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Abstract

This paper describes the design, implementation,
and experimental evaluation of a modular and ex-
tensible Java r© Virtual Machine (JVM) infrastruc-
ture, called Jupiter. The infrastructure is intended
to serve as a vehicle for our research on scalable
JVM architectures for a 128-processor cluster of
PC workstations, with support for shared mem-
ory in software. Jupiter is constructed, using a
building block architecture, out of many modules
with small, simple interfaces. This flexible struc-
ture, similar to UNIX r© shells that build complex
command pipelines out of discrete programs, allows
the rapid prototyping of our research ideas by con-
fining changes in JVM design to a small number
of modules. In spite of this flexibility, Jupiter de-
livers good performance. Experimental evaluation
of the current implementation of Jupiter using the
SPECjvm98 benchmarks shows that it is on aver-
age 2.65 times faster than Kaffe and 2.20 slower
than the Sun Microsystems JDK (interpreter ver-
sions only). By providing a flexible JVM infrastruc-
ture that delivers competitive performance, we be-
lieve we have developed a framework that supports
further research into JVM scalability.

1 Introduction

The use of the Java r© programming language has
been steadily increasing over the past few years.
In spite of its popularity, the use of Java remains
limited in high-performance computing, mainly be-
cause of its execution model. Java programs are
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compiled into portable stack-based bytecode instruc-
tions, which are then interpreted by a run-time sys-
tem referred to as the Java Virtual Machine (JVM).
The limited ability of a Java compiler to optimize
stack-based code and the overhead resulting from
interpretation lead to poor performance of Java pro-
grams compared to their C or C++ counterparts.

Consequently, there has been considerable research
aimed at improving the performance of Java pro-
grams. Examples include: just-in-time (JIT) com-
pilation [1, 2], improved array and complex number
support [3, 4], efficient garbage collection [5, 6], and
efficient support for threads and synchronization [1].

The majority of this research has focused on improv-
ing performance on either uniprocessors or small-
scale SMPs. Our long-term research addresses scal-
ability issues of the JVM for large numbers of pro-
cessors. In particular, our goal is to design and im-
plement a JVM that scales well on our 128-processor
cluster of PC workstations, interconnected by a
Myrinet network, and with shared memory support
in software. However, in order to carry out this re-
search, we require a JVM infrastructure that allows
us to rapidly explore design and implementation op-
tions. While there exist a number of JVM frame-
works that we could use [1, 7, 8, 9], these frameworks
provide limited extensibility and are hard to mod-
ify. Hence, we embarked on the design and imple-
mentation of a modular and extensible JVM, called
Jupiter. It uses a building block architecture which
enhances the ability of developers to modify or re-
place discrete parts of the system in order to experi-
ment with new ideas. Further, to the extent feasible,
Jupiter maintains a separation between orthogonal
modifications, so that the contributions of indepen-
dent researchers can be combined with a minimum
of effort. In spite of this flexibility, Jupiter sup-
ports simple and efficient interfaces among modules,
hence preserving performance. In this paper, we



focus on this Jupiter infrastructure. In particular,
we describe the overall architecture, various imple-
mentation aspects, and performance evaluation of
Jupiter.

The current implementation of Jupiter is a working
JVM that provides the basic facilities required to
execute Java programs. It has an interpreter with
multithreading capabilities. It gives Java programs
access to the Java standard class libraries via a cus-
tomized version of the GNU Classpath library [10],
and is capable of invoking native code through the
Java Native Interface [11]. It provides memory allo-
cation and collection using the Boehm garbage col-
lector [12]. On the other hand, it currently has no
bytecode verifier, no JIT compiler, and no support
for class loaders written in Java, though the design
allows for all these things to be added in a straight-
forward manner. The performance of Jupiter’s in-
terpreter makes it comparable to commercial and
research interpreters, while still maintaining a high
degree of flexibility.

The remainder of this paper is organized as follows.
In Section 2 we give an overview of Jupiter’s archi-
tecture. In Section 3 we present details of Jupiter’s
design and implementation. In Section 4 we present
the results of our experimental evaluation of Jupiter.
In Section 5 we give an overview of related work.
Finally, in Section 6 we provide some concluding
remarks.

