
USENIX Association

Proceedings of the
2nd JavaTM Virtual Machine

Research and Technology Symposium
(JVM '02)

San Francisco, California, USA
August 1-2, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Concurrent Remembered Set Refinement in Generational Garbage

Collection

David Detlefs
Ross Knippel

Sun Microsystems1

david.detlefs@sun.com

ross.knippel@sun.com

William D. Clinger
Northeastern University
will@ccs.neu.edu

Matthias Jacob
Department of Computer Science

Princeton University
35 Olden Street

Princeton, NJ 08544
mjacob@cs.princeton.edu

Abstract

Generational garbage collection divides a heap up
into two or more generations, and usually collects
a youngest generation most frequently. Collection
of the youngest generation requires identification of
pointers into that generation from older generations;
a data structure that supports such identification
is called a remembered set. Various remembered
set mechanisms have been proposed; these gener-
ally require mutator code to execute a write bar-
rier when modifying pointer fields. Remembered
set data structures can vary in their precision: an
imprecise structure requires the garbage collector to
do more work to find old-to-young pointers. Gener-
ally there is a tradeoff between remembered set pre-
cision and barrier cost: a more precise remembered
set requires a more elaborate barrier. Many current
systems tend to favor more efficient barriers in this
tradeoff, as shown by the widespread popularity of
relatively imprecise card marking techniques. This
imprecision becomes increasingly costly as the ra-
tio between old- and young-generation sizes grows.
We propose a technique that maintains more pre-
cise remembered sets that scale with old-generation
size, using a barrier whose cost is not significantly
greater than card marking.

1Solaris and Java are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other
countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC In-
ternational, Inc. in the United States and other countries.
Products bearing SPARC trademarks are based upon an ar-
chitecture developed by Sun Microsystems, Inc.

1 Introduction

Generational garbage collection [24] is a widespread
and popular technique [30, 21, 32, 6, 3]. Gen-
erational collection usually both decreases aver-
age GC pause times (since most collections tar-
get just the youngest generation) and also increases
GC efficiency (by concentrating collection work on
the youngest generation, whose objects often die
young). In collecting the youngest generation, ob-
jects in older generations are considered as roots;
young objects reachable from old objects are con-
sidered live. Therefore, young objects reachable
from older generations must be identified in order
to have a correct collection. Further, many systems
use some form of relocating garbage collection. For
example, compaction enables fast linear allocation
in a contiguous free space. This imposes a further
requirement, that all pointers to young objects from
other generations be identified, since those pointers
must be updated.

Data structures that support iteration over old-to-
young pointers (or pointers that cross other, more
general boundaries) are often called remembered
sets. Since mutator updates of pointer fields in ob-
jects may create new pointers that must be remem-
bered, generational systems usually have an associ-
ated write barrier that is executed along with such
updates to maintain the remembered set.

Remembered set implementations differ in their pre-
cision: how precisely they describe the locations
of the pointer fields in old-generation objects that
must be scanned. A highly precise remembered
set leads to faster young-generation collection. A
remembered set may be imprecise in two ways:



first, entries may only approximately describe the
locations of cross-generational pointers, and sec-
ond, some entries may not actually denote cross-
generational pointers. Such imprecision leads to ex-
tra work during collection.

Unfortunately, there is a tradeoff between remem-
bered set precision and the cost of the write bar-
rier code executed by the mutator threads: a more
precise remembered set generally requires a more
elaborate, and therefore more expensive, write bar-
rier. At one extreme, the “null” remembered set
implementation would be extremely imprecise (scan
the entire old generation to find cross-generational
pointers), but impose no overhead on the mutator,
since no barrier is necessary. At the other extreme,
every pointer update could execute code to either
insert or remove, as necessary, the updated location
from a hash table representing the remembered set.
Such a scheme would be very precise, but also very
expensive.

Many remembered set/write barrier combinations
have been proposed [33, 3]; these populate many
points on this tradeoff curve. Card marking, in par-
ticular, has become a popular technique. In this
technique, the heap is partitioned into equal-sized
cards, and a card table array is allocated, with an
entry for each card of the heap. Card table entries
are initially clean; the mutator write barrier marks
the card containing the updated field (or the head
of the object containing the field, in a variant) dirty.
The collector must scan the card table to find dirty
entries, and then scan the corresponding dirty cards
to find the cross-generational pointers, if any, cre-
ated by the writes. This technique has a quite inex-
pensive write barrier (as few as 2 extra instructions
per pointer update) and small memory overhead (a
typical configuration has a one-byte card table entry
for every 512-byte card). However, card marking is
not particularly precise: the collector must scan the
entire card table to find marked cards; cards may
be marked by “false positive” pointer updates that
create only intra-old-generation pointers; and even
for dirty cards the collector may scan an entire card
to find just one cross-generational pointer.2 Many
applications are requiring increasingly large heaps,
while requiring pause times to remain small. Since
the cost of card marking increases as a function
of old-generation size and mutator pointer update
rate, card marking may not scale to these larger

2Some card marking variants increase precision by increas-
ing write barrier cost, for example, by filtering out old-to-old
pointers in the write barrier.

heaps.

One positive trend is that applications with large
heaps are increasingly multithreaded and are run
on multiprocessors. However, tuning an applica-
tion (and run-time system, and operating-system
kernel) to scale with additional processors is often
difficult. In this paper we propose that an avail-
able underutilized processor can be put to produc-
tive use by concurrent refinement of the remembered
set to increase its precision. We investigate several
strategies for remembered set representation, sev-
eral alternative write barriers (two of them novel),
and different concurrent processing methods. By
using concurrent refinement, we are able to keep re-
membered set scanning in young-generation collec-
tion more nearly dependent only on the number of
old-to-young pointers at the time of collection, and
relatively independent of the size of the old gen-
eration or the application’s pointer mutation rate.
For one customer’s application, concurrent refine-
ment of the remembered set reduces both the aver-
age pause time and the total cost of garbage collec-
tion.

The rest of the paper is organized as follows. Section
2 discusses related work. In section 3 we describe
the remembered sets we used. Section 4 describes
the write barriers we considered. Section 5 describes
the concurrent processing that uses the output of
those barriers to refine the remembered set. Section
6 describes our experimental results. We close the
paper with conclusions and future work.

2 Related work

In this section we describe related previous work.
First we consider explorations of remembered set
implementations and write barrier code sequences,
then the application of concurrency to garbage col-
lection.

