
Automated Incident Management for a Platform-as-a-Service Cloud

Soumitra (Ronnie) Sarkar, Ruchi Mahindru, Rafah A. Hosn, Norbert Vogl, HariGovind V. Ramasamy
IBM T. J. Watson Research Center, New York, USA

{sarkar, rmahindr, rhosn, vogl, hvramasa} at us.ibm.com

Abstract

Cloud-based offerings such as Infrastructure-as-a-
service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS), are being delivered by
various vendors at highly competitive prices to encourage
a paradigm shift to utility computing. To optimize the
operational costs of managing an IBM Cloud-based PaaS
offering, a two-pronged approach has been adopted:
simplification of enterprise-class data center management
processes currently used in IBM’s Global Services
Strategic Outsourcing accounts, and automation of the
simplified processes. This paper describes a framework
that the authors have developed to deliver an integrated
monitoring and event correlation system, and an event-
driven Automated Incident Management System, for
IBM's Smart Business Dev/Test Cloud offering.

1. Introduction
Providers of publicly accessible Cloud services (e.g.

Amazon Elastic Compute Cloud (EC2) [1], Windows
Azure [2] and Google App Engine [3]) are adopting
aggressive pricing strategies to make the move to a utility
computing model more attractive. Management process
simplification is a key enabler for reducing the operational
expenses of Cloud providers. As an example of process
simplification, consider Amazon EC2, where service level
agreements (SLAs) provide guarantees of success for the
dynamic provisioning of a virtual machine (VM), but
there are no guarantees about the mean time between
failures (MTBF) for a provisioned VM. For most public
XaaS Cloud-based offerings, a provisioned service may
crash if there is any problem in the underlying
infrastructure (e.g., server, hypervisor, storage, etc.)
without violating Cloud provider SLAs. Typically, there is
also no provider support for problem determination other
than informal forum-based support.

Automation of Cloud management processes is the
other key enabler of cost reduction, especially when
leveraging management process simplification. For
example, problem determination (root cause analysis) can
be a complex activity requiring expert knowledge that
cannot completely be replaced by automation. However if
problem determination is eliminated, then it reduces the
challenges of automation while also reducing labor costs.

Monitoring and incident and problem management
(IPM) processes account for a significant portion of data
center operational costs. During the design of IBM’s
Smart Business Dev/Test Cloud (SBDTC), a PaaS
offering, the authors were deeply involved in the design of
the monitoring system for the Cloud infrastructure and
also led the design and implementation of the Automated
Incident Management System (AIMS). The goal of the
project was to design a process that is highly optimized
for a Cloud-based offering. This paper describes the
technical challenges addressed by the design, and our
experiences in deploying the system in a Cloud.

The rest of the paper is organized as follows. Section 2
describes the overall architecture of the system, Section 3
describes the monitoring and event management systems,
Section 4 describes the design of AIMS, Section 5
describes our deployment experience, Section 6 describes
related work and Section 7 concludes the paper.

2. System Architecture
Figure 1 shows the overall architecture of the current

system. All management components and infrastructure
elements shown constitute a unit of management or a cell.
The infrastructure layer represents the different types of
Information Technology (IT) elements (components) that
support end user applications, namely servers running host
operating systems and hypervisors such as KVM [4], Xen
[5] or VMWare [6]) on which VMs can be provisioned.
The VMs in turn run their own operating systems as well
as middleware (e.g, Web application servers and database
systems) which host customer applications. Shared storage
(e.g., NFS) servers provide access to standard as well as
customer-created images from which new VMs can be
provisioned, and also host persistent VM storage (“disks”)
which can survive VM deprovisioning (e.g., functionality
equivalent to Amazon’s Elastic Block Storage). Examples
of network elements are routers and switches.

The monitoring layer comprises of systems used to
collect data from IT systems in real time in order to detect
incidents. Different monitoring approaches have been
adopted for different IT elements – e.g., custom agent-
based systems for servers, SNMP-based monitoring for
network elements, etc.

The event management framework uses an Event
Aggregation and Correlation hub which receives events

Figure 1: Architecture of Monitoring and AIMS

indicating “unusual” conditions from the monitoring layer.
The same hub can receive events from the provisioning
system to learn about the “birth” of new IT elements, and
also receives status of workflows scheduled by AIMS – a
workflow being an automation module that performs a
corrective action against an IT element. The AIMS
component receives events tagged as being actionable
from the aggregation/correlation system, and based on
policies, either ignores the event, creates or resolves a
ticket, or takes an automated corrective action by
scheduling a workflow.