2 System Architecture

The overall structure of Jupiter is depicted in Fig-
ure 1. In the center is the ExecutionEngine, the
control center of the JVM, which decodes the Java
program’s instructions and determines how to ma-
nipulate resources to implement those instructions.
The resources themselves are shown as ovals, and
include Java classes, fields, methods, attributes, ob-
jects, monitors, threads, stacks and stack frames
(not all of which are shown in the diagram).

The responsibility for managing each resource is
delegated by the ExecutionEngine to a particu-
lar Source class, each shown as a rectangle within
the pie slice that surrounds the resource it man-
ages. The Sources insulate the ExecutionEngine
from the details of how resources are managed.
Sources share a simple, uniform interface: every

Source class has one or more get methods which re-
turn an instance of the appropriate resource. Each
get method has arguments specifying any informa-
tion needed by the Source to choose or allocate that
resource, and the Source is responsible for deciding
how the resource should be created, reused, or re-
cycled.

An incarnation of Jupiter, then, is constructed by
assembling a number of Source objects in such a
way as to achieve the desired JVM characteris-
tics, a scheme referred to as a building-block ar-
chitecture [13]. As each Source is instantiated,
its constructor takes references to other Sources
it needs in order to function. For instance, as
shown in Figure 1, the ObjectSource makes use
of a MemorySource, so the ObjectSource construc-
tor would be passed a reference to the particular
MemorySource object to which it should be con-
nected. The particular Source objects chosen, and
the manner in which they are interconnected, deter-
mines the behaviour of the system.

The assembly of a JVM out of Jupiter’s Source ob-
jects is much like the manner in which UNIX com-
mand pipelines allow complex commands to be con-
structed from discrete programs: each program is
“instantiated” into a process, and each process is
connected to other processes, via pipes, as described
by the command syntax; once the process-and-pipe
structure has been assembled, data begins to flow
through the structure, and the resulting behaviour
is determined by the particular choice of programs
and their interconnections. Likewise, an incarna-
tion of Jupiter is first constructed by instantiating
and assembling Sources. Once the JVM is assem-
bled, the Java program begins to flow through it,
like data through the command pipeline. The be-
haviour of the JVM is determined by the choice of
Source objects and their interconnections.

Figure 2 shows part of a typical running incarnation
of Jupiter, consisting of interconnected Source ob-
jects through which the resources of the executing
Java program flow. Also depicted is a typical collec-
tion of resource objects. In particular, the Context
object represents the call stack for an executing
Java program. To begin execution, a Context is
constructed and passed to an ExecutionEngine,
which sets the rest of the JVM in motion to in-
terpret the program. From the Context object, the
MethodBody object can be reached, which possesses
the Java instructions themselves. By interpreting
these instructions and manipulating the appropri-



Figure 1: Jupiter’s conceptual structure. Resource management responsibility is divided and delegated
to a number of Source modules, leaving the ExecutionEngine with an “abstract,” simplified view of the
system’s resources.

Figure 2: A typical building-block structure. Sources are shown above the dashed line, and resources below.
The Context object acts as a link between the two when the Java program first begins to execute.



Figure 3: A simple object allocation building-block
structure.

ate sources and resources in the appropriate way,
Jupiter is able to perform the indicated operations,
thereby executing the Java program.

2.1 System Flexibility

In this section, we demonstrate Jupiter’s flexibility
by examining several configurations of the system’s
building-block modules. We focus on a recurring
example—the object creation subsystem. Through
examples, we present several hypothetical ways in
which Jupiter could be modified to exploit memory
locality on a non-uniform memory access (NUMA)
multiprocessor system. In such a system, accessing
local memory is less time-consuming than access-
ing remote memory. Hence, it is desirable to take
advantage of local memory whenever possible.

Object creation begins with ObjectSource, whose
getObjectmethod takes a Class to instantiate, and
returns a new instance of that class. At the imple-
mentation level, Java objects are composed of two
resources: memory to store field data, and a moni-
tor to synchronize accesses to this data. In order to
allocate the memory and monitor for a new Object,
the ObjectSource uses a MemorySource and a
MonitorSource, respectively. The MemorySource
may be as simple as a call to a garbage collected
allocator such as the Boehm conservative collec-
tor [12]. Typically, the MonitorSource uses that
same MemorySource to allocate a small amount of
memory for the monitor.