2.1 Remembered sets and write barri-
ers

Many remembered set representations have been
proposed in the literature, with associated write
barriers. Chapter 7.5 of Jones and Lins’ garbage
collection reference [21] contains an excellent



overview.3 The sequential store buffer scheme of
Hosking, Moss, and Stefanović [19] is similar to our
log-based barriers in that it separates data struc-
tures updated by mutator barriers from remembered
set representations. However, the details of the mu-
tator barrier code are different, and, while they pro-
cessed logs incrementally as they overflowed, they
did not process logs concurrently. The summary
table mechanism used in our card-table-based re-
membered set implementation is similar to the the
hybrid card marking scheme of Hosking and Hudson
[20].

Sobalvarro [28] described a form of 2-level card ta-
ble, but it required hardware support, and he did
not address concurrent processing.

Recently, Fitzgerald and Tarditi [15] compared a
number of different barrier and remembered set im-
plementations including card marking, sequential
store buffers, and a 2-level card table. Their conclu-
sion was that, for their benchmarks, choice of write
barrier did not greatly influence the performance of
their system. They did not consider offloading work
to a concurrent thread, as is done in this paper.

2.2 Concurrency

Concurrent garbage collection is not new. Steele
[29] had an early algorithm. Dijkstra, Lamport, et
al. introduced on-the-fly collection [10], a form of
concurrent mark-and-sweep. This was extended by
Kung and Song [22]. More recently, these ideas have
been revisited for ML [11, 12] and for the JavaTM

programming language [14, 13]. Baker invented an
incremental copying collector [5], which was imple-
mented in hardware on Lisp machines [25]. Ellis, Li,
and Appel implemented this idea on stock hardware
with a virtual-memory-based barrier, and added
true concurrency [23]. However, most of these have
little relevance to the present work beyond the fact
they involve garbage collection and concurrency.

Two other collection approaches are similar to the
current work in that they use log-based write bar-
riers whose output is processed by a concurrent
thread devoted to GC. The first of these is con-
current reference counting. In this approach, the

3Note, though, that we are departing somewhat from their
terminology in this paper, and using remembered set to refer
to the general class of data structures for recording cross-
generational pointers, rather than a specific such data struc-
ture.

write barrier logs the address of the modified field,
and its value before the modification. DeTreville [9]
described such a collector for Modula-2+ (with a
backup mark-sweep collector to detect garbage cy-
cles). More recently, Bacon et al. [4] described an-
other such system (with a concurrent local cycle-
detection algorithm.) Logging is especially useful
when this style of collection is applied to multi-
threaded systems, since write barriers can write only
to thread-local logs, and all modifications to object
reference counts are done by a concurrent thread.

The other log-based collector we will mention is
the concurrent replicating collection technique of
O’Toole and Nettles [26]. In this approach all mu-
tator updates (including those to non-pointer fields)
are logged. A collector thread performs a concur-
rent copying collection. During collection, the mu-
tator observes only from-space pointers. The GC
thread ensures that logged updates are applied to
to-space versions of already-copied objects, with
pointers translated appropriately, and that updates
that modify the pointer graph are handled correctly.
This has little in common with the present paper
beyond the use of logs and concurrency.

Another family of concurrent collectors with some
relevance to the current work starts with the
“mostly-parallel” collector of Boehm, Demers and
Shenker [7]. Variations on this theme have been
explored by Printezis and Detlefs [27] and by Heil
and Smith [17]. The process M presented by Boehm
et al. (termed concurrent precleaning in Printezis
and Detlefs) could be considered a kind of concur-
rent remembered set refinement: in this application,
the remembered set records pointers that have been
modified during a concurrent marking phase, and
whose referents therefore may not be marked. The
concurrent process attempts to ensure that a neces-
sary “stop-world” phase to complete the marking is
short, much as the concurrent work in the current
paper tries to make “stop-world” young-generation
collections shorter.

While previous efforts bear some relation to the cur-
rent ideas, none have explicitly had concurrent re-
finement of remembered set precision as a goal.



3 Remembered sets

We consider two remembered set organizations in
this paper. The first is the default remembered set
representation of the system in which we perform
our measurements. This is a card table, augmented
with a summary table. As described so far, a card
table entry is either clean, indicating the absence of
cross-generational pointers, or dirty, indicating their
possible presence. When a young-generation collec-
tion scans a dirty card and finds a cross-generational
pointer, and the collection does not promote the ref-
erent of that pointer out of the young generation, it
leaves the card dirty to ensure that this pointer is
also scanned in the next collection. The summary
table makes this more efficient: the summary table
can represent the positions of up to a maximum of k
pointers within the card. If scanning of a dirty card
finds k or fewer (but not zero) cross-generational
pointers, then the card table entry is set to a new
value summarized and the number and positions of
those pointers are recorded in the summary table.
Dirty cards containing more than k cards remain
dirty; we refer to these as overflow cards.

The value k is a compile-time constant; how large
must it be for summarization to be effective? Figure
1 contains histograms classifying cards by how many
old-to-young pointers they contain at the time of
collection, for each of the benchmarks described in
section 6.2, summing over all collections. This is
a “busy” figure; we don’t intend for the reader to
note fine details. But we will note that the great
majority of cards are “clean,” that is, contain no
cross-generational pointers. Cards containing more
than 16 cross-generational pointers are quite rare
(note that the y-axis is logarithmic). Treating cards
with more than 16 cross generational pointers as
overflow cards has negligible cost.

One more technique can be used to decrease space
overhead. As described so far, each card has a cor-
responding summary table able to hold k pointer
offsets; in the implementation, each offset occupies
a byte. In all but two of the benchmarks, no indi-
vidual histogram bucket above the one for 2 point-
ers contains more than 100 cards (summed over all
the collections that occur in the benchmark.) The
other two benchmarks have quite large heaps, so
the relative sizes of the histogram buckets are still
small. Thus we could set k to 2, and use an encod-
ing scheme in which a 2-byte summary table entry
is identifiable as either a sequence of pointer offsets,

or else an index into a separate mid-size table, which
is able to represent 16 offsets. Few such entries will
be necessary, and using k = 3 would ensure that
more than 2 million would be addressable. We have
not yet implemented this variant.

Note that the use of a card table as a remembered
set does not require the use of a write barrier that
updates the card table directly; our log-based bar-
riers, for example, will use this representation also.

Our second remembered set organization is really
just an enhancement of the first: it is a two-level
card table. Each entry in the smaller, coarse-grained
table corresponds to some number of entries in the
larger, fine-grained table. (In our implementation,
this ratio is always of the form 2N , for some N .)
A coarse-grained entry is clean only if all the corre-
sponding fine entries are clean.

