virtual machine’’ or other software-
constructed execution environment (§A.34):

If any virtual machine instruction has the ability
to alter the virtual machine instruction set, then
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different instruction execution orders can pro-
duce different instruction sets. Order of execu-
tion of these instructions is critical in determin-
ing the future instruction set of the machine.
Faulty order has the potential to remove the abil-
ity for the machine to update the instruction set
or to function at all.

This applies to any application, automatic admin-
istration tool (§A.36), or shared library code executed
as root on a UNIX machine (it also applies to other
cases on other operating systems). These all interact
with hardware and the outside world via the operating
system kernel, and have the ability to change that
same kernel as well as higher-level elements of their
‘‘virtual machine.’’ This statement appears to be inde-
pendent of the language of the virtual machine instruc-
tion set (§A.52).

Conclusion and Critique

One interesting result of automated systems
administration efforts might be that, like the term
‘computer,’ the term ‘system administrator’ may some-
day evolve to mean a piece of technology rather than a
chained human.

Sometime in the last few years, we began to sus-
pect that deterministic ordering of host changes may
be the airfoil of automated systems administration.
Many other tool designers make use of algorithms that
specifically avoid any ordering constraint; we accepted
ordering as an axiom.

With this constraint in place, we have built and
maintained many thousands of hosts, in many mis-
sion-critical production infrastructures worldwide,
with excellent results. These results included high reli-
ability and security, low cost of ownership, rapid
deployments and changes, easy turnover, and excellent
longevity – after several years, some of our first
infrastructures are still running and are actively main-
tained by people we’ve never met, still using the same
toolset. Our attempts to duplicate these results while
neglecting ordering have not met these same standards
as well as we would like.

In this paper, our first attempt at explaining a theo-
retical reason why these results might be expected, we
have not ‘‘proven’’ the connection between ordering
practice and theory in any mathematical sense. We hope
we have, however, been able to provide a thought exper-
iment which will help guide future research. Based on
this thought experiment, it seems that more in-depth the-
oretical models may be able to support our practical
results.

This work seems to imply that, if hosts are Tur-
ing equivalent (with the possible exception of tape
size) and if an automated administration tool is Turing
equivalent in its use of language, then there may be
certain self-referential behaviors which we might want
to either avoid or plan for. This in turn would imply

that either order of changes is important, or the host or
method of administration needs to be constrained to
less than Turing equivalence in order to make order
unimportant. The validity of this claim is still an open
question. In our deployments we have decided to err
on the side of ordering.

On tape size: one addition to our ‘‘thought exper-
iment’’ might be a stipulation that a network-con-
nected host may in fact be fully equivalent to a Uni-
versal Turing Machine, including infinite tape size, if
the network is the Internet. This is possibly true, due
to the fact that the host’s own network interface card
will always have a lower bandwidth than the growth
rate of the Internet itself – the host cannot ever reach
‘‘the end of the tape.’’ We have not explored the impli-
cations or validity of this claim. If true, this claim may
be especially interesting in light of the recent trend of
package management tools which are able to self-
select, download, and install packages from arbitrary
servers elsewhere on the Internet.

Synthesizing a theoretical basis for why ‘‘order
matters’’ has turned out to be surprisingly difficult. The
concepts involve the circular dependency chain men-
tioned in the section on ‘Ordered Thinking,’ the depen-
dency trees which conventional package management
schemes support, as well as the interactions between
these and more granular changes, such as patches and
configuration file edits. Space and accessibility con-
cerns precluded us from accurately providing rigorous
proofs for the points made in the ‘Turing Equivalence’
section. Rather than do so, we have tried to express
these points as hypotheses, and have provided some
pointers to some of the foundation theories that we
believe to be relevant. We encourage others to attempt
to refute or support these assertions.

Figure 11: Thread structure of Turing Equivalence
assertions.
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You are in a maze of twisty little passages, all
alike. – Will Crowther’s ‘‘Adventure’’

There may be useful vulnerabilities or benefits
hidden in the structure of the ‘Turing Equivalence’ sec-
tion. Even after the many months we have spent poring
over it, it is still certainly more complex than it needs to
be, with many intertwined threads and long chains of
assumptions (Figure 11). One reason for this complex-
ity was our desire to avoid forward references within
that section; we didn’t want to inadvertently base any
point on circular logic. A much more readable text
could likely be produced by reworking these threads
into a single linear order, though that would likely
require adding the forward references back in.

For further theoretical study, we recommend:
• Gödel Numbers
• Gödel’s Incompleteness Theorem
• Chomsky’s Hierarchy
• Diagonalization
• The halting problem
• NP completeness and the Traveling Salesman

Problem
• Theory of ordered sets
• Closed-loop control theory

Starting points for most of these can be found in
[greenlaw, garey, brookshear, dewdney].
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