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Abstract 
 

Cloud-based offerings such as Infrastructure-as-a-
service (IaaS), Platform-as-a-Service (PaaS), and 
Software-as-a-Service (SaaS), are being delivered by 
various vendors at highly competitive prices to encourage 
a paradigm shift to utility computing. To optimize the 
operational costs of managing an IBM Cloud-based PaaS 
offering, a two-pronged approach has been adopted: 
simplification of enterprise-class data center management 
processes currently used in IBM’s Global Services 
Strategic Outsourcing accounts, and automation of the 
simplified processes. This paper describes a framework 
that the authors have developed to deliver an integrated 
monitoring and event correlation system, and an event-
driven Automated Incident Management System, for 
IBM's Smart Business Dev/Test Cloud offering. 
 

1. Introduction 
Providers of publicly accessible Cloud services (e.g. 

Amazon Elastic Compute Cloud (EC2) [1], Windows 
Azure [2] and Google App Engine [3]) are adopting 
aggressive pricing strategies to make the move to a utility 
computing model more attractive. Management process 
simplification is a key enabler for reducing the operational 
expenses of Cloud providers.  As an example of process 
simplification, consider Amazon EC2, where service level 
agreements (SLAs) provide guarantees of success for the 
dynamic provisioning of a virtual machine (VM), but 
there are no guarantees about the mean time between 
failures (MTBF) for a provisioned VM. For most public 
XaaS Cloud-based offerings, a provisioned service may 
crash if there is any problem in the underlying 
infrastructure (e.g., server, hypervisor, storage, etc.) 
without violating Cloud provider SLAs. Typically, there is 
also no provider support for problem determination other 
than informal forum-based support. 

Automation of Cloud management processes is the 
other key enabler of cost reduction, especially when 
leveraging management process simplification. For 
example, problem determination (root cause analysis) can 
be a complex activity requiring expert knowledge that 
cannot completely be replaced by automation. However if 
problem determination is eliminated, then it reduces the 
challenges of automation while also reducing labor costs. 

Monitoring and incident and problem management 
(IPM) processes account for a significant portion of data 
center operational costs. During the design of IBM’s 
Smart Business Dev/Test Cloud (SBDTC), a PaaS 
offering, the authors were deeply involved in the design of 
the monitoring system for the Cloud infrastructure and 
also led the design and implementation of the Automated 
Incident Management System (AIMS). The goal of the 
project was to design a process that is highly optimized 
for a Cloud-based offering. This paper describes the 
technical challenges addressed by the design, and our 
experiences in deploying the system in a Cloud.  

The rest of the paper is organized as follows. Section 2 
describes the overall architecture of the system, Section 3 
describes the monitoring and event management systems, 
Section 4 describes the design of AIMS, Section 5 
describes our deployment experience, Section 6 describes 
related work and Section 7 concludes the paper. 

 

2. System Architecture 
Figure 1 shows the overall architecture of the current 

system.  All management components and infrastructure 
elements shown constitute a unit of management or a cell. 
The infrastructure layer represents the different types of 
Information Technology (IT) elements (components) that 
support end user applications, namely servers running host 
operating systems and hypervisors such as KVM [4], Xen 
[5] or VMWare [6]) on which VMs can be provisioned. 
The VMs in turn run their own operating systems as well 
as middleware (e.g, Web application servers and database 
systems) which host customer applications. Shared storage 
(e.g., NFS) servers provide access to standard as well as 
customer-created images from which new VMs can be 
provisioned, and also host persistent VM storage (“disks”) 
which can survive VM deprovisioning (e.g., functionality 
equivalent to Amazon’s Elastic Block Storage). Examples 
of network elements are routers and switches.  

The monitoring layer comprises of systems used to 
collect data from IT systems in real time in order to detect 
incidents. Different monitoring approaches have been 
adopted for different IT elements – e.g., custom agent-
based systems for servers, SNMP-based monitoring for 
network elements, etc. 

The event management framework uses an Event 
Aggregation and Correlation hub  which  receives  events   



Figure 1: Architecture of Monitoring and AIMS 

indicating “unusual” conditions from the monitoring layer. 
The same hub can receive events from the provisioning 
system to learn about the “birth” of new IT elements, and 
also receives status of workflows scheduled by AIMS – a 
workflow being an automation module that performs a 
corrective action against an IT element. The AIMS 
component receives events tagged as being actionable 
from the aggregation/correlation system, and based on 
policies, either ignores the event, creates or resolves a 
ticket, or takes an automated corrective action by 
scheduling a workflow. 