Clearly, a 2-level table scales better with large
heaps. If a young-generation collection is required
to scan an entire fine-grained table to find non-clean
cards, it may spend a significant amount of time just
skipping clean cards. Using the coarse-grained table
speeds up scanning of large clean regions by a factor
of 2N .

One of the write barriers investigated below dirties
both the coarse-grained and fine-grained cards cor-
responding to the updated location. A novel feature
of our two-level table organization is the observation
that by sacrificing a relatively small amount of ad-
dress space, we can arrange to have a common card
table base value for both tables. This speeds up the
barrier code; see section 4.2 for details.

4 Write barriers

In this section we describe each write barrier that
we have implemented by showing the barrier code
that is executed following an assignment of the form
x.f = y where x is a reference to an object and y
is an expression of reference type. We will show the
barrier code as SPARC r© assembly language, using
%rx to stand for a general register that contains x.
We will use %reg1, %reg2, etc., to stand for scratch
registers, and the constant foffset to stand for the
offset of field x.f from the address of x itself.

The write barriers that we have implemented fall



>160 5 10 15
num. of old-to-young refs on card

00

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

nu
m

be
r 

of
 c

ar
ds

jess
db
javac
jack
gcold-small-low
gcold-large-low
gcold-large-high
jbb

Figure 1: Histogram of number of old-to-young pointers on cards

into three categories:

1. barriers that directly update a 1-level card ta-
ble

2. barriers that directly update a 2-level card ta-
ble

3. barriers that adjoin an entry to a log buffer

4.1 Updating a 1-level Card Table

For our experiments, each byte of the 1-level card
table represents 512 = 29 bytes of the heap. Our
straightforward card-table write barrier is

sethi %reg3,%hi(base_address1) ! see below

add %rx,foffset,%reg1 ! %reg1 = &x.f

srl %reg1,9,%reg2

stb %g0,[%reg2+%reg3] ! mark card dirty

In the SPARC assembly code shown here, the %g0
register always holds the constant zero; this value is
used to represent a dirty card precisely because this
register is available. This barrier code assumes that
both the heap and card table are aligned on a 512-
byte boundary, and that base address1 is related
to the lowest heap address H and the lowest address
of the card table CT1 by

base_address1 = (CT1 - (H >> 9))

The barrier code also assumes that CT1 has been
aligned so that the low-order bits of base address1
are zero.

This barrier code sequence is similar to the two-
instruction sequence of Hölzle [18].4 We actually
used a variant of this barrier in which, in any
method that might execute a write barrier, a regis-
ter is dedicated to holding the base address1 value,
and the sethi instruction that initializes this regis-
ter is executed once on method entry, not for every
write barrier. The dedicated register is a SPARC
local register, and is therefore preserved across calls
by the the register window mechanism.

4.2 Updating a 2-level Card Table

For our 2-level card table we combined the 1-level
card table with a coarse-grained card table in which
each byte represents 16384 = 214 bytes, or 32 cards
in the fine-grained table. We aligned the address
CT0 of the coarse-grained table with respect to the
fine-grained table so that

base_address1 = (CT1 - (H >> 9))
= (CT0 - (H >> 14))

which allows us to use a single base register for both
card tables. Our straightforward write barrier for
the 2-level card table, which we will identify as card-
table2, is

4Except that it marks the card containing the precise loca-
tion of the modified field rather than the “imprecise” location
of the object head, which is used in Hölzle’s barrier. Hölzle’s
optimization saves an instruction and, more importantly a
register; it is more important on register-poor architectures
such as x86 than on a register-rich RISC architecture such as
the SPARC. Using precise marking simplifies our GC code.



sethi %reg3,%hi(base_address1)

add %rx,foffset,%reg1 ! %reg1 = &x.f

srl %reg1,14,%reg1

srl %reg1,9,%reg2

stb %g0,[%reg1+%reg3] ! do coarse table

stb %g0,[%reg2+%reg3] ! do fine table

As before, we actually used a variant with a ded-
icated local register for the base address1 value,
initialized by the first sethi instruction only on en-
try to a method, instead of within the write barrier.

4.3 Adjoining to a Log Buffer

The design space becomes much larger when pointer
writes are merely logged so that the remembered
set can be updated later or by a concurrent log-
processing thread. In this section we describe only
two of the possible designs.

Both of the write barriers that we describe adjoin
an entry to a thread-local write log buffer, which
is essentially an array of heap locations that have
been the left hand side of a pointer assignment. A
global register %next is dedicated to point to the
next entry in the log buffer. The main problem with
this kind of barrier is that the log buffers can over-
flow, and explicit tests for overflow are expensive.
One straightforward solution used in the past [19]
is to terminate the log with a write-protected page
and to detect overflow via a SIGSEGV exception.
However, for overflow frequencies corresponding to
reasonably-sized log buffers, we found that Unix sig-
nal handling is too expensive. Therefore, we inves-
tigated two barriers that handle log buffer overflow
in other ways.

The first we call the misalignment-utrap barrier.
The UTRAP mechanism of the SolarisTM operat-
ing system, like UNIX signals, is a mechanism for
handling hardware exceptions. It essentially han-
dles only only misaligned accesses, but is about one
hundred times as fast as the UNIX signal-handling
mechanism for this exception. We therefore de-
signed a barrier that performs a misaligned store
(on a non-word boundary) when the log buffer over-
flows, and use the UTRAP mechanism to handle the
misalignment exception. Here is the barrier:

add %rx,foffset,%reg1 ! %reg1 = &x.f

srl %next,n-1,%reg2 ! %reg2 = %next>>(n-1)

st %reg1,[%next-4]

and %reg2,6,%reg2 ! %reg2 = 4 or 6

add %next,%reg2,%next ! %next = %next + %reg2

The first instruction produces the precise address
of the field modified. (An alternative version would
elide the first instruction and log the object head
rather than the field address, performing less mu-
tator work at the cost of more work for concurrent
refinement. This observation also applies to the self-
pointing barrier described below. We did not imple-
ment this alternative.)

The %next register normally points to the next en-
try plus four, but when the log buffer is full %next
points to the next entry plus six, which will cause
a misalignment trap during the store instruction.
We arrange this by using 2n-byte log buffers that
are each aligned on a 2n+1-byte boundary but not
aligned on a 2n+2-byte boundary. The shift-right-
logical and “and” instructions therefore generate the
value 4 in %reg2, but generate a 6 when the buffer
is full.