3. Monitoring and Event Management
The key issues addressed in the design of the

monitoring system are: what metrics to monitor, the
granularity of monitored data, and whether the monitoring
is continuous or staged (in the latter approach, when a
fault is suspected, more detailed monitoring is enabled).
Event management is also a key concern where issues that
have to be addressed are: the design of appropriate filters
between continuous monitoring of system sensors and
events forwarded to AIMS as fault indications (incidents),
the correlation of multiple events with a common root
cause, detection of event storms that are caused by
systemic rather than localized failures, and the prioritized
handling of events forwarded to AIMS. In the current
deployed system, the majority of the monitoring and
incident management capability is focused on servers, and
that will be the primary focus of the next two sections.

The monitoring system is based on core capabilities
provided by existing IBM systems, which operate using
specialized software agents in servers, and also in
“agentless” mode (e.g., by querying SNMP MIBs).

Non-hardware monitoring of servers is achieved using
software agents which track OS-level metrics such as CPU
utilization, paging rate, etc., and also monitor system logs
for error message patterns (e.g. OOPS). The server-based
agents periodically communicate with a central server to
report metrics of interest. The monitoring server can be
customized with rules which are evaluated whenever a
sampled sensor value is reported by an agent. The
triggering of a rule results in an event being forwarded to
the central event management hub. Several custom rules
that perform a first level filtering of OS-level metrics to
identify events of interest have been defined. For example,
a “CPU critical” event is forwarded to the hub when the
OS agent reports that the average CPU utilization exceeds
95% over 10 consecutive sampling intervals.

Hardware monitoring is performed by a monitoring
server which communicates with the service processor
running on each physical server to monitor its hardware
components. Failures (e.g., of the CPU/core or the fan) as
well as failure prediction indications (e.g., the predicted
failure of a disk drive, based on manufacturer-supplied
algorithms implemented in firmware) are monitored by the
service processor, and this status is periodically collected
by the server. Customized rules have also been written for
hardware metrics in order to identify events of potential
interest to AIMS. Network monitoring is based on
standard SNMP-based techniques and ICMP pings to
discover network topology and monitor the health of
network elements such as routers, switches and servers.

The event aggregation and correlation system is the
hub that receives events generated by all monitoring
components as well as other components such as the
provisioning system and workflows. The system stores
events which have been received for some window of
time. Custom code modules (triggers) can be defined;
these are activated whenever a new event is received, and
can reason over the event history to perform event
aggregation, correlation and suppression. Triggers provide
a second level of filtering on core monitored metrics to
determine whether an event is significant enough to be
forwarded to AIMS to act upon. For example, a custom
trigger ensures that at least X out of the last Y consecutive
network ping reports for a server indicate a failure before
the failure event is forwarded to AIMS.

4. Automated Incident Management
For the automated handling of events in AIMS, the

core principle that has been adopted is to classify the
highest priority event into an appropriate “class” and take
a simple corrective action in response when applicable
(e.g., restart a failed process or an interface), followed by
increasingly more obtrusive actions (reboot, reimage,
mark-as-failed) if simple actions do not fix the fault.
Additional aspects of automation include the creation and

resolution (when possible), of problem tickets describing
the incident, and influencing the placement engine to
prevent provisioning of VMs on faulty or overloaded
hypervisors.

The authors developed a framework for modeling
event-based automation policies using Finite State
Machines (FSMs) to model infrastructure elements,
enhanced with state persistence to maintain a holistic view
of the cell, maintenance of event-action history for
improved decision making, and fault tolerance for
dependability, features typically unavailable in off-the-
shelf management systems. The AIMS framework is
described below.

4.1. AIMS Framework

The framework we developed for this environment is
based on modeling key infrastructure elements – servers
(hardware and hypervisor software providing
virtualization services), network components, and shared
storage components – as FSMs. An FSM type definition is
used to model event handling policies for each type of IT
element on the Cloud. In our initial deployment, all
encoded policies were based on expert knowledge, but as
incident data from the field is analyzed, we expect to
refine them and add new ones. The current system handles
approximately 50 different events.

Each FSM instance is used to track state transitions of
an infrastructure element from "birth" (deployment) to
"death" (removal), based on events received from the
event aggregation and correlation system. An event that
represents incidents (faults) in a given IT element is acted
upon based on the type of event, the current state of the IT
element, the history of past events and actions taken on
that system, and the policies associated with the resulting
state transition encoded in the FSM.