The objects employed by such a simple scheme are
shown in Figure 3, where arrows indicate the uses re-
lation between the modules. The ExecutionEngine
at the top is responsible for executing the bytecode
instructions, and calls upon various facility classes,
of which only ObjectSource is shown. The remain-

Figure 4: Locality decisions made at the
MemorySource level.

der of this section will explore the system modifica-
tions that can be implemented by reconfiguring the
building blocks of this archetypal object allocation
scheme.

Suppose the memory allocator on a NUMA system
takes a node number as an argument and allocates
memory in the physical memory module associated
with that node:

void *nodeAlloc(int nodeNumber, int size);

We can make use of this interface, even though our
getMemory function of the MemorySource facility
does not directly utilize a nodeNumber argument.
We do so by having one MemorySource object for
each node in the system. We then choose the node
on which to allocate an object by calling upon that
node’s MemorySource.

There are a number of ways the ExecutionEngine
can make use of these multiple MemorySources. One
way would be to use a “facade” MuxMemorySource
module that chooses which subordinate node-
specific MemorySource to use, in effect multiplexing
several MemorySources into one interface. This is
shown in Figure 4. MuxMemorySource uses appro-
priate heuristics (such as first-hit or round-robin) to
delegate the request to the appropriate subordinate
MemorySource. The advantage of such a configu-
ration is that it hides the locality decisions inside
MuxMemorySource, allowing the rest of the system
to be used without any modification.

A second possibility is to manage locality at
the ObjectSource level on a per-object basis, as
shown in Figure 5. MuxObjectSource is similar to
MuxMemorySource, in that it uses some heuristic to



Figure 5: Locality decisions made at the ObjectSource level.

determine the node on which to allocate an object.
We can use the same node-specific MemorySource
code as in the previous configuration from Fig-
ure 4. We can also use the same ObjectSource and
MonitorSource classes as in the original configura-
tion (Figure 3); we simply use multiple instances of
each one. Very little code needs to change in order
to implement this configuration.

Yet a third possibility is to allow the
ExecutionEngine itself to determine the lo-
cation of the object to be created. Since the
ExecutionEngine has a great deal of information
about the Java program being executed, it is likely
to be in a position to make good locality decisions,
on a per-thread basis. In this configuration, shown
in Figure 6, the ObjectSource and MemorySource
remain the same as in the original configuration.
The execution engine chooses where to allocate its
objects by calling the appropriate ObjectSource.
Again, we have not changed ObjectSource or
MonitorSource classes, and the node-specific
MemorySource class is the same one from the
previous configurations.

These examples demonstrate the flexibility of
Jupiter’s building-block architecture. Each scheme
has advantages and disadvantages, and it is not clear
which is best. However, the ease with which they
can be incorporated allows researchers to implement
and compare them with minimal effort.

2.2 Performance Considerations

At first glance, it would appear that our flexible
building block structure impairs the performance of
the JVM. A researcher who was not concerned with

flexibility could simply hard-code the ObjectSource
to call the nodeAlloc function directly. In contrast,
our system appears to have two efficiency problems:

• Call overhead. Each object allocation request
must pass through a number of modules, with
each call contributing overhead.

• Object proliferation. One node-specific
MemorySource is required for each node;
hence, with hundreds of nodes, hundreds of
MemorySources will be needed, which would
be unnecessary if ObjectSource were to call
nodeAlloc directly.

For a researcher interested in performance, it would
be tempting to bypass the module structure entirely,
thereby degrading the extensibility of the system.

However, careful exploitation of compiler optimiza-
tions allows Jupiter to achieve the performance of
the less flexible scheme, without sacrificing flex-
ibility. The reason that this is possible is that
each node-specific MemorySource is associated with
a particular node for the duration of its lifetime,
making the node number for each MemorySource
immutable. Immutable data can be freely dupli-
cated without concern for consistency among the
multiple copies, since the data never changes. As a
result, immutable data that is normally passed by
reference can instead be passed by value, with no
change to the system’s behaviour. This removes the
need to dereference pointers, and also eliminates the
alias analysis difficulties that make pointer-based
code hard to optimize. The system can continue
to use the usual abstract, high-level interfaces, and
the compiler can produce highly efficient code.