Our self-pointing barrier takes a quite different ap-
proach towards minimizing the cost of log buffer
overflow: it attempts to avoid overflow altogether.
Each mutator thread has an associated set of log
buffers, linked in a sequence. Buffer entries are ini-
tially initialized with pointers to their own locations,
except for the last entry of a buffer, which is initial-
ized with the address of the first entry of the next
buffer of the sequence (or NULL for the last entry
of the last buffer). As with the misalignment-utrap
barrier, a global %next register contains the address
of the next log buffer entry to be written. The bar-
rier stores through %next, then updates %next with
the value read from the next entry:

add %rx,foffset,%reg1 ! %reg1 = &x.f

st %reg1,[%next]

ld %next,[%next+4]

When NULL is read on one barrier and stored
through on the next, a SIGSEGV handler adds a
new log buffer to the thread’s sequence. However,
a concurrent refinement thread (see section 5) will
continually be processing completed log buffers at
the head of the thread’s sequence. When it com-
pletes the head log buffer, it unlinks it from the
thread’s sequence and relinks it at the end. It also
resets the final entry of the old last buffer to contain
the address of the first entry of the new one, rather
than NULL. If this happens in a timely manner, the
mutator thread will never observe %next to contain
the NULL value, and will never overflow a buffer.
Adding log buffers when this does occur increases
the buffer space devoted to the thread, decreasing
the likelihood of future occurrences.



5 Concurrent refinement

For each (compatible) combination of one of the re-
membered set representations described in section
3 and one of the write barriers described in section
4, we implement a concurrent thread that processes
the information produced by the barrier in order to
produce a more precise remembered set. First we
consider aspects of concurrent refinement common
to all combinations, then we consider points specific
to refinement with card-table and log-based barri-
ers, respectively.

5.1 Common considerations for all bar-
riers

At an abstract level of description, all of the con-
current processing functions sleep for some interval,
then traverse the remembered set data structure, at-
tempting to refine it (by eliminating false positives
and/or making pointer location data more precise).
When a collection occurs, the “abstract” remem-
bered set must be considered to include any write
barrier data structures, such as log buffers, not yet
processed by the refinement thread. The collector
starts by completing any such outstanding process-
ing. Various heuristics may be used to control the
sleep interval between concurrent refinement inter-
vals. The goal of such heuristics is to simultaneously
minimize both the outstanding work necessary to
bring the “concrete” remembered set up-to-date at
the beginning of collection, and also the CPU time
used by the refinement thread. Such heuristics will
generally be based on previous program history.

Clearly, a heuristic that attempts to aggressively
“throttle back” concurrent refinement because lit-
tle mutator activity has been observed recently is
vulnerable to sudden increases in pointer mutation
rate. Some of the barriers can decrease this vul-
nerability somewhat. The barriers can be classified
according to whether or not they produce overflow
events; in particular, we say that the misalignment-
utrap barrier produces an overflow event whenever
it fills a buffer and starts to use a new buffer.5 The

5The self-pointing barrier can also be considered to pro-
duces a overflow event when it allocates a new buffer. But
the whole point of the self-pointing barrier is to avoid such
allocations, since they are triggered by dereferencing a null
pointer, which invokes a relatively expensive signal handler.
So these cannot be counted on as a reliable indicator of mu-
tator activity.

occurrence of overflow events can be used to trig-
ger activity by the concurrent refinement thread:
instead of sleeping for a fixed amount of time, the
thread waits on an operating-system condition vari-
able, using a timeout value to cause it to be resumed
when the condition variable is signaled or the time-
out expires, whichever comes first.

5.2 Barrier/remembered set compati-
bility

Which combinations are compatible? Each of the
card table barriers requires the corresponding (1- or
2-level) remembered set representation, since they
write directly to that representation. The log-based
barriers, on the other hand, can be used with either
remembered set representation, and, indeed, would
be compatible with many others, since the barrier
does not write directly to that representation.

5.3 Refinement with card-table barriers

Consider first concurrent refinement with the single-
level card-table write barrier. The mutator will set
some card table entries to dirty. The concurrent re-
finement thread traverses the card table, searching
for dirty entries. When one is found, the refinement
thread sets the entry to a new value, refining. It
then scans the card for cross-generational pointers,
computing a new value for the card: clean, summa-
rized with some number of pointer offsets, or over-
flow (which we now distinguish from dirty to pre-
vent repeated consideration of unmodified overflow
cards in successive traversals). The thread then at-
tempts to write the new value into the card table.
To do so, it reads the current value, verifies that it is
still refining, and uses a compare-and-swap (CAS)
instruction to atomically change to the new value.
A concurrent mutator operation may set the entry
back to dirty; if so, the refinement is invalid, since
it may have missed a pointer update, and is aban-
doned. We currently leave the card dirty and pro-
ceed to the next dirty card; we could also repeat
the refinement process. We expect such contention
for dirty cards to be sufficiently rare to make this
choice irrelevant.

Concurrent refinement with a two-level card ta-
ble barrier is very similar. The refinement thread
searches the coarse-grained table for dirty entries.



When one is found it sets the coarse-grained entry to
refining and searches the corresponding fine-grained
entries. For each of those that are dirty, it goes
through the process above. If all the fine-grained
entries are or become clean, and the coarse-grained
entry is still refining, then the coarse-grained entry
is atomically reset to clean, otherwise it is reset (not
atomically) to dirty.

There is a subtle concurrency issue involving the or-
der in which the tables are updated by the barrier.
The whole point of using a coarse-grained table is
so that during a GC we can traverse the smaller
coarse-grained table, and skip all the fine-grained
cards corresponding to a clean coarse-grained card.
In our system, garbage collections happen only at
discrete gc points, which never occur during write
barriers, so barriers (and their associated pointer
updates) are atomic with respect to collection [2].
Thus a collection will never observe a partially com-
pleted 2-level barrier. Barriers and updates are
not, however, atomic with respect to the actions
of the concurrent refinement thread. It turns out
that the barrier must update the fine-grained ta-
ble before the coarse-grained table. With this or-
der, the concurrent refinement thread may skip a
clean coarse-grained card, where the mutator has
just dirtied one of the corresponding fine-grained
cards and is about to dirty the coarse-grained card.
But, while this fails to achieve the maximum possi-
ble benefit of concurrent processing, it is still per-
fectly correct: the coarse-grained card will (cor-
rectly) be dirtied before the next GC. (And this
situation is probably quite rare.) If the barrier is
performed in the other order, an unfortunate sce-
nario can result. Consider a clean coarse-grained
card, all of whose covered fine-grained cards are also
clean. Suppose a pointer update to a field in the
last of these fine-grained cards does not create an
old-to-young pointer, but nevertheless dirties the
relevant fine-grained and coarse-grained cards. A
second pointer update to a field in the first cov-
ered fine-grained card does create an old-to-young
pointer, and the write barrier (redundantly) dirt-
ies the coarse-grained card. Now, before the second
write barrier completes, the concurrent refinement
thread observes the dirty coarse-grained card, scans
all the covered fine-grained cards, and finds only the
last dirty. It scans that card, finds that it does not
contain an old-to-young pointer, and therefore re-
sets both the fine-grained and coarse-grained cards
to clean. At this point, the partially-completed sec-
ond barrier completes, dirtying the first fine-grained
card. At this point, the invariant is violated, and

the barrier is complete, so a GC could occur and
observe this violation. Therefore, the 2-level barrier
must dirty the fine-grained card first.

