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Abstract Monitoring and incident and problem management
(IPM) processes account for a significant portiérdata

Cloud-based offerings such as Infrastructure-as-a- center operational costs. During the design of IBM’
service (laaS), Platform-as-a-Service (PaaS), and Smart Business Dev/Test Clou$BDTC), a PaaS
Software-as-a-Service (SaaS), are being delivergd b Offering, the authors were deeply involved in tlesidn of
various vendors at highly competitive prices toemage ~ the monitoring system for the Cloud infrastructued
a paradigm shift to utility computing. To optimitee also led the design and implementation of Awtomated
operational costs of managing an IBM Cloud-based®a Incident Management SystefAIMS). The goal of the
offering, a two-pronged approach has been adopted: Project was to design a process that is highlynaiped
simplification of enterprise-class data center mgeent ~ for a Cloud-based offering. This paper describes th
processes currently used in IBM's Global Services technical challenges addressed by the design, amnd o
Strategic Outsourcing accounts, and automationhef t €Xperiences in deploying the system in a Cloud.
simplified processes. This paper describes a fraomew The rest of the paper is organized as follows.iSe&
that the authors have developed to deliver an irtiegl describes the overall architecture of the systesufié 3
monitoring and event correlation system, and ameve describes the monitoring and event managementrsgste
driven Automated Incident Management System, forSection 4 describes the design of AIMS, Section 5

IBM's Smart Business Dev/Test Cloud offering. describes our deployment experience, Section Gridesc
related work and Section 7 concludes the paper.

1. Introduction ,

Providers of publicly accessible Cloud serviceg.(e. 2- System Architecture
Amazon Elastic Compute Cloud (EC2) [1], Windows Figure 1 shows the overall architecture of the enirr
Azure [2] and Google App Engine [3]) are adopting System. All management components and infrastreictu

aggressive pricing strategies to make the movetttlity elements shown constitute a unit of managementcetl.a
computing model more attractive. Management process! he infrastructure layer represents the differgpes of
simplification is a key enabler for reducing theeational ~ Information Technology(IT) elements (components) that
expenses of Cloud providers. As an example ofge®c Support end user applications, namely servers ngrimost
simplification, consider Amazon EC2, where senlioeel operating systems and hypervisors such as KVMXéh

agreements (SLAs) provide guarantees of succeshdor [5] or VMWare [6]) on which VMs can be provisioned.
dynamic provisioning of a virtual machine (VM), but The VMs in turn run their own operating systemswat
there are no guarantees about the mean time betweefs Middleware (e.g, Web application servers anabdae
failures (MTBF) for a provisioned VM. For most picbl ~ Systems) which host customer applications. Sharedge
XaaS Cloud-based offerings, a provisioned servieg m (€.9., NFS) servers provide access to standardedsaw
crash if there is any problem in the underlying customer-createdmagesfrom which new VMs can be
infrastructure (e.g., server, hypervisor, storagéc.)  Provisioned, and also host persistent VM storagesks”)
without violating Cloud provider SLAs. Typicallyhére is ~ Which can survive VM deprovisioning (e.g., funciaity
also no provider support for problem determinatioiner ~ €quivalent to Amazon’s Elastic Block Storage). Epbes
than informal forum-based support. of network elements are routers and switches.
Automation of Cloud management processes is the The monitoring layer comprises of systems used to
other key enabler of cost reduction, especially whe collect data from IT systems in real time in orttedetect
leveraging management process simplification. For incidents. Different monitoring approaches have nbee
example, problem determination (root cause andlgsis ~ adopted for different IT elements — e.g., custoranag
be a complex activity requiring expert knowledgatth based systems for servers, SNMP-based monitoring fo
cannot completely be replaced by automation. Howdve Nnetwork elements, etc.
problem determination is eliminated, then it redutee The event management framework uses Earent
challenges of automation while also reducing latmsts. Aggregation and Correlation hulwhich receives events
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Figure 1: Architecture of Monitoring and AIMS

indicating “unusual” conditions from the monitoritayer.
The same hub can receive events from the provigioni
system to learn about the “birth” of new IT elensgrand
also receives status wforkflowsscheduled by AIMS — a
workflow being an automation module that performs a
corrective action against an IT element. The AIMS

component receives events tagged as being actenabl

from the aggregation/correlation system, and based
policies, either ignores the event, creates orlvesoa
ticket,
scheduling a workflow.