Figure 6: Locality decisions made by the ExecutionEngine itself.

To illustrate how this is achieved in our example
of object allocation, we begin with the standard
Jupiter MemorySource interface declarations:

typedef struct ms_struct *MemorySource;
void *ms_getMemory(MemorySource this,

int size);

Because the node number for each MemorySource is
immutable, it can be passed by value. This can be
implemented by replacing the standard declarations
with the following:

typedef int MemorySource;

static inline void
*ms_getMemory(MemorySource this,

int size){
if(this == MS_MUX)

return nodeAlloc(/* The appropriate
node */, size);

else
return nodeAlloc(this, size);

}

In this version, a MemorySource is no longer a
pointer to a traditional “heavyweight” object; in-
stead, it is simply an integer representing the node
number itself. The MuxMemorySource is represented
by the special non-existent node number MS MUX. To
allocate memory, this code first checks whether the
MuxMemorySource is being used. If so, it uses the de-
sired locality heuristic to choose a node; otherwise,
if a particular node-specific MemorySource is used,
then memory is allocated from the corresponding
node.

With these definitions in place, the existing abstract
high-level function calls can be transformed by the
compiler into efficient code. Beginning with this:

void *ptr = ms_getMemory(
obs_memorySource(), size);

The compiler can perform a succession of function
inlining optimizations to produce this:

void *ptr = nodeAlloc(/* The appropriate
node */, size);

Hence, there is no longer any performance penalty
for using Jupiter’s MemorySource interface. This
example demonstrates how careful design and im-
plementation allows Jupiter to achieve good perfor-
mance without any cost to flexibility.

3 System Components and Imple-
mentation

In this section, we give a brief tour of the modules
which constitute the Jupiter system. The function-
ality of these modules is exposed through a number
of interfaces, known as the base interfaces, which are
fundamental to Jupiter’s design. For each facility
provided by Jupiter, we first present its base inter-
faces, and describe it in terms of the responsibilities
it encapsulates. We then describe the current im-
plementation of that facility. It is important to note
that these are examples showing the current imple-
mentation of the Jupiter facilities. The design of
Jupiter allows these implementations to be changed
easily.

3.1 Memory Allocation

The MemorySource base interface encapsulates the
memory allocation facility. It provides just one func-



tion, called “getMemory,” which takes the size of
the memory block required, and returns the result-
ing block. The current implementation has seven
MemorySources, which can be used alone, or in com-
bination, to produce a wide variety of effects:

• MallocMemorySource calls the standard C
malloc function to allocate memory. This was
useful early in development of the system.

• BoehmMemorySource calls the Boehm conserva-
tive garbage collector [12].

• BoehmAtomicMemorySource also calls the
Boehm collector, but it marks memory chunks
as being pointer-free (that is, atomic). This
is useful to prevent the garbage collector from
unnecessarily scanning for pointers within
large arrays of non-pointer data.

• ArenaMemorySource doles out chunks of mem-
ory from a given contiguous block, called an
arena.

• MemoryCounter keeps track of which parts of
Jupiter have allocated the most memory. This
is useful in debugging to help reduce memory
usage.

• Tracer annotates each memory block with in-
formation that allows for memory profiling.
This is useful to diagnose cases when memory
is not being garbage-collected properly, to find
out why memory is being retained.

• ErrorMemorySource reports an allocation er-
ror when called from specified points within
the Jupiter source code. This is useful for test-
ing Jupiter’s error handlers, by injecting errors
into Jupiter that are otherwise difficult to re-
produce.

3.2 Metadata and Method Dispatch

Jupiter creates metadata resource objects to repre-
sent the Java program itself. These objects take
the form of Classes, Fields, MethodDecls, and
MethodBodies. Jupiter accesses classes by name
through the ClassSource interface, using a function
called getClass. Once a Class has been acquired,
its Fields, MethodDecls and MethodBodies can be
accessed in order to perform the operations required
by the running Java program. A Field encapsu-
lates the data required to locate a field within an

object. Typically, it contains nothing more than the
field’s offset. A MethodDecl encapsulates the data
stored in the constant pool to represent METHODREF
and INTERFACEMETHODREF entries. A MethodBody
encapsulates the data that represents a method im-
plementation; for non-native methods, it holds the
bytecode instructions.