5.4 Refinement with log-based barriers

We now consider concurrent refinement with log-
based barriers. Each thread has an associated thread
log set, which contains log buffers associated with
that thread. A thread log set is created and initial-
ized as part of thread creation, before the thread
can execute any write barriers. We also maintain
a global set of all the thread log sets; initialization
of a thread log set includes insertion of the new set
into that global set. The refinement thread can it-
erate over this global set of thread log sets. Con-
current insertion of new thread log sets may cause
those to be skipped, but the initial log processing
at the start of garbage collection uses sufficient syn-
chronization to ensure that no non-empty logs are
skipped. Thread logs may contain unprocessed en-
tries when the thread completes. Therefore, the
thread log set is not deleted when the correspond-
ing thread is dead; rather, it is marked as “dead,”
implying that no more entries will be written to its
log buffers. When the refinement thread completes
processing of a dead log set, it deletes it from the
global set, and frees its storage.

In the misalignment-utrap barrier, there is also a
global list of completed log buffers. The refine-
ment thread processes all completed buffers, and
may also traverse the thread log sets, processing
partially completed buffers.

As described in section 4, log entries are addresses
within the heap. These can be distinguished from
non-entries in both logging schemes, so the re-
finement thread can tell when it has read all the
currently-valid entries in a log buffer. A valid entry
may or may not represent an old-to-young pointer.
For each entry, the refinement thread first consid-
ers the address of the field. Write barriers are exe-
cuted for all objects, so some of the logged addresses
may be in young-generation objects; these can be
ignored.

The refinement thread next reads the current value
of the field. It is important to note that in all our
barriers, the barrier must be executed after the write
it covers, or else the refinement thread might ob-
serve the log entry or modified card, but read the



field value before the write, and take an improper
action.6 There is no guarantee that the value read
by the refinement thread when it processes a log en-
try will be the value written by the mutator thread
that added that entry, both because a thread may
update a location several times, and because a lo-
cation may be updated by several distinct threads.
However, since we require the refinement thread to
process all log entries for a location, and the last
write to a location happens before the last entry for
that location is logged, we are guaranteed that the
last entry processed for a given location (either by
the refinement thread, or by the collector during its
initial log processing) will observe the final write to
a given pointer field.

If the pointer value is not a pointer into the young
generation, then the log entry is ignored. This is a
design choice; we have chosen to have the remem-
bered set be monotonically non-decreasing between
collections. We could have alternatively attempted
to detect when pointer updates decrease the size of
the remembered set, but we judged that this would
have created significantly more work for the refine-
ment thread for a small benefit.

6 Results

In this section we present measurements of the ef-
fectiveness of concurrent refinement. Section 6.1
describes the system in which we performed our
preliminary experiments, section 6.2 describes the
benchmarks, and sections 6.3 and 6.4 report the re-
sults.

Following those experiments, we transferred this
technology to a product group. Section 6.5 describes
their implementation of concurrent refinement and
summarizes its impact on one customer’s applica-
tion.

6.1 Experimental system

We implemented concurrent refinement by modi-
fying the Sun Microsystems Laboratories Virtual
Machine for Research, henceforth ResearchVM, a

6As discussed previously, other mechanisms ensure that
the entire field-write/write-barrier combination is atomic
with respect to GC.

high performance JavaTM virtual machine7 devel-
oped by Sun Microsystems. This virtual machine
has been previously known as the “Exact VM”, and
has been incorporated into products; for example,
the JavaTM 2 SDK (1.2.1 07) Production Release,
for the Solaris operating environment.

The ResearchVM features high-performance exact
(i.e., non-conservative [8], also called precise) mem-
ory management [1]. The memory system is sep-
arated from the rest of the virtual machine by a
well-defined GC Interface [31]. This interface al-
lows different garbage collectors to be “plugged in”
without requiring changes to the rest of the system.
A variety of collectors implementing this interface
have been built. In addition to the GC interface, a
second layer, called the generational framework, fa-
cilitates the implementation of generational garbage
collectors. These interfaces allowed us to parame-
terize the implementation over the various choices
of remembered sets and barriers relatively easily.

The default configuration of this system uses a two-
generation collector, with a semispace-based young
generation, and an older generation that uses mark-
sweep-compact collection.

Measurements were performed on an otherwise idle
Sun EnterpriseTM E6500 server with 16 400 MHz
UltraSPARC r© II processors sharing 16 GB of mem-
ory.

6.2 Benchmarks

We measured the performance of this first imple-
mentation on several benchmarks.

The first benchmark is a synthetic one written by
the authors, called gcold.8 This application takes
several command-line flags that control the work-
load it presents to the collector. In particular,
we can create workloads that require a large old-
generation, and also vary the pointer mutation rate.
We use this application to demonstrate the existence
of workloads for which concurrent refinement shows
a significant advantage. This application has been
found to be predictive of real application perfor-
mance in the past. We vary two parameters: heap

7The term “Java virtual machine” means a virtual ma-
chine for the JavaTM platform.

8Earlier versions of this benchmark have been used in
other studies of concurrent [27] and parallel [16] collection.



size and pointer mutation rate in the old genera-
tion. The small heap size is 30 MB live in a 45
MB heap, and big is 300 MB live in a 450 MB
heap. The low pointer mutation rate is less than
1000 old-generation pointers updated per second,
and high is approximately 300,000 old-generation
pointers updated per second of mutator operation.
(For comparison, javac updates about 70,000 old-
generation pointers per second of mutator time. A
multi-threaded program with behavior similar to
javac could easily have an aggregate pointer mu-
tation rate this large.) We ran the following gcold
configurations: gcold-S-L (small/low), gcold-B-L
(big/low), and gcold-B-H (big/high).