3. Monitoring and Event Management

or takes an automated corrective action by

Non-hardware monitoring of servers is achieved gisin
software agents which track OS-level metrics sucERU
utilization, paging rate, etc., and also monitosteyn logs
for error message patterns (e.g. OOPS). The sbnssd
agents periodically communicate with a central sete
report metrics of interest. The monitoring servan de
customized with rules which are evaluated whenever
sampled sensor value is reported by an agent. The
triggering of a rule results in an event being farded to
the central event management hub. Several custtas ru
that perform a first level filtering of OS-level mies to
identify events of interest have been defined.&@mple,

a “CPU critical” event is forwarded to the hub whie
OS agent reports that the average CPU utilizatkmeeds
95% over 10 consecutive sampling intervals.

Hardware monitoring is performed by a monitoring
server which communicates with the service progesso
running on each physical server to monitor its tere
components. Failures (e.g., of the CPU/core ofdahg as
well as failure prediction indications (e.g., theeglicted
failure of a disk drive, based on manufacturer-$iegp
algorithms implemented in firmware) are monitorettie
service processor, and this status is periodicaliected
by the server. Customized rules have also beetewribr
hardware metrics in order to identify events ofgmoial
interest to AIMS. Network monitoring is based on
standard SNMP-based technigues and ICMP pings to
discover network topology and monitor the health of
network elements such as routers, switches aneiserv

The event aggregation and correlation system is the
hub that receives events generated by all mondgorin
components as well as other components such as the
provisioning system and workflows. The system store
events which have been received for some window of
time. Custom code modules (triggers) can be defined

The key issues addressed in the design of theihege are activated whenever a new event is retevel

monitoring system are: what metrics to monitor, the
granularity of monitored data, and whether the rtawirig

is continuous or staged (in the latter approacherwh
fault is suspected, more detailed monitoring isbéad).
Event management is also a key concern where isisaes
have to be addressed are: the design of approfiiitats

can reason over the event history to perform event
aggregation, correlation and suppression. Triggesside

a second level of filtering on core monitored nustrto
determine whether an event is significant enouglbeo
forwarded to AIMS to act upon. For example, a costo
trigger ensures that at least X out of the lasbWsecutive

between continuous monitoring of system sensors anthetwork ping reports for a server indicate a failbefore

events forwarded to AIMS as fault indications (demts),
the correlation of multiple events with a commorotro

cause, detection of event storms that are caused b

systemic rather than localized failures, and therjized
handling of events forwarded to AIMS. In the cutren
deployed system, the majority of the monitoring and
incident management capability is focused on senasrd
that will be the primary focus of the next two seas.

The monitoring system is based on core capabilities

provided by existing IBM systems, which operatengsi

“agentless” mode (e.g., by querying SNMP MIBSs).

the failure event is forwarded to AIMS.

Y. Automated Incident Management

For the automated handling of events in AJM@
core principle that has been adopted is to clagiéy
highest priority event into an appropriate “claasitd take
a simple corrective action in response when appléca
(e.g., restart a failed process or an interfacg#lowed by

increasingly more obtrusive actions (reboot, reieag

o . . mark-as-failed) if simple actions do not fix theulta
specialized software agents in servers, and also in

Additional aspects of automation include the cratind



resolution (when possible), of problem tickets dibéng
the incident, and influencing thplacement engindo
prevent provisioning of VMs on faulty or overloaded
hypervisors.

