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Abstract
OpenFlow assumes a logically centralized controller, which
ideally can be physically distributed. However, current
deployments rely on a single controller which has ma-
jor drawbacks including lack of scalability. We present
HyperFlow, a distributed event-based control plane for
OpenFlow. HyperFlow is logically centralized but phys-
ically distributed: it provides scalability while keeping
the benefits of network control centralization. By pas-
sively synchronizing network-wide views of OpenFlow
controllers, HyperFlow localizes decision making to in-
dividual controllers, thus minimizing the control plane
response time to data plane requests. HyperFlow is re-
silient to network partitioning and component failures.
It also enables interconnecting independently managed
OpenFlow networks, an essential feature missing in cur-
rent OpenFlow deployments. We have implemented
HyperFlow as an application for NOX. Our implemen-
tation requires minimal changes to NOX, and allows
reuse of existing NOX applications with minor modi-
fications. Our preliminary evaluation shows that, as-
suming sufficient control bandwidth, to bound the win-
dow of inconsistency among controllers by a factor of
the delay between the farthest controllers, the network
changes must occur at a rate lower than 1000 events per
second across the network.

1. INTRODUCTION
The minimalism and simplicity in the Internet’s de-

sign has led to an enormous growth and innovation
atop, yet the network itself remains quite hard to change
and surprisingly fragile and hard to manage. The root
cause of these problems is the overly complicated con-
trol plane running on top of all switches and routers
throughout the network [2]. To alleviate this problem,
previous works propose to decouple the control (deci-
sion making) and data (packet forwarding) planes, and
delegate the control functionality to a logically central-
ized controller [2, 5, 11]. This separation significantly
simplifies modifications to the network control logic (as
it is centralized), enables the data and control planes to
evolve and scale independently, and notably decreases

the cost of the data plane elements [6]. In particular,
OpenFlow [5] has succeeded in attracting commercial
vendors [1].

The initial design and implementation of OpenFlow
assumed a single controller for the sake of simplicity.
However, as the number and size of production net-
works deploying OpenFlow increases, relying on a single
controller for the entire network might not be feasible
for several reasons. First, the amount of control traffic
destined towards the centralized controller grows with
the number of switches. Second, if the network has a
large diameter, no matter where the controller is placed,
some switches will encounter long flow setup latencies.
Finally, since the system is bounded by the process-
ing power of the controller, flow setup times can grow
significantly as demand grows with the size of the net-
work. Figure 1(a) illustrates these issues in a sample
OpenFlow-based network.

In this paper, we present the design and implemen-
tation of HyperFlow, a distributed event-based con-
trol plane for OpenFlow, which allows network oper-
ators deploy any number of controllers in their net-
works. HyperFlow provides scalability while keeping
network control logically centralized: all the controllers
share the same consistent network-wide view and locally
serve requests without actively contacting any remote
node, thus minimizing the flow setup times. Addition-
ally, HyperFlow does not require any changes to the
OpenFlow standard [7] and only needs minor modifica-
tions to existing control applications. HyperFlow guar-
antees loop-free forwarding, and is resilient to network
partitioning as well as component failures. Besides, it
enables addition of administrative areas to OpenFlow
to interconnect independently managed OpenFlow ar-
eas. Figure 1(b) shows how HyperFlow addresses the
problems associated with a centralized controller in an
OpenFlow network.

To the best of our knowledge, HyperFlow is the first
distributed control plane for OpenFlow. The only simi-
lar design we are aware of is FlowVisor [8] which attacks
a slightly different problem. FlowVisor enables multiple
controllers in an OpenFlow network by slicing network



(a) An OpenFlow network deploying a single controller (b) The same network deploying HyperFlow

Figure 1: A multi-site OpenFlow network with single and multiple controllers. Switch and controller association is depicted
using colors and shadow pattern. (a) Deploying a single controller increases the flow setup time for flows initiated in site 2 and site 3 by
50ms. Also, an increase in flow initiation rates in the remote sites may congest the cross-site links. (b) In HyperFlow, all the requests
are served by local controllers, and the cross-site control traffic is minimal: controllers mostly get updated by their neighbors.

resources and delegating the control of each slice to a
single controller.