As indicated in Figure 1, not all events indicate
possible faults. An automated system that provisions IT
infrastructure elements can send an event which, when
forwarded to AIMS, results in a new FSM instance being
created. Another instance of a non-fault event is
workflow-related. Workflows which perform corrective
actions in response to events are scheduled for execution
by a workflow system, adopting an asynchronous
execution model. The status of workflows – Success,
Failure, Validation_Failure – is indicated by sending
events to the aggregation/correlation system, which are
subsequently forwarded to AIMS. These events affect the
transitions of the appropriate FSM instance as do “fault”
events, as encoded in the FSM definition.

The asynchronous nature of workflow execution can
result in unpredictable delays in the actual execution of a
workflow. To mitigate the effects of delayed execution, a
workflow validation mechanism has been developed. Each
workflow, when first scheduled for execution, validates
that its execution is still relevant before performing the

main workflow logic. This prevents situations such as a
delayed workflow taking a corrective action after a system
administrator has performed a manual action that has
fixed the problem the workflow was scheduled to fix. The
workflow validation protocol by design bypasses the event
management system, since that framework can introduce
unpredictable delays. It is based on a lightweight,
customized, synchronous, protocol in our initial
deployment, but could be (in principle) REST-based.

4.2. Modeling Incident Management Policies with
Finite State Machines

In the currently deployed system, we focused primarily
on the automated management of incidents on servers
running hypervisors. The rest of the paper will therefore
focus on server incident management. For modeling
policies (defined by domain experts) for automatically
handling incidents indicated by events, we defined an
FSM that represents the states that a server goes through,
from “birth” to “death” as different types of events are
received, and the rules that govern state transitions.

FSMs provide a modeling mechanism that is a good fit
for the task of representing policies for managing
incidents (failures and performance problems), where
events are the key drivers for taking corrective actions. A
server goes through multiple states during its period of
operation in a data center, “birth” representing its initial
setup by a provisioning system, and “death” representing a
state of failure where it is unable to support the
provisioning and execution of VMs, and repeated
automated actions taken to revive the server have failed.
Bounded by the initial and final states, a server goes
through multiple operational states, and the actions taken
in response to an event are related to the state of the
server.

Figure 2 depicts the FSM that was defined for
modeling server incident management policies. An
instance of a server FSM is created when an event is
received announcing the availability of a new server. The
FSM immediately transitions to a
WAIT_FOR_SERVER_UP state where a workflow is run
to check that the server is in a state where automated
corrective actions can be run. Once that workflow
completes successfully – indication of which appears as a
status event from the workflow itself – the FSM
transitions to the TEST_HYPERVISOR state, where
another workflow starts a test VM which runs a set of
basic stability tests on the hypervisor for a fixed period of
time. Any fault events received while the server is in that
state are treated more seriously than when the server is in
the HEALTHY state. Once the server has been in the
TEST_HYPERVISOR state for a test period, it transitions
(in response to a timer event) to the HEALTHY state.

Figure 2: Server FSM Model

Transitions from the HEALTHY state occur due to

three broad categories of events. The first category causes
a transition to the FAILED state if a critical and
unrecoverable error indication is received. The second
category of events represents operational problems other
than performance issues. In response, the FSM engine
optionally consults the history of events received and
actions taken in the recent past on this specific server and
based on FSM state transition rules, either a workflow to
perform a non-obtrusive recovery action is scheduled (e.g,
restarting a failed system process), or a more obtrusive
action such as a reboot is scheduled. The third category of
events represents performance problems – such as a “CPU
critical” event indicating a hypervisor-level overload. In
that case, the FSM instance transitions to the
PROBATION state, and remains there until another event
from the server indicates that the performance problem
has subsided. Some events are known to cause an
automatic server reboot by the BIOS, in which case the
FSM transitions to WAIT_FOR_SERVER_UP until the
server is operational again.

Besides scheduling workflows in response to state
transitions, tickets are created and resolved when possible.
Whenever a server is deemed to be in a “recycling” state
(e.g., being rebooted), or when further VM provisioning
on the server should be inhibited (e.g., in the
PROBATION state, AIMS updates the server’s
“provisionability” status in a System State database (see
Figure 1) shared with the VM provisioning system,
allowing AIMS to influence VM placement decisions.
Additionally, certain events are purged from the queue in
the OBTRUSIVE_RECOVERY_ACTION state since the
system will be rebooted.