The authors developed a framework for modeling
event-based automation policies usirfgnite State
Machines (FSMs) to model infrastructure elements,
enhanced with state persistence to maintain atteoligw
of the cell, maintenance of event-action history fo
improved decision making, and fault tolerance for
dependability, features typically unavailable inf-thie-

main workflow logic. This prevents situations sueh a
delayed workflow taking a corrective action aftesyatem
administrator has performed a manual action tha ha
fixed the problem the workflow was scheduled to Tike
workflow validation protocol by design bypasses ¢kent
management system, since that framework can inteodu
unpredictable delays. It is based on a lightweight,
customized, synchronous, protocol in our initial
deployment, but could be (in principle) REST-based.

4.2. Modeling Incident Management Policies with

shelf management systems. The AIMS framework is Einite State Machines

described below.

4.1. AIMS Framework

The framework we developed for this environment is
based on modeling key infrastructure elements veser
(hardware and  hypervisor  software  providing
virtualization services), network components, ahdred
storage components — as FSMs. An F$pkdefinition is
used to model event handling policies for each g
element on the Cloud. In our initial deployment| al
encoded policies were based on expert knowledgeasu
incident data from the field is analyzed, we expgct
refine them and add new ones. The current systeidgm
approximately 50 different events.

Each FSMinstanceis used to track state transitions of
an infrastructure element from "birth" (deploymed)
"death" (removal), based on events received from th
event aggregation and correlation system. An etteatt
represents incidents (faults) in a given IT elenigrtcted
upon based on the type of event, the current efate IT
element, the history of past events and actionsntakn
that system, and the policies associated with ¢lsalting
state transition encoded in the FSM.

As indicated in Figure 1, not all events indicate
possible faults. An automated system that provssitih
infrastructure elements can send an event whiclenwh
forwarded to AIMS, results in a new FSM instancenge
created. Another
workflow-related. Workflows which perform correativ
actions in response to events are scheduled faugze

instance of a non-fault event is Fgm

In the currently deployed system, we focused prilsnar
on the automated management of incidents on servers
running hypervisors. The rest of the paper willrdfere
focus on server incident management. For modeling
policies (defined by domain experts) for automadljca
handling incidents indicated by events, we defirzad
FSM that represents the states that a server omsgh,
from “birth” to “death” as different types of evenare
received, and the rules that govern state transitio

FSMs provide a modeling mechanism that is a gaod fi
for the task of representing policies for managing
incidents (failures and performance problems), wher
events are the key drivers for taking correctivéoas. A
server goes through multiple states during its quewf
operation in a data center, “birth” representirgyiititial
setup by a provisioning system, and “death” reprisg a
state of failure where it is unable to support the
provisioning and execution of VMs, and repeated
automated actions taken to revive the server haiedf
Bounded by the initial and final states, a serveesy
through multiple operational states, and the asti@ken
in response to an event are related to the stateof
server.

Figure 2 depicts the FSM that was defined for
modeling server incident management policies. An
instanceof a server FSM is created when an event is
received announcing the availability of a new seride
immediately transitions to a
WAIT_FOR_SERVER_UP state where a workflow is run
to check that the server is in a state where autmna

by a workflow system, adopting an asynchronous corrective actions can be run. Once that workflow
execution model. The status of workflows — SUCCGSS,Comp|eteS Successfu”y_ indication of which appes a

Failure, Validation_Failure — is indicated by semgi
events to the aggregation/correlation system, wiaicd
subsequently forwarded to AIMS. These events affest
transitions of the appropriate FSM instance as fdalt”
events, as encoded in the FSM definition.

status event from the workflow itself — the FSM
transitions to the TEST_HYPERVISOR state, where
another workflow starts a test VM which runs a sbt
basic stability tests on the hypervisor for a fiyetiod of
time. Any fault events received while the serveinishat

The asynchronous nature of workflow execution can state are treated more seriously than when thesenin

result in unpredictable delays in the actual exeoubf a
workflow. To mitigate the effects of delayed exéant a

the HEALTHY state. Once the server has been in the
TEST_HYPERVISOR state for a test period, it traoss

workflow validationmechanism has been developed. Each (in response to a timer event) to the HEALTHY state

workflow, when first scheduled for execution, valigs
that its execution is still relevant before perforgithe
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Figure 2: Server FSM Model