Method dispatch is modeled as a mapping from
a MethodDecl to a MethodBody. The data struc-
tures involved in this mapping are shown in Fig-
ure 7. First, the ConstantPool of the target object’s
Class is consulted to acquire a MethodDecl object.
If the MethodDecl has not yet been resolved, the
ConstantPool calls upon the Class to locate the
MethodDecl, for which it uses a hash table keyed
by method name and type signature. As with most
JVMs, once the MethodDecl has been acquired, it
is cached by the ConstantPool to accelerate subse-
quent accesses.

Having acquired the MethodDecl, it must now be
dispatched to a particular MethodBody. This is done
using jump tables indexed by an offset stored in the
MethodDecl. Interface methods use a two-level ta-
ble scheme that allows them to be dispatched in
constant time [14]. Once the MethodBody has been
acquired, it can be executed, either by interpreting
its bytecode, or, for native methods, by invoking
the appropriate function through the Java Native
Interface (JNI) [11].

3.3 Object Manipulation

Java objects are manipulated through three inter-
faces: Object, which encapsulates field layout and
access; ObjectSource, which encapsulates object
allocation and garbage collection; and Field, de-
scribed above, which encapsulates the data required
to locate a field within an object.

These interfaces are implemented as shown in Fig-
ure 8, which has similarities to the method dis-
patch structures shown earlier in Figure 7. The
Field abstraction serves an analogous purpose to
MethodDecl, representing a field reference in the
constant pool. The Field is then passed to the
Object, which returns the value of that field.



Class
constantPool
methodsByNameAndType
vtable
itables

MethodDecl
class
offset

MethodBody
code

Jump table

Jump table

Interface meta−table

Object
class

ConstantPool
class

cacheSlots
constants

Resolved entries

Unresolved entries
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then on the right to acquire a MethodBody.
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Figure 8: The Jupiter objects responsible for the layout of Java objects.

3.4 Java Call Stack

The call stack of the running Java program is mod-
elled by three interfaces: Frame, which encapsulates
the data stored in a single stack frame, such as the
operand stack and local variables; FrameSource,
which encapsulates the allocation and layout of
Frames, controlling such things as the argument-
passing mechanism; and Context, which encapsu-
lates the storage and management of the call stack
as well as the locking logic required by synchronized
methods.

Representing the Java context entirely as a data
structure allows Java threads to be migrated, simply
by executing a given Context on a different thread.
This stands in contrast to the more straightforward
scheme used in Kaffe, which implements method
invocation by recursion within the execution en-
gine [9], causing context information to be stored
on the native stack, and precluding this kind of mi-
gration.

The objects representing the execution stack are
shown in Figure 9. The system’s view of the stack
is provided by the Context object on the left, which
encapsulates a large array of word-sized slots in
which the stack contents are stored. Each slot is
capable of holding up to 32 bits of data; 64-bit data
types require two adjacent slots, as prescribed by
the Java specification [15].

Individual stack frames are manipulated through
the Frame interface, shown as a trapezoid in the fig-
ure. A number of design techniques provide the illu-
sion that Frames are just like any other objects [16],
but in reality, the data for each Frame is stored in
a contiguous group of slots within the slot array.
This allows the frames to be overlapped, making
method argument copying unnecessary, while pre-
serving the object-oriented interface. The resulting
layout of two adjacent stack frames is shown in the
diagram, with overlapping frames labelled twice to
indicate their role in each of the frames.
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Figure 9: The stack layout. Each stack slot is labelled twice, for its role in the two overlapping frames. The
slot marked “(empty)” is the portion of the operand stack space which does not currently contain data.

3.5 Bytecode Interpretation

The ExecutionEngine decodes the bytecode and
performs the actions necessary to implement each
instruction. Its interface is quite simple, consisting
of a single function that takes a Context as an ar-
gument, and executes the method whose frame is on
top of the Context’s call stack.

Since Jupiter’s design delegates much of the execu-
tion responsibility to other parts of the system, not
much remains to be done by the ExecutionEngine
itself. The current interpreter implementation di-
vides the functionality into three modules, which are
shown along with the ExecutionEngine interface
in Figure 10. These modules are each responsible
for implementing a portion of the ExecutionEngine
functionality:

• The opcodeSpec module defines each of the
Java opcodes in terms of Jupiter’s base in-
terfaces. It takes the form of a header file
that is included (with #include) into the in-
terpreter module. It is designed to be used by
any ExecutionEngine, be it an interpreter or

Figure 10: The bytecode execution modules.

a JIT compiler.