An alternative design is to keep the controller state in
a distributed data store (e.g., a DHT) and enable local
caching on individual controllers. Even though a deci-
sion (e.g., flow path setup) can be made for many flows
by just consulting the local cache, inevitably some flows
require state retrieval from remote controllers, resulting
in a spike in the control plane service time. Addition-
ally, this design requires modifications to applications
to store state in the distributed data store. In contrast,
HyperFlow proactively pushes state to other controllers,
thereby enabling individual controllers to locally serve
all flows. Also, HyperFlow’s operation is transparent
to the control applications.

We implemented HyperFlow as an application for
NOX [3]. The HyperFlow application is in charge of
synchronizing controllers’ network-wide views (by prop-
agating selected locally generated controller events), redi-
recting OpenFlow commands targeted to a non-directly-
controlled switch to its respective controller, and redi-
recting replies from switches to the request-originator
controllers. To facilitate cross-controller communica-
tions, we use publish/subscribe messaging paradigm.
The HyperFlow’s design and implementation are dis-
cussed in the next section. Section 3 discusses when and
why a controller application must be modified to be-
come HyperFlow-compatible. To evaluate HyperFlow,
Section 4 estimates the maximum level of dynamicity a
HyperFlow-based network can have while keeping the
window of inconsistency among controllers bounded by
a factor of delay between farthest controllers in the net-
work.

2. DESIGN AND IMPLEMENTATION
A HyperFlow-based network is composed of OpenFlow

switches as forwarding elements, NOX controllers as de-
cision elements each running an instance of the HyperFlow
controller application, and an event propagation sys-
tem for cross-controller communication. All the con-
trollers have a consistent network-wide view and run
as if they are controlling the whole network. They all
run the exact same controller software and set of ap-
plications. Each switch is connected to the best con-
troller in its proximity. Upon controller failure, affected
switches must be reconfigured to connect to an active
nearby controller.1 Each controller directly manages
the switches connected to it and indirectly programs
or queries the rest (through communication with other
controllers). Figure 2 illustrates the high-level view of
the system.

To achieve a consistent network-wide view among
controllers, the HyperFlow controller application instance
in each controller selectively publishes the events that
change the state of the system through a publish/subscribe
system. Other controllers replay all the published events
to reconstruct the state. This design choice is based
on the following observations: (a) Any change to the
network-wide view of controllers stems from the occur-
rence of a network event. A single event may affect the
state of several applications, so the control traffic re-
quired for direct state synchronization grows with the
number of applications, but it is bounded to a small
number of events in our solution. (b) Only a very small
1Currently, in our test environment, we used proprietary
hardware vendor configuration interface to reconfigure the
controller address.
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Figure 2: High-level overview of HyperFlow. Each controller runs NOX with the HyperFlow application atop, subscribes to the
control, data, and its own channel in the publish/subscribe system (depicted with a cloud). Events are published to the data channel and
periodic controller advertisements are sent to the control channel. Controllers directly publish the commands targeted to a controller to
its channel. Replies to the commands are published in the source controller.

fraction of network events cause changes to the network-
wide view (on the order of tens of events per second
for networks of thousands of hosts [3]). The majority
of network events (i.e., packet in events) only request
service (e.g., routing). (c) The temporal ordering of
events, except those targeting the same switch, does not
affect the network-wide view. (d) The applications only
need to be minimally modified to dynamically identify
the events which affect their state (unlike direct state
synchronization which requires each application to di-
rectly implement state synchronization and conflict res-
olution).

2.1 Event Propagation
To propagate controller events to others, HyperFlow

uses publish/subscribe messaging paradigm. The pub-
lish/subscribe system that HyperFlow uses must pro-
vide persistent storage of published events (to provide
guaranteed event delivery), keep the ordering of events
published by the same controller, and be resilient against
network partitioning (i.e., each partition must continue
its operation independently and upon reconnection, par-
titions must synchronize). The publish/subscribe sys-
tem should also minimize the cross-site2 traffic required
to propagate events, i.e., controllers in a site should get
most of the updates of other sites from nearby con-
trollers to avoid congesting the cross-region links. Fi-
nally, the system should enforce access control to ensure
authorized access.