Transitions from the HEALTHY state occur due to
three broad categories of events. The first categauses
a transition to the FAILED state if a critical and
unrecoverable error indication is received. Theordc
category of events represents operational probletmesr

Besides scheduling workflows in response to state
transitions, tickets are created and resolved vgossible.
Whenever a server is deemed to be in a “recyclgtgte
(e.g., being rebooted), or when further VM provisim
on the server should be inhibited (e.g., in the
PROBATION state, AIMS updates the server's
“provisionability” status in a System State databésee
Figure 1) shared with the VM provisioning system,
allowing AIMS to influence VM placement decisions.
Additionally, certain events are purged from thewg in
the OBTRUSIVE_RECOVERY_ACTION state since the
system will be rebooted.

The server FSM also embodies some self-healing
policies, and the ability to deal with events whiwdwe a
broader scope than that of a single server. Fompba
the WF_SYS_FAILURE is a state that the FSM instance
transitions to if the workflow engine itself is not
operational and the scheduling operation fails.t Etate
is modeled to periodically “ping” the workflow emgi,
upon success of which, control returns to the evi
state and the workflow is rescheduled.

OUTAGE_BEGIN and OUTAGE_END represent
special states which are entered when AIMS is méat
that a “global” set of events are occurring (or are
expected) due to a shutdown of all monitored ITnelets
in the data center, or their subsequent restapedively.

In the OUTAGE_BEGIN state, any event received far t
server is ignored, except for tickets being crediad
critical hardware failure events. In OUTAGE_ENDtsta
the target is pinged and when reachable, the FSM
transitions to HEALTHY state.

4.2 Scalable and Persistent FSM Engine

With a centralized event-based AIMS component
handling incidents on all IT elements, robustnesshe
system is paramount since it operates in “low tduehde
with reduced system administrator oversight. Toress
that goal, we have developed an FSM execution engin
that adds the properties stalability and persistenceo

than performance issues. In response, the FSM @nginthe FSM runtime system.

optionally consults thenistory of events received and
actions taken in the recent past on this speaodfices and
based on FSM state transition rules, either a wamnkfo
perform a non-obtrusive recovery action is scheti(deg,
restarting a failed system process), or a moreusivie
action such as a reboot is scheduled. The thieboay of
events represents performance problems — suchGi3la
critical” event indicating a hypervisor-level oveald. In
that case, the FSM instance transitions to

PROBATION state, and remains there until anothenev
from the server indicates that the performance Iprob

A typical FSM engine (e.g., the runtime environment
of SCXML [7]) requires each FSM instance to be in
memory throughout its execution, and if the engine
terminates prior to all FSM instances completingirth
executions (e.g., due to a fault in the server wheiis
running), then all runtime state is lost. Such an
environment is not suitable for building an FSM4xhs
AIMS component where (1) one may need to run

the thousands of FSM instances in parallel (each imstan

representing the operational state of a serveexample),
and (2), the life cycle of a typical FSM instancaynspan

has subsided. Some events are known to cause amonths or years (the average operational life spfaa

automatic server reboot by the BIOS, in which ctee
FSM transitions to WAIT_FOR_SERVER_UP until the
server is operational again.

server), during which, the AIMS component may betsh
down due to planned or unplanned outage of the
management server where it is executing. Figurepscts
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Figure 3: Scalable and Persistent FSM Engine

the design of a runtime system which implementsehe
properties. The current system addresspinned
shutdown but ndfault toleranceof unplanned outages,

the implementation of which is part of future work.

The design involves the use of persistent storage t
record information about events received, key state
transitions executed by FSM instances, workflows
scheduled, and timers set, allowing the systemetsHut
down without losing information. The design also
facilitates scalability since any given FSM instardoes
not need to continuously reside in memory to preces
event received for that server.

The following description references Figure 3, émel
steps refer to the numbered arrows in the figurgorl
receipt of an event from an external component, 3IM
persists the event into a persistent Event Queiep (&).