• The InterpreterSupport module provides
functionality that is independent of the par-
ticular interpreter implementation, such as the
stack-unwinding algorithm for exception han-
dling.

• The Interpreter module implements the
ExecutionEngine interface, making use of the
opcodeSpec and InterpreterSupport mod-
ules as necessary.

The current ExecutionEngine implementation is
a threaded interpreter, meaning that, after execut-
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ing one opcode, it branches directly to the code
for executing the next opcode [7]. This stands
in contrast to the typical scheme, which uses a
switch statement inside a loop to jump to the ap-
propriate code. The threaded scheme eliminates
the branch to the top of the loop, whose overhead
can be substantial in an optimized interpreter like
Jupiter’s, as will be shown in Section 4.2. The
current ExecutionEngine also does bytecode sub-
stitution to improve the performance of getfield,
putfield, invokevirtual by dynamically replac-
ing them with faster versions, as will be described
in Section 4.2.

3.6 Threading and Synchronization

To maximize flexibility, Jupiter uses two levels of in-
terfaces for threading and synchronization, shown in
Figure 11. The high-level interfaces, called Thread
and Monitor (plus the corresponding Sources), pro-
vide the full Java concurrency semantics. The
low-level interfaces, called ThinThread, Mutex, and
Condition, provide the minimal semantics required
by Java. These low-level interfaces are referred
to collectively as the ThinThreads interface, which
provides a small subset of the POSIX threads se-
mantics [17]. The high- and low-level interfaces are
complimentary in several ways:

• ThinThreads encapsulates the thread library
beneath Jupiter. Thread and Monitor encap-
sulate the threading needs of the Java program
running on top of Jupiter.

• ThinThreads provides the minimal require-
ments to make implementing Java threads pos-
sible. Thread and Monitor provide the max-

imum support to make implementing Java
threads simple.

• ThinThreads is designed so that the imple-
mentation code which connects to the under-
lying thread library can be trivial. Thread and
Monitor are designed so that the client code
which uses them to implement Java threads can
be trivial.

Separating the Java concurrency semantics from the
semantics of the underlying thread library makes
threading and synchronization modules easier to im-
plement and modify.

4 Experimental Evaluation

Jupiter is written in C using an object-oriented
style. Although languages such as Java or C++
would provide more support for an object-oriented
programming style, and hence more support for our
flexible building block architecture, we elected to
use C because we did not have confidence in the
ability of other languages to deliver good perfor-
mance. The current implementation comprises ap-
proximately 23,000 lines of C code, in about 170
files.

In this section, we quantify the performance Jupiter
delivers on standard benchmarks. We also attempt
to show the degree of flexibility Jupiter possesses
by arguing the ease with which a number of perfor-
mance optimizations were implemented.

4.1 Overall Performance

To test Jupiter’s functionality and performance, we
used it to run the single-threaded applications1 from
SPECjvm98 benchmark suite [18]. In this section,
we present the execution times consumed by these
benchmarks running on Jupiter, and compare them
with results from Kaffe 1.0.6, and from the Sun Mi-
crosystems JDK v1.2.2-L. We find that Jupiter is
faster than Kaffe and slower than JDK.

1Although multithreading is already functional in the ver-
sion of Jupiter we use to report performance, multithreaded
performance is currently being optimized. Hence, we elect to
report only the performance of single-threaded applications.



Benchmark JDK Jupiter Kaffe Jupiter/JDK Kaffe/Jupiter
1 209 db 178s 282s 836s 1.59:1 2.96:1
2 228 jack 112s 213s 567s 1.91:1 2.66:1
3 201 compress 333s 700s 2314s 2.10:1 3.31:1
4 222 mpegaudio 276s 649s 1561s 2.35:1 2.40:1
5 213 javac 114s 313s 733s 2.74:1 2.35:1
6 202 jess 93s 257s 608s 2.76:1 2.36:1

Geometric Mean 2.20:1 2.65:1

Table 1: Execution time, in seconds, of the benchmarks using each JVM. The ratios on the right compare
the JVMs pairwise, showing the slower JVM’s execution time relative to the faster one’s.