We implemented a distributed publish/subscribe sys-
tem satisfying the above requirements using WheelFS [9].
WheelFS is a distributed file system designed to offer
flexible wide-area storage for distributed applications.
2A site is a highly-connected component of the network with
a large bisection bandwidth. However, the bandwidth and
connectivity between regions is limited. Typically network
devices in a single site are geographically co-located.

It gives the applications control over consistency, dura-
bility, and data placement according to their require-
ments via semantic cues. These cues can be directly
embedded in the pathnames to change the behavior
of the file system. In WheelFS, we represent chan-
nels with directories and messages with files. To imple-
ment notification upon message arrival (i.e., new files in
the watched directories) HyperFlow controller applica-
tion periodically polls the watched directories to detect
changes.

Each controller subscribes to three channels in the
network: the data channel, the control channel, and
its own channel. All the controllers in a network are
granted permissions to publish to all channels and sub-
scribe to the three channels mentioned. The HyperFlow
application publishes selected local network and appli-
cation events which are of general interest to the data
channel. Events and OpenFlow commands targeted to
a specific controller are published in the respective con-
troller’s channel. Additionally, each controller must pe-
riodically advertise itself in the control channel to fa-
cilitate controller discovery and failure detection. Ac-
cess control for these channels are enforced by the pub-
lish/subscribe system.

HyperFlow is resilient to network partitioning be-
cause WheelFS is. Once a network is partitioned, WheelFS
on each partition continues to operate independently.
Controllers on each partition no longer receive the ad-
vertisements for the controllers on the other partitions
and assume they have failed. Upon reconnection of par-
titions, the WheelFS nodes in both partitions resyn-
chronize. Consequently, the controllers get notified of
all the events occurred in the other partition while they
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were disconnected, and the network-wide view of all the
controllers converges.3

Finally, we note that WheelFS can be replaced by
any publish/subscribe system satisfying the above men-
tioned requirements. We chose WheelFS, primarily be-
cause not only it satisfies HyperFlow’s requirements,
but also enables us to rapidly build a prototype. How-
ever, as we show in Section 4, there is room for signif-
icant improvements to the existing publish/subscribe
system.

2.2 HyperFlow Controller Application
HyperFlow application is a C++ NOX application we

developed to ensure all the controllers have a consistent
network-wide view. Each controller runs an instance
of the HyperFlow application. Our implementation re-
quires minor changes to the core controller code, mainly,
to provide appropriate hooks to intercepts commands
and serialize events. Below, we describe the functions
of the HyperFlow controller application.
Initialization: Upon NOX startup, the HyperFlow ap-
plication starts the WheelFS client and storage services,
subscribes to the network’s data and control channels,
and starts to periodically advertise itself in the con-
trol channel. The advertisement interval must be larger
than the highest round-trip time among controllers in
a network. The advertisement message contains infor-
mation about the controller including the identifiers of
the switches it directly controls.
Publishing events: The HyperFlow application cap-
tures all the NOX built-in events (OpenFlow message
events) as well as the events that applications register
with HyperFlow. Then, it selectively serializes (using
the Boost serialization library) and publishes the ones
which are locally generated and affect the controller
state. For that, applications must be instrumented to
tag the events which affect their state. Furthermore, ap-
plications should identify the parent event of any non-
built-in event they fire. This way, HyperFlow can trace
each high-level event back to the underlying lower-level
event and propagate it instead. Using this method we
ensure that the number of events propagated is bounded
by the number of the OpenFlow message events gener-
ated by the local controller.

The name of the published messages contains the
source controller identifier and an event identifier lo-
cal to the publisher (see Table 1. This scheme effec-
tively partitions the message namespace among con-
trollers and avoids the possibility of any write conflicts.
Moreover, a cached copy of a message (file) in our sys-
tem never becomes stale. Therefore, using semantic
cues, we instruct WheelFS to relax consistency require-
3We note that this requires the network operator define a
replication policy appropriate for the network setup.