 

3. Monitoring and Event Management 
The key issues addressed in the design of the 

monitoring system are: what metrics to monitor, the 
granularity of monitored data, and whether the monitoring 
is continuous or staged (in the latter approach, when a 
fault is suspected, more detailed monitoring is enabled). 
Event management is also a key concern where issues that 
have to be addressed are: the design of appropriate filters 
between continuous monitoring of system sensors and 
events forwarded to AIMS as fault indications (incidents), 
the correlation of multiple events with a common root 
cause, detection of event storms that are caused by 
systemic rather than localized failures, and the prioritized 
handling of events forwarded to AIMS. In the current 
deployed system, the majority of the monitoring and 
incident management capability is focused on servers, and 
that will be the primary focus of the next two sections. 

The monitoring system is based on core capabilities 
provided by existing IBM systems, which operate using 
specialized software agents in servers, and also in 
“agentless” mode (e.g., by querying SNMP MIBs).  

Non-hardware monitoring of servers is achieved using 
software agents which track OS-level metrics such as CPU 
utilization, paging rate, etc., and also monitor system logs 
for error message patterns (e.g. OOPS). The server-based 
agents periodically communicate with a central server to 
report metrics of interest. The monitoring server can be 
customized with rules which are evaluated whenever a 
sampled sensor value is reported by an agent. The 
triggering of a rule results in an event being forwarded to 
the central event management hub. Several custom rules 
that perform a first level filtering of OS-level metrics to 
identify events of interest have been defined. For example, 
a “CPU critical” event is forwarded to the hub when the 
OS agent reports that the average CPU utilization exceeds 
95% over 10 consecutive sampling intervals. 

Hardware monitoring is performed by a monitoring 
server which communicates with the service processor 
running on each physical server to monitor its hardware 
components. Failures (e.g., of the CPU/core or the fan) as 
well as failure prediction indications (e.g., the predicted 
failure of a disk drive, based on manufacturer-supplied 
algorithms implemented in firmware) are monitored by the 
service processor, and this status is periodically collected 
by the server. Customized rules have also been written for 
hardware metrics in order to identify events of potential 
interest to AIMS. Network monitoring is based on 
standard SNMP-based techniques and ICMP pings to 
discover network topology and monitor the health of 
network elements such as routers, switches and servers. 

The event aggregation and correlation system is the 
hub that receives events generated by all monitoring 
components as well as other components such as the 
provisioning system and workflows. The system stores 
events which have been received for some window of 
time. Custom code modules (triggers) can be defined; 
these are activated whenever a new event is received, and 
can reason over the event history to perform event 
aggregation, correlation and suppression. Triggers provide 
a second level of filtering on core monitored metrics to 
determine whether an event is significant enough to be 
forwarded to AIMS to act upon. For example, a custom 
trigger ensures that at least X out of the last Y consecutive 
network ping reports for a server indicate a failure before 
the failure event is forwarded to AIMS. 

 

4. Automated Incident Management 
For  the  automated  handling  of  events  in  AIMS, the  

core principle that has been adopted is to classify the 
highest priority event into an appropriate “class” and take 
a simple corrective action in response when applicable 
(e.g., restart a failed process or an interface), followed by 
increasingly more obtrusive actions (reboot, reimage, 
mark-as-failed) if simple actions do not fix the fault.  
Additional aspects of automation include the creation and 



resolution (when possible), of problem tickets describing 
the incident, and influencing the placement engine to 
prevent provisioning of VMs on faulty or overloaded 
hypervisors. 

The authors developed a framework for modeling 
event-based automation policies using Finite State 
Machines (FSMs) to model infrastructure elements, 
enhanced with state persistence to maintain a holistic view 
of the cell, maintenance of event-action history for 
improved decision making, and fault tolerance for 
dependability, features typically unavailable in off-the-
shelf management systems. The AIMS framework is 
described below. 
 
4.1. AIMS Framework 

The framework we developed for this environment is 
based on modeling key infrastructure elements – servers 
(hardware and hypervisor software providing 
virtualization services), network components, and shared 
storage components – as FSMs. An FSM type definition is 
used to model event handling policies for each type of IT 
element on the Cloud. In our initial deployment, all 
encoded policies were based on expert knowledge, but as 
incident data from the field is analyzed, we expect to 
refine them and add new ones. The current system handles 
approximately 50 different events. 