The server FSM also embodies some self-healing
policies, and the ability to deal with events which have a
broader scope than that of a single server. For example,
the WF_SYS_FAILURE is a state that the FSM instance
transitions to if the workflow engine itself is not
operational and the scheduling operation fails. That state
is modeled to periodically “ping” the workflow engine,
upon success of which, control returns to the previous
state and the workflow is rescheduled.

OUTAGE_BEGIN and OUTAGE_END represent
special states which are entered when AIMS is informed
that a “global” set of events are occurring (or are
expected) due to a shutdown of all monitored IT elements
in the data center, or their subsequent restart, respectively.
In the OUTAGE_BEGIN state, any event received for the
server is ignored, except for tickets being created for
critical hardware failure events. In OUTAGE_END state,
the target is pinged and when reachable, the FSM
transitions to HEALTHY state.

4.2 Scalable and Persistent FSM Engine

With a centralized event-based AIMS component
handling incidents on all IT elements, robustness of the
system is paramount since it operates in “low touch” mode
with reduced system administrator oversight. To address
that goal, we have developed an FSM execution engine
that adds the properties of scalability and persistence to
the FSM runtime system.

A typical FSM engine (e.g., the runtime environment
of SCXML [7]) requires each FSM instance to be in
memory throughout its execution, and if the engine
terminates prior to all FSM instances completing their
executions (e.g., due to a fault in the server where it is
running), then all runtime state is lost. Such an
environment is not suitable for building an FSM-based
AIMS component where (1) one may need to run
thousands of FSM instances in parallel (each instance
representing the operational state of a server for example),
and (2), the life cycle of a typical FSM instance may span
months or years (the average operational life span of a
server), during which, the AIMS component may be shut
down due to planned or unplanned outage of the
management server where it is executing. Figure 3 depicts

Figure 3: Scalable and Persistent FSM Engine

the design of a runtime system which implements these
properties. The current system addresses planned
shutdown but not fault tolerance of unplanned outages,
the implementation of which is part of future work.

The design involves the use of persistent storage to
record information about events received, key state
transitions executed by FSM instances, workflows
scheduled, and timers set, allowing the system to be shut
down without losing information. The design also
facilitates scalability since any given FSM instance does
not need to continuously reside in memory to process an
event received for that server.

The following description references Figure 3, and the
steps refer to the numbered arrows in the figure. Upon
receipt of an event from an external component, AIMS
persists the event into a persistent Event Queue (step 1).
An event queue polling thread periodically examines the
queue and selects the highest priority event from the
queue for which an FSM instance is not already executing
(mutual exclusion is important since parallel state
transitions are not supported). In step 2, the polling thread
schedules the FSM instance corresponding to that IT
element for execution by (1) extracting the last known
state of the FSM instance from persistent storage and (2)
creating an entry in the work item queue of an in-memory
Thread Pool service that contains details such as the FSM
state, the IT element’s unique identifier (e.g., its IP
address) and the event received. In step 3, a thread in the

pool becomes available, and in step 4, the FSM
scheduling logic uses the next work item to create an FSM
instance, “primes” it with values necessary to continue
execution from the last known state, and executes the
FSM (in memory) until it reaches a state where it cannot
proceed any further, at which point the FSM instance
returns control and its current state is queried and
persisted in persistent storage until the next event is
received (step 7).

In steps 5 and 6, the in-memory FSM engine executes
the transitions encoded in the FSM definition, leveraging
entries in the Event-Action History store maintained by
our runtime system as a source of additional input for
determining what state transitions to take. Finally, when a
workflow has to be scheduled to take a corrective action if
the transition logic demands, a unique workflow identifier
(ID) is generated, persisted in the Workflow ID store, and
the workflow is scheduled with the ID passed to it along
with other domain-specific parameters. As long as the
workflow ID in the table is still tagged as being valid, the
workflow validation step will succeed. FSM transitions
can mark the ID as being invalid, as can fault tolerance-
related recovery logic which is referenced in Section 7.

In the current implementation, the in-memory FSM
engine is home-grown, but we are building an alternate
implementation using SCXML.