Message Type Message Name Pattern
Event e : ctrl id : event id
Command c : ctrl id : switch id : event id
Advertisement ctrl id

Table 1: HyperFlow’s message naming convetion. All
message types contain the publisher controller id (ctrlid). Events
and commands also contain an event identifier (eventid) locally
generated by the publisher. Commands also contain the identifier
of the switch to which the command is targeted.

ments and fetch cached copies of files from neighboring
controllers as fast as possible.
Replaying events: The HyperFlow application re-
plays all the published events, because source controllers
– with the aid of applications – selectively filter out and
only publish the events necessary to reconstruct the ap-
plication state on other controllers. Upon receiving a
new message on the network data channel or the con-
troller’s own channel, the HyperFlow application dese-
rializes and fires it.
Redirecting commands targeted to a non-local
switch: A controller can only program the switches
connected directly to it. To program a switch not under
direct control of the controller, the HyperFlow applica-
tion intercepts when an OpenFlow message is about to
be sent to such switches and publishes the command to
the network control channel. The name of the published
message shows that it is a command and also contains
the source controller identifier, the target switch iden-
tifier, and the local command identifier (similar to the
event message identifier).
Proxying OpenFlow messages and replies: The
HyperFlow application picks up command messages tar-
geted to a switch under its control (identified in the
message name) and sends them to the target switch.
To route the replies back to the source controller, the
HyperFlow application keeps a mapping between the
message transaction identifiers (xid) and the source con-
troller identifiers. The HyperFlow application examines
the xid OpenFlow message events locally generated by
the controller. If the xid of an event is found in the xid-
controller map, the event is stopped from being further
processed and is published to the network data chan-
nel. The name of the message contains both controller
identifiers. The original source controller picks up and
replays the event upon receipt.
Health checking: The HyperFlow application listens
for the controller advertisements in the network con-
trol channel. If a controller does not re-advertise itself
for three advertisement intervals, it is assumed to have
failed. The HyperFlow application fires a switch leave
event for every switch that was connected to the failed
controller. Upon controller failure, HyperFlow config-
ures the switches associated with the failed controller
to connect to another controller. Alternatively, either
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nearby controllers can serve as a hot standby for each
other to take over the IP address.

3. REQUIREMENTS ON CONTROLLER AP-
PLICATIONS

For most controller applications, HyperFlow only re-
quires minor modifications: they must dynamically tag
events which affect their state. However, some of them
must be further modified to ensure correct operation
under temporal event reordering and transiently con-
flicting controller views, and guarantee scalability. Be-
sides, we discuss how the controller applications must
be modified to enable interconnection of independently-
managed OpenFlow networks.
Event reordering: In HyperFlow, correct operation
of control applications must not depend on temporal
ordering of events except those targeting the same en-
tity (e.g., the same switch or link), because different
controllers perceive events in different orders. Besides,
resilience to network partitioning requires control ap-
plications to tolerate out-of-order event delivery (even
lagging several hours) without sacrificing correctness,
because each partition is notified of the state of the
other partitions upon reconnection.
Correctness: Transient inconsistencies among controllers
may lead to conflicting decisions. To ensure correct op-
eration in all cases, control applications must forward
requests to the authoritative controller. The authorita-
tive controller for a given flow is the one managing the
flow’s source switch. Consider the switching/routing
applications as an example: To ensure loop-free for-
warding, flow paths must be set up by the controller
managing the flow’s source switch. Other controllers
must redirect the request to the authoritative controller
in case they receive a flow initiation event. As another
example, consider a network with a policy which re-
quires both the forward and reverse paths of all flows
to match. To guarantee this, the source controller must
simultaneously set up both paths upon flow initiation.
This modification ensures that the policy is always cor-
rectly enforced from the source controller’s perspective.
Bounded number of possibly effective events: The
number of events which possibly affect the state of a
HyperFlow-compliant application must be bounded by
O(h + l + s), where h is the number of hosts, l is the
number of links, and s is the number of switches in
the network. In other words, applications whose state
may be affected by O(f(n)) events, where f(n) is any
function of the number of flows in the network, incur a
prohibitively large overhead and must be modified.
Measurement applications: Applications which ac-
tively query the switches perform poorly under HyperFlow,
because the number of queries grows linearly with the
number of controllers. Such applications must be mod-
ified to partition queries among controllers in a dis-