Each FSM instance is used to track state transitions of 
an infrastructure element from "birth" (deployment) to   
"death" (removal), based on events received from the 
event aggregation and correlation system. An event that 
represents incidents (faults) in a given IT element is acted 
upon based on the type of event, the current state of the IT 
element, the history of past events and actions taken on 
that system, and the policies associated with the resulting 
state transition encoded in the FSM.  

As indicated in Figure 1, not all events indicate 
possible faults. An automated system that provisions IT 
infrastructure elements can send an event which, when 
forwarded to AIMS, results in a new FSM instance being 
created. Another instance of a non-fault event is 
workflow-related. Workflows which perform corrective 
actions in response to events are scheduled for execution 
by a workflow system, adopting an asynchronous 
execution model. The status of workflows – Success, 
Failure, Validation_Failure – is indicated by sending 
events to the aggregation/correlation system, which are 
subsequently forwarded to AIMS. These events affect the 
transitions of the appropriate FSM instance as do “fault” 
events, as encoded in the FSM definition. 

The asynchronous nature of workflow execution can 
result in unpredictable delays in the actual execution of a 
workflow. To mitigate the effects of delayed execution, a 
workflow validation mechanism has been developed. Each 
workflow, when first scheduled for execution, validates 
that its execution is still relevant before performing the 

main workflow logic. This prevents situations such as a 
delayed workflow taking a corrective action after a system 
administrator has performed a manual action that has 
fixed the problem the workflow was scheduled to fix. The 
workflow validation protocol by design bypasses the event 
management system, since that framework can introduce 
unpredictable delays. It is based on a lightweight, 
customized, synchronous, protocol in our initial 
deployment, but could be (in principle) REST-based.  
 
4.2. Modeling Incident Management Policies with 
Finite State Machines 

In the currently deployed system, we focused primarily 
on the automated management of incidents on servers 
running hypervisors. The rest of the paper will therefore 
focus on server incident management. For modeling 
policies (defined by domain experts) for automatically 
handling incidents indicated by events, we defined an 
FSM that represents the states that a server goes through, 
from “birth” to “death” as different types of events are 
received, and the rules that govern state transitions.  

FSMs provide a modeling mechanism that is a good fit 
for the task of representing policies for managing 
incidents (failures and performance problems), where 
events are the key drivers for taking corrective actions. A 
server goes through multiple states during its period of 
operation in a data center, “birth” representing its initial 
setup by a provisioning system, and “death” representing a 
state of failure where it is unable to support the 
provisioning and execution of VMs, and repeated 
automated actions taken to revive the server have failed.  
Bounded by the initial and final states, a server goes 
through multiple operational states, and the actions taken 
in response to an event are related to the state of the 
server.  

Figure 2 depicts the FSM that was defined for 
modeling server incident management policies. An 
instance of a server FSM is created when an event is 
received announcing the availability of a new server. The 
FSM immediately transitions to a 
WAIT_FOR_SERVER_UP state where a workflow is run 
to check that the server is in a state where automated 
corrective actions can be run. Once that workflow 
completes successfully – indication of which appears as a 
status event from the workflow itself – the FSM 
transitions to the TEST_HYPERVISOR state, where 
another workflow starts a test VM which runs a set of 
basic stability tests on the hypervisor for a fixed period of 
time. Any fault events received while the server is in that 
state are treated more seriously than when the server is in 
the HEALTHY state. Once the server has been in the 
TEST_HYPERVISOR state for a test period, it transitions 
(in response to a timer event) to the HEALTHY state. 

 



 
Figure 2: Server FSM Model 

 
Transitions from the HEALTHY state occur due to 

three broad categories of events. The first category causes 
a transition to the FAILED state if a critical and 
unrecoverable error indication is received. The second 
category of events represents operational problems other 
than performance issues. In response, the FSM engine 
optionally consults the history of events received and 
actions taken in the recent past on this specific server and 
based on FSM state transition rules, either a workflow to 
perform a non-obtrusive recovery action is scheduled (e.g, 
restarting a failed system process), or a more obtrusive 
action such as a reboot is scheduled. The third category of 
events represents performance problems – such as a “CPU 
critical” event indicating a hypervisor-level overload. In 
that case, the FSM instance transitions to the 
PROBATION state, and remains there until another event 
from the server indicates that the performance problem 
has subsided. Some events are known to cause an 
automatic server reboot by the BIOS, in which case the 
FSM transitions to WAIT_FOR_SERVER_UP until the 
server is operational again. 