Table 1 compares the execution times of each bench-
mark run on the three JVMs. All times were mea-
sured on a 533 MHz Pentium III with 512 MB of
RAM running Linux, kernel version 2.2.19. Jupiter
was compiled with gcc version 2.95.2 at optimiza-
tion level -O3, with all source code combined into
a single compilation unit to facilitate function in-
lining [16]. The times were reported by the UNIX
“time” program, and therefore include all JVM ini-
tialization. All benchmarks were run with verifi-
cation and JIT compilation disabled, since Jupiter
does not yet possess either of these features. Av-
eraged across all benchmarks (using the geometric
mean), Jupiter was 2.20 times slower than JDK, and
2.65 times faster than Kaffe.

4.2 Performance Optimizations and
Analysis

The current level of performance achieved by
Jupiter requires that a number of optimizations be
implemented. In this section, we briefly describe
these optimizations and comment on how the flexi-
ble structure of Jupiter facilitated their implemen-
tation. The optimizations are:

• bottombased: the Frame interface was changed
to use bottom-based operand stack indexing in-
stead of top-based indexing to speed up stack
accesses [16].

• threaded: the “loop-and-switch” interpreter
was replaced by a threaded version to improve
performance, as was described in Section 3.5.

• fieldsize: the field’s size (either 4 or 8 bytes) was
cached inside the Field pointer, relieving the
interpreter from having to traverse data struc-
tures to find this information.

• bytecode substitution: the implementations of
getfield, putfield and invokevirtual were

Figure 12: Effect of each optimization on bench-
mark execution times.

changed so they replace themselves in the byte-
code stream with respective quick versions the
first time they execute. These quick versions
assume that the field in the opcode has been
resolved, and are specialized for the appropri-
ate field size. Furthermore, the opcodes are
re-written so that the field offset is stored di-
rectly in the bytecode stream, avoiding con-
stant pool access. Subsequent executions of the
same bytecode will find the quick instructions,
which execute faster.

• register: a CPU register was assigned to store
the location of the currently executing instruc-
tion, eliminating the need to load this value
from memory in order to read and execute each
instruction.

The impact of these optimizations is shown in Fig-
ure 12, which charts the execution-time reduction
due to each optimization. The optimizations vary
in the degree to which they benefit the performance
of each application. For instance, the fieldsize
and substitution optimizations, which targeted



(a) Before optimization (b) After optimization

Figure 13: Bytecode execution profile.

the getfield and putfield opcodes, were espe-
cially successful on compress, which spends a large
portion of its time executing these two instructions.
Also, threaded reduces the overhead of each op-
code, producing a larger impact on applications
that execute many “lightweight” opcodes, such as
mpegaudio, compared to applications that execute
relatively fewer, but more time-consuming, opcodes,
such as javac and jess.

The above optimizations required minimal effort to
implement in Jupiter, attesting to the flexibility of
our system. For example, Jupiter’s stronger encap-
sulation confines the modifications required to im-
plement the fieldsize optimization to changing a
half-dozen lines of code within the Fieldmodule. In
contrast, Kaffe’s equivalent of opcodeSpec explic-
itly tests the field type and calls one of a number of
“load offset” macros, passing only the field off-
set as a parameter. To take advantage of cached
field size information, all implementations of the
load offset macros must be modified to pass the
field size in addition to its offset—even those that
are not affected by this optimization. Hence, in con-
trast to Jupiter, the lack of encapsulation within
Kaffe causes the scope of this modification to en-
compass a large number of unrelated modules.

We believe that further improvements to the perfor-
mance of Jupiter are still possible, which will bring
its performance closer to that of the Sun Microsys-
tems JDK. We profiled the amount of time con-
sumed executing each kind of opcode, grouped into
the following categories: Invocation/Return, Con-
ditional Branch, Local Variable Access Allocation,
Object Access, Array Access, Integer, Floating-point,

and Other. The resulting execution profile is de-
picted in Figure 13, before and after the optimiza-
tions described above. The charts show that our op-
timization targeted mostly object access overhead,
and that more performance-improving opportuni-
ties remain. For example, the two slowest bench-
marks, 202 jess and 213 javac, have similar pro-
files, with large proportions of invocation/return
and allocation opcodes. We will target these op-
codes in future work.