An event queue polling thread periodically examittees
queue and selects the highest priority event fromm t
gueue for which an FSM instance is not already @tieg
(mutual exclusion is important since parallel state
transitions are not supported). In step 2, theigplihread
schedules the FSM instance corresponding to that IT
element for execution by (1) extracting the lasbwn
state of the FSM instance from persistent storauge(3)
creating an entry in the work item queue of an emrory
Thread Pool service that contains details sucha&&M
state, the IT element’'s unique identifier (e.gs IP
address) and the event received. In step 3, adthinethe

pool becomes available, and in step 4, the FSM
scheduling logic uses the next work item to creaité&SM
instance, “primes” it with values necessary to oo
execution from the last known state, and executes t
FSM (in memory) until it reaches a state whereaitrot
proceed any further, at which point the FSM instanc
returns control and its current state is queried an
persisted in persistent storage until the next even
received (step 7).

In steps 5 and 6, the in-memory FSM engine executes
the transitions encoded in the FSM definition, faging
entries in the Event-Action History store maintainey
our runtime system as a source of additional irfout
determining what state transitions to take. Finadlgen a
workflow has to be scheduled to take a correctot®a if
the transition logic demands, a unique workflownitfeer
(ID) is generated, persisted in the Workflow IDrstcand
the workflow is scheduled with the ID passed taldng
with other domain-specific parameters. As long las t
workflow ID in the table is still tagged as beinglid, the
workflow validation step will succeed. FSM transits
can mark the ID as being invalid, as can faultraee-
related recovery logic which is referenced in SetH.

In the current implementation, the in-memory FSM
engine is home-grown, but we are building an a#tern
implementation using SCXML.

5. Deployment Experience

The AIMS component is currently deployed
multiple cells in the IBM Smart Business Dev/Tesbucl
and has been in operation for a few months. The
scalability and persistence features of AIMS hawet the
design goals during steady state operations as agel
few planned outages. The FSM has evolved over pheilti
deployments. An event-based automated system cén en
up taking actions on a large number of IT eleménts
response to a condition that generates a lot afts\aich
as a faulty rule definition or an outage. Basedsgstem
administrator feedback on earlier deployments, AllS
introduced the notion of a “circuit breaker”, whitinits
the number of IT elements on which obtrusive actiare
taken based on an administrator-defined limit.

Almost no hardware problems have been reported to
date by the monitoring system. Intermittent perfance
problems were reported by a few servers and thieips!
encoded in the FSM - to transition the server to
PROBATION state and prevent further VM provisioning
- worked well. For one category of performance peois,
analysis of events archived in the warehouse leth¢o
tuning of a few filtering rules configured in theonitoring
server, resulting in fewer false-positive fault etse

The tables in Figure 4 summarize a few months of
operational data. The first table categorizeshal évents
forwarded to AIMS except the events filtered AIMS

in
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Figure 4: AIMS’ Event Handling Statistics

policies, and the second table summarizes evétaefi
(ignored) due to policies such as outage handdimgulit
breaker, state-specific event relevancy checkita, e

6. Related work

Microsoft's AutoPilot system [8] is an integrated
platform that manages infrastructure provisioning,
application deployment, system monitoring and nepai
Both AIMS and AutoPilot use FSMs to model fault-
handling policies with AutoPilot using a distribdte
implementation for robustness and AIMS implementing
single-instance persistent and fault tolerant esgBeing

a standalone incident management system, AIMS’ is

suitable for use in any monitor-able system, unlike
AutoPilot which works with applications developesing

its specialized framework (e.g. Windows Live anddi
but not Azure). No documentation of incident
management of Amazon’s EC2 or Google’s App Engine i
available.

system outages, addressing a fail-stop fault motléhg
replay-based fault tolerant implementation of agkan
instance (non-replicated) AIMS, which extends exgst
persistent storage to log key steps in FSM schegland
execution, is work in progress. Realtime detectibavent
storms especially for the category of “outage” eventstth
can enable AIMS to detect that a cell-wide outagyéni
progress without explicit notification from the sy
administrator, is another area being explored. Ifina
monitored data is being stored in a data warehcarse,
we plan to mine it to discover new incident managetm
policies to supplement expert knowledge.
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