The next benchmark is called jbb; this is a SPEC
benchmark aimed at measuring performance of Java
virtual machines executing server applications on
multiprocessors. It has large heaps and requires sig-
nificant GC activity. Unlike the others, which mea-
sure the time necessary to accomplish some fixed
task, this is a “throughput-oriented” benchmark,
measuring how many iterations of a repetitive task
can be executed in a fixed amount of time. We
make the measurements commensurate by restrict-
ing ourselves to the first 500 garbage collections.
(The different configurations measured do not dif-
fer in the timing of allocation and young-generation
collection.) This was run with a 16 MB young gen-
eration and a 300 MB old generation.

The remaining four benchmarks are the members
of the SPECjvm98 suite that spent more then 3%
of their elapsed time performing collection in our
system with its default configuration. These are

• javac: a compiler that translates Java pro-
gramming language source code to Java class
files, compiling a given set of files;

• jess: an “expert systems shell” written in the
Java language, solving a set of logic problems;

• mtrt: a “multi-threaded ray tracer,” in which
two worker threads render an image; and

• jack: a parser generator.

These four run in heaps of at most 24 MB.

6.3 Measurements

Table 1 shows the performance of our benchmarks
averaged over five runs for each of the various system
configurations. The configurations are as follows:

• CT1: the default one-level card table barrier
and remembered set.

• CT1+C: one-level card table barrier and re-
membered set with concurrent refinement.

• CT2: two-level card table barrier and remem-
bered set, no concurrent refinement.

• CT2+C: two-level card table with and remem-
bered set, with concurrent refinement.

• SP-CT1: self-pointing logging barrier, concur-
rent refinement, one-level card table remem-
bered set.

• SP-CT2: self-pointing logging barrier, concur-
rent refinement, two-level card table remem-
bered set.

• MIS-CT1: misalignment-utrap logging barrier,
concurrent refinement, one-level card table re-
membered set.

• MIS-CT2: misalignment-utrap logging barrier,
concurrent refinement, two-level card table re-
membered set.

All configurations allow up to 16 summary-table en-
tries per card.9

6.4 Discussion

We would first direct the reader’s attention to the
columns for young-generation collection time and
time to find cross-generation pointers; these are the
aspects of collection that we are trying to improve
via concurrent refinement.

The gcold-B-H run shows that there exist applica-
tions (admittedly synthetic) for which the improve-
ment can be dramatic. The jbb benchmark is some-
what less artificial, having been written to model a
class of real programs; here we see as much as a 5%

9This is to allow more direct comparisons; the standard
configuration of the ResearchVM allows only 2 such entries.



Benchmark system total mutator old-gen gc young-gen gc cross-gen ptrs
configuration (sec) (sec) (sec) (sec) (sec)

gcold-S-L CT1 101.5 56.3 33.5 11.6 0.6
CT1+C 101.2 56.7 32.9 11.6 0.4
SP-CT1 103.6 58.1 33.8 11.7 0.4
MIS-CT1 102.8 58.8 33.0 10.9 0.4
CT2 101.0 56.6 32.9 11.6 0.6
CT2+C 101.4 56.6 33.7 11.1 0.5
SP-CT2 103.2 58.3 32.9 12.0 0.3
MIS-CT2 104.5 59.7 33.9 11.0 0.3

gcold-B-L CT1 113.0 60.4 25.8 26.8 1.6
CT1+C 115.9 64.1 25.0 26.8 1.3
SP-CT1 117.3 64.2 26.2 26.8 1.2
MIS-CT1 117.5 66.3 25.0 26.2 1.2
CT2 112.5 60.8 25.1 26.7 1.2
CT2+C 112.8 61.0 26.0 25.8 0.8
SP-CT2 117.0 65.5 24.9 26.6 0.8
MIS-CT2 120.2 68.3 26.2 25.8 0.8

gcold-B-H CT1 257.4 167.6 12.2 77.6 60.5
CT1+C 215.8 184.3 11.7 19.9 2.5
SP-CT1 199.0 168.6 12.5 17.9 0.8
MIS-CT1 202.0 172.4 11.7 17.9 0.9
CT2 260.8 171.1 11.7 78.0 60.7
CT2+C 216.6 184.8 12.3 19.5 2.4
SP-CT2 199.5 170.2 11.6 17.7 0.6
MIS-CT2 204.3 174.0 12.5 17.8 0.7

jbb CT1 311.4 189.4 22.3 99.8 23.4
CT1+C 314.3 197.1 21.7 95.5 19.1
SP-CT1 312.1 192.7 21.8 97.6 18.6
MIS-CT1 329.5 212.2 22.2 95.1 18.7
CT2 334.5 211.2 23.8 99.5 22.8
CT2+C 329.2 211.8 22.8 94.6 18.2
SP-CT2 313.6 195.9 22.3 95.4 17.7
MIS-CT2 343.0 226.4 23.0 93.6 17.7

javac CT1 35.6 28.1 3.5 4.0 1.4
CT1+C 34.5 27.5 3.4 3.6 0.9
SP-CT1 36.4 29.1 3.5 3.7 0.9
MIS-CT1 37.4 30.3 3.5 3.6 0.9
CT2 35.2 27.7 3.4 4.1 1.4
CT2+C 35.0 27.9 3.5 3.6 0.9
SP-CT2 36.1 28.9 3.5 3.7 0.9
MIS-CT2 37.6 30.5 3.5 3.6 0.9

jess CT1 17.0 16.3 0.0 0.7 0.1
CT1+C 16.4 15.6 0.0 0.7 0.1
SP-CT1 20.5 19.6 0.0 0.9 0.1
MIS-CT1 20.8 20.0 0.0 0.7 0.1
CT2 16.7 16.0 0.0 0.7 0.1
CT2+C 17.0 16.2 0.0 0.7 0.1
SP-CT2 21.1 20.2 0.0 0.9 0.1
MIS-CT2 21.6 20.8 0.0 0.8 0.1

mtrt CT1 9.9 9.1 0.2 0.6 0.0
CT1+C 9.7 9.0 0.2 0.5 0.0
SP-CT1 10.1 9.3 0.2 0.6 0.0
MIS-CT1 9.8 9.0 0.2 0.5 0.0
CT2 10.0 9.3 0.2 0.5 0.0
CT2+C 9.5 8.8 0.2 0.5 0.0
SP-CT2 10.1 9.3 0.2 0.6 0.0
MIS-CT2 9.8 9.0 0.2 0.5 0.0

jack CT1 22.5 21.1 0.1 1.3 0.0
CT1+C 22.4 21.1 0.1 1.3 0.0
SP-CT1 23.7 22.2 0.1 1.4 0.0
MIS-CT1 23.4 22.0 0.1 1.3 0.0
CT2 22.1 20.7 0.1 1.3 0.0
CT2+C 22.3 20.9 0.1 1.3 0.0
SP-CT2 23.3 21.8 0.1 1.4 0.0
MIS-CT2 23.5 22.1 0.1 1.3 0.0

Table 1: Comparison of elapsed, mutator, and gc times for various system configurations.



decrease in young-generation collection times. The
javac benchmark is based on a real program, and
shows up to 10% improvements in young-generation
collections. The other benchmarks have few cross-
generational pointers, and show little if any benefit
from concurrent refinement.