Furthermore, Jupiter’s coding style relies heavily on
function inlining to achieve good performance, so a
weakness in the compiler’s inlining ability can have
a substantial impact. For example, our examination
of gcc-generated assembly code for getfield indi-
cates that the code can be further optimized with
nothing more than common subexpression elimina-
tion. The exact reason that gcc did not success-
fully perform this optimization is hard to deter-
mine. However, it appears that the implementation
of getfield is too stressful on the inlining facility of
gcc, hindering its ability to apply the optimization.
Applying the optimization manually in the assem-
bly code improves the performance of getfield by
approximately 15%. The overall performance im-
provement due to the optimization depends on the
application. For example, object access accounts
for only 11% of 201 compress, which would lead to
less than 2% overall improvement, and even less for
other applications2. Similar improvements are pos-
sible for other opcodes, and the accumulation of the
individual improvements may be substantial.

2The small magnitudes of such improvements make them
difficult to experimentally measure because they are within
measurement error.



5 Related Work

There has been considerable work on improving
performance of Java programs in uniprocessor en-
vironments [1, 2, 3, 4]. For example, Alpern et
al. describe the design and implementation of the
Jalapeño virtual machine [1], which incorporates
a number of novel optimizations in its JIT com-
piler. Artigas et al. [3] investigate compiler and
run-time support for arrays in Java, and show that
improvements can be attained by eliminating run-
time checks. Much of this work is orthogonal to
ours, in that it improves uniprocessor performance.
However, such improvements carry over to multipro-
cessors, and we expect them to be easily integrated
into the Jupiter framework.

There are a number of JVMs and JVM frameworks
designed for research into JVM design. They in-
clude the Sun Microsystems JDK [8], Kaffe [9], the
IBM Jalapeño JVM [1], Joeq [19], OpenJIT [20],
and SableVM [7]. However, these frameworks of-
ten address flexibility in particular dimensions of
JVM design, while in contrast, Jupiter’s flexibility
is intended to be pervasive and fine-grained, allow-
ing straightforwardmodification of any aspect of the
system. For example, OpenJIT is an object-oriented
framework for experimenting with JIT compiler de-
signs and is implemented as a JIT-compiler plug-
in to Sun’s JDK, making it limited to JIT com-
piler research. Similarly, while Jalapeño (recently
released as the Jikes RVM [21]) was designed as
“flexible test bed where novel virtual machine ideas
can be explored, measured, and evaluated”[1] in an
industrial-grade server JVM, much of the work sur-
rounding it explored JIT design. Though its object-
oriented design undoubtedly possesses a large de-
gree of inherent flexibility, it is unclear the extent
to which the system is flexible in some aspects, such
as object layout, stack layout, method dispatch, and
so on.

6 Concluding Remarks

In this paper, we presented the design of a modular,
flexible framework intended to facilitate research
into JVM scalability. We described the building-
block architecture employed, as well as the design
and implementation of the key modules. Experi-
mentation with our framework demonstrates that

Jupiter’s flexibility has facilitated a number of mod-
ifications, some of which are difficult to accomplish
using Kaffe. Measurement of the execution time
of the single-threaded SPECjvm98 benchmarks has
shown that Jupiter’s interpreter is, on average, 2.65
times faster than Kaffe, and 2.20 times slower than
Sun’s JDK. By providing a flexible JVM framework
that delivers good performance, we hope to facili-
tate our, and others’, research into JVM scalability.

Our future work on the Jupiter infrastructure will
focus on three main aspects of its implementation.
First, we will incorporate a trace-based JIT com-
piler, called RedSpot, whose implementation is cur-
rently underway. Second, we will extend the mem-
ory allocation interface in Jupiter to enable the
use of a precise garbage collector, and to facil-
itate the implementation of parallel and concur-
rent garbage collection. Finally, we plan to mod-
ify the manner in which Jupiter stores metadata.
At present, Jupiter spreads the responsibility for
storing metadata throughout the system, leading
to rather heavyweight objects. We believe that
by storing the metadata separately, objects will be
made lightweight, which would enable further per-
formance optimizations.
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