5. Deployment Experience
The AIMS component is currently deployed in

multiple cells in the IBM Smart Business Dev/Test Cloud
and has been in operation for a few months. The
scalability and persistence features of AIMS have met the
design goals during steady state operations as well as a
few planned outages. The FSM has evolved over multiple
deployments. An event-based automated system can end
up taking actions on a large number of IT elements in
response to a condition that generates a lot of events such
as a faulty rule definition or an outage. Based on system
administrator feedback on earlier deployments, AIMS has
introduced the notion of a “circuit breaker”, which limits
the number of IT elements on which obtrusive actions are
taken based on an administrator-defined limit.

Almost no hardware problems have been reported to
date by the monitoring system. Intermittent performance
problems were reported by a few servers and the policies
encoded in the FSM – to transition the server to
PROBATION state and prevent further VM provisioning
- worked well. For one category of performance problems,
analysis of events archived in the warehouse led to the
tuning of a few filtering rules configured in the monitoring
server, resulting in fewer false-positive fault events.

The tables in Figure 4 summarize a few months of
operational data. The first table categorizes all the events
forwarded to AIMS except the events filtered by AIMS

Figure 4: AIMS’ Event Handling Statistics

policies, and the second table summarizes events filtered
(ignored) due to policies such as outage handling, circuit
breaker, state-specific event relevancy checking, etc.

6. Related work
Microsoft’s AutoPilot system [8] is an integrated

platform that manages infrastructure provisioning,
application deployment, system monitoring and repairs.
Both AIMS and AutoPilot use FSMs to model fault-
handling policies with AutoPilot using a distributed
implementation for robustness and AIMS implementing a
single-instance persistent and fault tolerant engine. Being
a standalone incident management system, AIMS’ is
suitable for use in any monitor-able system, unlike
AutoPilot which works with applications developed using
its specialized framework (e.g. Windows Live and Bing
but not Azure). No documentation of incident
management of Amazon’s EC2 or Google’s App Engine is
available.

Policy-based autonomic management systems have
been the subject of research for many years, e.g. see [9].
Our design uses a policy definition mechanism that is
different from, and yet can encompass, traditional policy
languages, and has focused also on broader system issues
such as framework scalability and robustness.

7. Conclusions and Future Work
The paper describes a monitoring and event-based

automated incident management system deployed in a
PaaS Cloud. In contrast to policy- and rule-based
autonomic systems, we describe the use of a FSM-based
approach. The FSM abstraction has proven to be very
effective for modeling event-based policies and
implementing a persistent and fault tolerant execution
framework around state management, while providing a
foundation for embedding rule languages to control state
transitions and actions using more complex logic.

Future work is focused on the following. Fault
tolerance would enable the system to survive unplanned

system outages, addressing a fail-stop fault model. A log
replay-based fault tolerant implementation of a single-
instance (non-replicated) AIMS, which extends existing
persistent storage to log key steps in FSM scheduling and
execution, is work in progress. Realtime detection of event
storms, especially for the category of “outage” events that
can enable AIMS to detect that a cell-wide outage is in
progress without explicit notification from the system
administrator, is another area being explored. Finally,
monitored data is being stored in a data warehouse, and
we plan to mine it to discover new incident management
policies to supplement expert knowledge.

7. Acknowledgements

The authors would like to acknowledge Murthy
Devarakonda for seeding the initial ideas for this project,
and Mahesh Viswanathan for guiding us in addressing the
core set of system requirements.

8. References

[1] Amazon EC2: http://aws.amazon.com/ec2/

[2] Windows Azure:
 http://www.microsoft.com/windowsazure/

[3] Google App Engine:
http://code.google.com/appengine

[4] A. Kivity, Y. Kamay, D. Laor, U. Lubin, and A.
Liguori. Kvm: the Linux virtual machine monitor. In OLS
’07: The 2007 Ottawa Linux Symposium, pp. 225-230.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T, Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. In ACM SOSP (2003), pp. 164-
177.

[6] VMWare Information Guide:
http://www.vmware.com/files/pdf/software_hardware_tec
h_x86_virt.pdf

[7] SCXML: http://www.w3.org/TR/scxml/

[8] M. Isard. Autopilot: Automatic Data Center
Management, Operating Systems Review 41(2) (2007),
pp. 60-67.

[9] M. Devarakonda, D. Chess, I. Whalley, A. Segal, P.
Goyal, A. Sachedina, K. Romanufa, E. Lassettre, W.
Tetzlaff, B. Arnold. Policy-Based Autonomic Storage
Allocation, Self-Managing Distributed Systems (2003),
pp. 143-154.