The six configurations that use concurrent refine-
ment show little variation with respect to young-
generation collection times.

Improvements due to concurrent refinement do not
come without cost.

The default CT1 barrier executes three instructions,
including one write, per pointer write (not counting
the sethi per method entry). The more compli-
cated barriers (CT2, SP, and MIS) increase muta-
tor time significantly. The SP barrier performs more
memory operations, and most of its increased mu-
tator time is due to data cache misses. The CT2
and MIS execute more instructions and have more
instruction cache misses. Larger caches would re-
duce these costs. A more general UTRAP mecha-
nism (that supports segmentation violations as well
as misalignment exceptions) would give us a logging
barrier with the same instruction count and memory
operations as the default CT1 barrier.

In addition, we find that concurrent card table re-
finement can increase mutator time even with the
default card table barrier, as in the CT1+C con-
figuration on the gcold-B-H and jbb benchmarks.
Both of these benchmarks have a high rate of pointer
mutation, and the concurrent refinement thread
runs almost continuously. We suspect this leads to
data cache contention. With the two-level card ta-
ble (CT2+C), the refinement thread’s duty cycle on
the jbb benchmark drops from 91% to 72%, elim-
inating this effect. For concurrent refinement with
the logging barriers, the duty cycle ranged from 11%
(SP-CT1 on db) to 82% (MIS-CT2 on jbb).

We had expected more improvement from CT2 vs.
CT1 for large heaps. We believe the lack of such
a gain is due to CT1 using an optimized assembly-
language routine to recognize 64-bit blocks of clean
cards. This loop is not currently used in CT2; it
could be, and should result in more speedups for
very sparse card tables. In any case, the advantage
of the two-level card table will become important
only on very large heaps.

Old-generation collection time is not affected by

concurrent refinement. The variation in old-
generation collection time for the three gcold
benchmarks is due to different heap sizes, numbers
of collections, object lifetimes, and patterns of float-
ing garbage.

6.5 Production system

We have been working with a telecommunications
company that has a call-processing application writ-
ten in the Java language. In its steady state, this
program has several hundred megabytes of live data.
When a mostly-concurrent mark/sweep collector is
used to collect the old generation, pause times are
dominated by the time required to collect the young
generation [27]. In the terminology of this paper,
this system used the CT1 barrier and remembered
set. To reduce pause times still further, a prod-
uct group added concurrent refinement, to get the
equivalent of CT1+C, in a limited-release version of
the ResearchVM.

Using the original CT1 barrier adds no mutator
overhead, other than processor time taken by the
concurrent refinement thread. The main problem
with our experimental implementation had been
that this processor time had been considerable. To
reduce that overhead, the new version does not
initiate concurrent refinement until there is barely
enough time to complete one or two passes of
concurrent refinement before the young generation
is collected. For example, concurrent refinement
might begin when 90% of the young generation has
been allocated, but this threshold is adjusted dy-
namically.

When the telecommunications application is run on
a machine with eight processors, the concurrent re-
finement thread runs less than 2% of the time, while
reducing the average pause time by about 15%. All
mutator threads are stopped while the young gen-
eration is collected, and those collections had ac-
counted for about 15% of the total time, so concur-
rent refinement increases the mutator’s utilization
of the processors by about 2%:

.02 ≈ .15 · .15− .02
8

In other words, concurrent refinement simultane-
ously reduces both average pause times and the total
cost of garbage collection.



7 Conclusions

The desirable pause time characteristics of genera-
tional collection will not scale with ever-increasing
heap sizes, at least using currently-popular remem-
bered set techniques. Programs with very large
heaps are likely to be run on machines with many
processors. We have therefore suggested ways to
use concurrency to retain short GC pauses, by refin-
ing the precision of remembered set representations
so that cross-generational pointers can be found
quickly.

We have presented two basic refinement techniques:
“direct” refinement of one- and two-level card ta-
bles (which has interesting non-blocking concur-
rency control) and log-based refinement, in which
mutator threads log updates and the refinement
thread applies those, as appropriate, to a repre-
sentation of the remembered set. In the latter
case, we presented two novel write barrier code se-
quences that minimize the frequency and/or cost of
log buffer overflow.

Concurrent refinement techniques allow genera-
tional collection to scale to future systems that
will have extremely large heaps and high aggregate
pointer mutation rates.

8 Acknowledgments

Several colleagues at Sun Microsystems have con-
tributed to this general set of ideas. Bernd
Matthiske and Ross Knippel originally proposed
a version of the self-pointing barrier, using the
UTRAP mechanism to trigger flushing of small
thread-local log buffers to a large common one.
They did not consider concurrent refinement. Dave
Dice suggested the use of a self-pointing barrier with
concurrent refinement to avoid overflow.

References

[1] O. Agesen and D. Detlefs. Finding references in
Java stacks. In Proceedings of the OOPSLA’97
Workshop on Garbage Collection and Memory
Management, Atlanta, GA, USA, October 1997.

[2] Ole Agesen. GC points in a threaded environment.
Technical Report 98-70, Sun Microsystems Labora-
tories, 1998.

[3] Andrew W. Appel. Simple generational garbage
collection and fast allocation. Software Practice and
Experience, 19(2):171–183, 1989.

[4] David Bacon, Clement Attanasio, Han Lee, V. T.
Rajan, and Stephen Smith. Java without the coffee
breaks: a nonintrusive multiprocessor garbage col-
lector. In Cindy Norris and Jr. James B. Fenwick,
editors, Proceedings of the ACM SIGPLAN ’01
Conference on Programming Language Design and
Implementation (PLDI-01), volume 36.5 of ACM
SIGPLAN Notices, pages 92–103, N.Y., June 20–
22 2001. ACM Press.