Besides scheduling workflows in response to state 
transitions, tickets are created and resolved when possible.  
Whenever a server is deemed to be in a “recycling” state 
(e.g., being rebooted), or when further VM provisioning 
on the server should be inhibited (e.g., in the 
PROBATION state, AIMS updates the server’s 
“provisionability” status in a System State database (see 
Figure 1) shared with the VM provisioning system, 
allowing AIMS to influence VM placement decisions. 
Additionally, certain events are purged from the queue in 
the OBTRUSIVE_RECOVERY_ACTION state since the 
system will be rebooted. 

The server FSM also embodies some self-healing 
policies, and the ability to deal with events which have a 
broader scope than that of a single server. For example, 
the WF_SYS_FAILURE is a state that the FSM instance 
transitions to if the workflow engine itself is not 
operational and the scheduling operation fails. That state 
is modeled to periodically “ping” the workflow engine, 
upon success of which, control returns to the previous 
state and the workflow is rescheduled.  

OUTAGE_BEGIN and OUTAGE_END represent 
special states which are entered when AIMS is informed 
that a “global” set of events are occurring (or are 
expected) due to a shutdown of all monitored IT elements 
in the data center, or their subsequent restart, respectively.  
In the OUTAGE_BEGIN state, any event received for the 
server is ignored, except for tickets being created for 
critical hardware failure events. In OUTAGE_END state, 
the target is pinged and when reachable, the FSM 
transitions to HEALTHY state.  

 
4.2 Scalable and Persistent FSM Engine 

With a centralized event-based AIMS component 
handling incidents on all IT elements, robustness of the 
system is paramount since it operates in “low touch” mode 
with reduced system administrator oversight. To address 
that goal, we have developed an FSM execution engine 
that adds the properties of scalability and persistence to 
the FSM runtime system. 

A typical FSM engine (e.g., the runtime environment 
of SCXML [7]) requires each FSM instance to be in 
memory throughout its execution, and if the engine 
terminates prior to all FSM instances completing their 
executions (e.g., due to a fault in the server where it is 
running), then all runtime state is lost. Such an 
environment is not suitable for building an FSM-based 
AIMS component where (1) one may need to run 
thousands of FSM instances in parallel (each instance 
representing the operational state of a server for example), 
and (2), the life cycle of a typical FSM instance may span 
months or years (the average operational life span of a 
server), during which, the AIMS component may be shut 
down due to planned or unplanned outage of the 
management server where it is executing. Figure 3 depicts  



 
Figure 3: Scalable and Persistent FSM Engine 

 
the design of a runtime system which implements these 
properties.  The    current    system    addresses     planned 
shutdown but not fault tolerance of unplanned outages, 
the implementation of which is part of future work. 

The design involves the use of persistent storage to 
record information about events received, key state 
transitions executed by FSM instances, workflows 
scheduled, and timers set, allowing the system to be shut 
down without losing information. The design also 
facilitates scalability since any given FSM instance does 
not need to continuously reside in memory to process an 
event received for that server. 

The following description references Figure 3, and the 
steps refer to the numbered arrows in the figure. Upon 
receipt of an event from an external component, AIMS 
persists the event into a persistent Event Queue (step 1). 
An event queue polling thread periodically examines the 
queue and selects the highest priority event from the 
queue for which an FSM instance is not already executing 
(mutual exclusion is important since parallel state 
transitions are not supported). In step 2, the polling thread 
schedules the FSM instance corresponding to that IT 
element for execution by (1) extracting the last known 
state of the FSM instance from persistent storage and (2) 
creating an entry in the work item queue of an in-memory 
Thread Pool service that contains details such as the FSM 
state, the IT element’s unique identifier (e.g., its IP 
address) and the event received. In step 3, a thread in the 

pool becomes available, and in step 4, the FSM 
scheduling logic uses the next work item to create an FSM 
instance, “primes” it with values necessary to continue 
execution from the last known state, and executes the 
FSM (in memory) until it reaches a state where it cannot 
proceed any further, at which point the FSM instance 
returns control and its current state is queried and 
persisted in persistent storage until the next event is 
received (step 7).  