tributed fashion and exchange the results (encapsulated
in self-defined events) using HyperFlow. Consider the
discovery application as an example. The discovery ap-
plication must only sends link layer discovery protocol
(LLDP) probes out of the switches under its direct con-
trol. For each link between a directly and a non-directly
controlled switch pair, the discovery application receives
an LLDP packet generated by another controller signal-
ing the connectivity. Finally, the discovery application
must propagate its link events using HyperFlow.
Interconnecting HyperFlow-based OpenFlow net-
works: To interconnect two independently managed
HyperFlow-based OpenFlow networks (areas), controller
applications need to be modified to be made area-aware.
They must listen for area discovery events from HyperFlow,
enforce the area policies declared using a policy lan-
guage (e.g., Flow-based Management Language [4]), and
exchange updates with the neighboring area through
a secure channel providing publish/subscribe service.
Applications should encapsulate updates in self-defined
events, and have HyperFlow propagate them to the
neighboring areas. HyperFlow removes the need for in-
dividual control applications to discover their neighbors
and communicate directly; instead, control applications
just fire events locally and HyperFlow delivers them to
neighbors. We note that the implementation of this
part is not completed yet.

4. EVALUATION
We performed a preliminary evaluation to estimate

the maximum level of network dynamicity it can sup-
port while guaranteeing a bounded inconsistency win-
dow among controllers. Throughout our experiments
we used ten servers each equipped with a gigabit NIC
and running as a WheelFS client and storage node. In
the near future, we plan to deploy HyperFlow on a large
testbed and characterize its performance, robustness,
and scalability with a realistic network topology and
traffic.

Each NOX instance can handle about 30k flow in-
stalls per second [10]. However, it can typically process
a far larger number of events which do not trigger an
interaction with a switch. Events published through
HyperFlow only affect controller state and should not
trigger any interaction with controllers. Therefore, us-
ing HyperFlow, network operators can easily add more
controllers to handle more flow initiation events while
keeping the flow setup latency minimal. We note that,
since in HyperFlow controllers’ operations do not de-
pend on other controllers, they continue to operate even
under heavy synchronization load. However, as the
load increases, the window of inconsistency among con-
trollers grows (i.e., the time it takes to have the views
converge).
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To find the number of events that HyperFlow can
handle while providing a bounded inconsistency window
among controllers, we benchmarked WheelFS indepen-
dently to find the number of 3-KB sized files (sample
serialized datapath join event using the XML archive4)
we can write (publish) and read. For that, we instru-
mented the HyperFlow application code to measure the
time needed to read and deserialize (with eventual con-
sistency), as well as serialize and write (write locally and
don’t wait for synchronization with replicas) 1000 such
files. We ran each test 10 times and averaged the results.
HyperFlow can read and deserialize 987, and serialize
and write 233 such events in each second. The limit-
ing factor in this case is the number of reads, because
multiple controllers can publish (write) concurrently.

Based on the above analysis, assuming adequate con-
trol bandwidth, HyperFlow can guarantee a bounded
window of inconsistency among controllers, if the net-
work changes trigger less than around 1000 events per
second (i.e., total of 1000 switch and host joins and
leaves, and link state changes). We may be able to im-
prove HyperFlow’s performance by modifying WheelFS
(whose implementation is not mature yet) or design-
ing an alternative publish/subscribe system. Finally,
we note that HyperFlow can gracefully handle spikes in
network synchronization load without losing any events,
however in that period the controller views converge
with an added delay.

5. CONCLUSION
This paper presents the design and implementation

of HyperFlow which enables OpenFlow deployment in
mission-critical networks, including datacenter and en-
terprise networks. HyperFlow enables network opera-
tors deploy any number of controllers to tune the per-
formance of the control plane based on their needs.
Besides, it keeps the network control logic centralized
and localizes all decisions to each controller to minimize
control plane response time. The HyperFlow applica-
tion, implemented atop NOX, synchronizes controllers’
network-wide views by propagating events affecting the
controller state. We choose to build up state by re-
playing events to minimize the control traffic required
to synchronize controller state, avoid the possibility of
conflicts in applications’ state, and minimize the burden
of application modifications. HyperFlow is resilient to
network partitions and component failures, minimizes
the cross-region control traffic, and enables intercon-
nection of independently-managed OpenFlow networks.
We plan to complete our work on cross-area commu-
nication and controller bootstrapping, and perform a
thorough evaluation of HyperFlow on a large testbed
4This is significantly larger than most serialized events.
Also, in real deployments we should use binary archives
which significantly reduces message sizes.

to further characterize its scalability, performance, and
robustness.
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