[5] H. G. Baker. List processing in real time on a
serial computer. Communications of the ACM,
21(4):280–294, April 1978.

[6] Henry G. Baker. “Infant mortality” and gen-
erational garbage collection. SIGPLAN Notices,
28(4):55–57, April 1993.

[7] Hans-J. Boehm, Alan J. Demers, and Scott
Shenker. Mostly parallel garbage collection. In
Brent Hailpern, editor, Proceedings of the ACM
SIGPLAN ’91 Conference on Programming Lan-
guage Design and Implementation, pages 157–164,
Toronto, ON, Canada, June 1991. ACM Press.

[8] Hans-Juergen Boehm and Mark Weiser. Garbage
collection in an uncooperative environment. Soft-
ware Practice and Experience, 18(9):807–820,
September 1988.

[9] John DeTreville. Experiences with concurrent
garbage collectors for Modula-2+. Technical Re-
port 64, Digital Equipment Corporation Systems
Research Center, 1990.

[10] Edsger W. Dijkstra, Leslie Lamport, A. J. Mar-
tin, C. S. Scholten, and E. F. M. Steffens. On-the-
fly garbage collection: An exercise in cooperation.
CACM, 21(11):966–975, November 1978.

[11] D. Doligez and X. Leroy. A concurrent, gener-
ational garbage collector for a multithreaded im-
plementation of ML. In Conference Record of the
Twentieth Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
pages 113–123, New York, NY, 1993. ACM.

[12] Damien Doligez and Georges Gonthier. Portable,
unobtrusive garbage collection for multiprocessor
systems. In Conference Record of the Twenty-first
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 70–
83, New York, NY, USA, January 1994. ACM
Press.

[13] Tamar Domani, Elliot K. Kolodner, Ethan Lewis,
Elliot E. Salant, Katherine Barabash, Itai Lahan,
Erez Petrank, Igor Yanover, and Yossi Levanoni.



Implementing an on-the-fly garbage collector for
Java. In Tony Hosking, editor, Proceedings of the
Second International Symposium on Memory Man-
agement, Minneapolis, MN, October 2000. ACM
Press.

[14] Tamar Domani, Elliot K. Kolodner, and Erez Pe-
trank. A generational on-the-fly garbage collector
for Java. In Proceedings of the ACM SIGPLAN ’00
Conference on Programming Language Design and
Implementation, pages 274–284, Vancouver, British
Columbia, June 18–21, 2000.

[15] Robert Fitzgerald and David Tarditi. The case for
profile-directed selection of garbage collectors. In
Tony Hosking, editor, Proceedings of the Second In-
ternational Symposium on Memory Management,
Minneapolis, MN, October 2000. ACM Press.

[16] Christine H. Flood, David Detlefs, Nir Shavit, and
Xiaolan Zhang. Parallel garbage collection for
shared memory multiprocessors. In Proceedings of
the Java Virtual Machine Research and Technol-
ogy Symposium, Monterey, April 2001. USENIX.

[17] Timothy H. Heil and James E. Smith. Concurrent
garbage collection using hardware-assisted profil-
ing. In Proceedings of the International Symposium
on Memory Management, Minneapolis, Minnesota,
October 15–19, 2000.

[18] Urs Hölzle. A fast write barrier for generational
garbage collectors. In Eliot Moss, Paul R. Wilson,
and Benjamin Zorn, editors, OOPSLA/ECOOP
’93 Workshop on Garbage Collection in Object-
Oriented Systems, October 1993.

[19] A. L. Hosking, J. E. B. Moss, and D. Stefanovic. A
comparative performance evaluation of write bar-
rier implementations. In Proceedings of the ACM
Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 92–109,
Vancouver, Canada, October 1992.

[20] Antony L. Hosking and Richard L. Hudson. Re-
membered sets can also play cards. In ACM
OOPSLA’93 Workshop on Memory Management
and Garbage Collection, Washington, DC, October
1993.

[21] Richard Jones and Rafael Lins. Garbage Collec-
tion: Algorithms for Automatic Dynamic Memory
Management. John Wiley & Sons, Ltd, 1996.

[22] H. T. Kung and S. Song. An efficient parallel
garbage collector and its correctness proof. Techni-
cal report, Carnegie Mellon University, September
1977.

[23] John R. Ellis; Kai Li; and Andrew W. Appel. Real-
time concurrent collection on stock multiproces-
sors. Technical Report 25, Digital Equipment Cor-
poration Systems Research Center, February 1988.

[24] Henry Lieberman and Carl E. Hewitt. A real-time
garbage collector based on the lifetimes of objects.

Communications of the ACM, 26(6):419–429, 1983.
Also report TM–184, Laboratory for Computer Sci-
ence, MIT, Cambridge, MA, July 1980 and AI Lab
Memo 569, 1981.

[25] David A. Moon. Garbage collection in a large Lisp
system. In Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming,
pages 235–246. ACM, August 1984.

[26] James O’Toole and Scott Nettles. Concurrent repli-
cating garbage collection. In Conference on Lisp
and Functional programming. ACM Press, June
1994.

[27] Tony Printezis and David Detlefs. A generational
mostly-concurrent garbage collector. In Proceedings
of the International Symposium on Memory Man-
agement, Minneapolis, Minnesota, October 15–19,
2000.

[28] Patrick G. Sobalvarro. A lifetime-based garbage
collector for Lisp systems on general-purpose com-
puters. B.S. thesis, Massachusetts Institute of
Technology EECS Department, Cambridge, Mas-
sachusetts, 1988.

[29] Guy L. Steele Jr. Multiprocessing compactifying
garbage collection. CACM, 18(9):495–508, Septem-
ber 1975.

[30] D. M. Ungar. Generation scavenging: A non-
disruptive high performance storage reclamation al-
gorithm. ACM SIGPLAN Notices, 19(5):157–167,
April 1984.

[31] D. White and A. Garthwaite. The GC interface
in the EVM. Technical Report TR-98-67, Sun Mi-
crosystems Laboratories, 1999.

[32] P. R. Wilson. Uniprocessor garbage collection
techniques. In International Workshop on Mem-
ory Management, number 637 in Lecture Notes in
Computer Science, pages 1–42, St. Malo, France,
September 1992. Springer-Verlag.

[33] Paul R. Wilson and Thomas G. Moher. A “card-
marking” scheme for controlling intergenerational
references in generation-based garbage collection
on stock hardware. ACM SIGPLAN Notices,
24(5):87–92, May 1989.