In steps 5 and 6, the in-memory FSM engine executes 
the transitions encoded in the FSM definition, leveraging 
entries in the Event-Action History store maintained by 
our runtime system as a source of additional input for 
determining what state transitions to take. Finally, when a 
workflow has to be scheduled to take a corrective action if 
the transition logic demands, a unique workflow identifier 
(ID) is generated, persisted in the Workflow ID store, and 
the workflow is scheduled with the ID passed to it along 
with other domain-specific parameters. As long as the 
workflow ID in the table is still tagged as being valid, the 
workflow validation step will succeed. FSM transitions 
can mark the ID as being invalid, as can fault tolerance-
related recovery logic which is referenced in Section 7. 

In the current implementation, the in-memory FSM 
engine is home-grown, but we are building an alternate 
implementation using SCXML. 
 

5. Deployment Experience 
The AIMS component is currently deployed in 

multiple cells in the IBM Smart Business Dev/Test Cloud 
and has been in operation for a few months. The 
scalability and persistence features of AIMS have met the 
design goals during steady state operations as well as a 
few planned outages. The FSM has evolved over multiple 
deployments. An event-based automated system can end 
up taking actions on a large number of IT elements in 
response to a condition that generates a lot of events such 
as a faulty rule definition or an outage. Based on system 
administrator feedback on earlier deployments, AIMS has 
introduced the notion of a “circuit breaker”, which limits 
the number of IT elements on which obtrusive actions are 
taken based on an administrator-defined limit. 

Almost no hardware problems have been reported to 
date by the monitoring system. Intermittent performance 
problems were reported by a few servers and the policies 
encoded in the FSM – to transition the server to 
PROBATION state and prevent further VM provisioning  
- worked well. For one category of performance problems, 
analysis of events archived in the warehouse led to the 
tuning of a few filtering rules configured in the monitoring 
server, resulting in fewer false-positive fault events. 

The tables in Figure 4 summarize a few months of 
operational data. The first table categorizes all the events 
forwarded to  AIMS  except the events  filtered  by  AIMS  



Figure 4: AIMS’ Event Handling Statistics 
 
policies, and the second table summarizes events filtered 
(ignored) due to policies such as outage handling, circuit 
breaker, state-specific event relevancy checking, etc.  
 

6. Related work 
Microsoft’s AutoPilot system [8] is an integrated 

platform that manages infrastructure provisioning, 
application deployment, system monitoring and repairs. 
Both AIMS and AutoPilot use FSMs to model fault-
handling policies with AutoPilot using a distributed 
implementation for robustness and AIMS implementing a 
single-instance persistent and fault tolerant engine. Being 
a standalone incident management system, AIMS’ is 
suitable for use in any monitor-able system, unlike 
AutoPilot which works with applications developed using 
its specialized framework (e.g. Windows Live and Bing 
but not Azure). No documentation of incident 
management of Amazon’s EC2 or Google’s App Engine is 
available. 

Policy-based autonomic management systems have 
been the subject of research for many years, e.g. see [9]. 
Our design uses a policy definition mechanism that is 
different from, and yet can encompass, traditional policy 
languages, and has focused also on broader system issues 
such as framework scalability and robustness. 
 

7. Conclusions and Future Work 
The paper describes a monitoring and event-based 

automated incident management system deployed in a 
PaaS Cloud. In contrast to policy- and rule-based 
autonomic systems, we describe the use of a FSM-based 
approach. The FSM abstraction has proven to be very 
effective for modeling event-based policies and 
implementing a persistent and fault tolerant execution 
framework around state management, while providing a 
foundation for embedding rule languages to control state 
transitions and actions using more complex logic.  

Future work is focused on the following. Fault 
tolerance would enable the system to survive unplanned 

system outages, addressing a fail-stop fault model. A log 
replay-based fault tolerant implementation of a single-
instance (non-replicated) AIMS, which extends existing 
persistent storage to log key steps in FSM scheduling and 
execution, is work in progress. Realtime detection of event 
storms, especially for the category of “outage” events that 
can enable AIMS to detect that a cell-wide outage is in 
progress without explicit notification from the system 
administrator, is another area being explored. Finally, 
monitored data is being stored in a data warehouse, and 
we plan to mine it to discover new incident management 
policies to supplement expert knowledge. 
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