
Storing Trees on Disk Drives

Medha Bhadkamkar Fernando Farfan Vagelis Hristidis Raju Rangaswami
School of Computing and Information Sciences

Florida International University

{medha,ffarf001,vagelis,raju}@cis.fiu.edu

1. INTRODUCTION
Tree-structured data are abundant today, ranging from Bioin-

formatics suffix-tree alignments, to multi-resolution video, to
directory-file hierarchies, to XML. The storage techniques em-
ployed by systems that manage tree-structured data greatly af-
fect their performance. Current approaches either map the tree
data to an underlying relational database system, or use the
abstraction provided by a general-purpose object storage man-
ager, or simply use flat files. These storage schemes, however,
ignore the tree structure of the data as well as the characteris-
tics of disk drives. Relational databases are structured tables
and flat files are unstructured. On the other hand, disk drives
store information in circular tracks that are accessed with me-
chanical seek and rotational overhead. The performance of
disk drives greatly depends on the I/O access pattern (orders
of magnitude difference between sequential and random access
times). To the best of our knowledge, there exists no data lay-
out strategy that accounts for the structural mismatch between
tree-structured data and disk drive storage.

We propose a new storage technique, tree-structured place-
ment, that explicitly accounts for the mismatch between tree-
structured data and disk drive characteristics, so that com-
mon navigation operations (parent-to-child and node-to-next-
sibling) are efficient. This technique uses the recently proposed
idea of semi-sequential disk access [2] to place the tree struc-
ture. It also presents optimizations that reduce the on-disk
space fragmentation and average random seek-times. Experi-
mental evaluation using the DiskSim disk simulator [1] suggests
as much as 80% reduction in query IO times compared to the
default sequential layout of tree-structured data.

2. TREE-STRUCTURED PLACEMENT
Using tree-structured placement, tree nodes are placed on

the disk starting from the outermost available track. In par-
ticular, we first place the root node v of the tree data on the
block with the smallest logical-block-number (LBN), on the
outermost available track of the disk. Second, we place its chil-
dren sequentially on the next free track such that accessing the
first child u of v after accessing v results in a semi-sequential
access Further, accessing a non-first child from a parent node
involves a semi-sequential access to reach the first child and a
short rotational-delay based on the child index. The children
of the first-child of the root node are then placed next using a
similar approach, followed by those of the second-child and so
on. The remaining nodes of the data tree are placed following
a similar approach.

The above placement strategy, though simple, incurs signif-
icant fragmentation in disk space as well as large average ran-
dom seek-times as a consequence. The optimized tree-structured
placement strategy allows placement of the child nodes in non-
free tracks, thereby reducing fragmentation. Second, it al-
lows the first-child node anywhere in a rotationally-optimal

track-region1 relative to the parent rather than requiring it to
be place at the rotationally-optimal block. This allows child
nodes to be placed closer to the parent node, thereby reducing
seek-times. However, the trade-off here is slightly increased
average rotational delays. Third, it groups tree nodes into
supernodes that map to disk blocks, further reducing the frag-
mentation within disk blocks. These optimizations make the
tree-structured placement significantly superior to the default
sequential approach as detailed below.

3. EVALUATION
We used tree-structured XML data (benchmark navigational

queries (XPath) and benchmark XML databases [3]) to evalu-
ate our approach. The baseline strategy that we compare our
approach against is sequential layout (referred to as default)
of the XML file on the disk, as provided by general-purpose
filesystems. Figure 1 shows the average total IO times for
8 benchmark XPath queries for 4 different disk drive models
simulated using DiskSim [1]. Tree-preserving tree-structured
placement (TP-TS) groups the XML nodes to supernodes in
a way that the tree structure is preserved, whereas Sequential
tree-structured placement (Seq-TS) uses the same grouping as
default and fits as many nodes as possible into a supernode.

De
fau

lt

TP
-T

S

Se
q-T

S

Disk1

De
fau

lt

TP
-T

S

Se
q-T

S

Disk2

De
fau

lt

TP
-T

S

Se
q-T

S

Disk3

De
fau

lt

TP
-T

S

Se
q-T

S

Disk4

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ali
ze

d a
ve

rag
e t

ota
l IO

 tim
e

Disk

Transfer Rotation Seek

Figure 1: IO times for various disk models.

4. REFERENCES
[1] J. Bucy, G. Ganger, and Contributors. The DiskSim Simulation

Environment Version 3.0 Reference Manual. Carnegie Mellon
University Technical Report CMU-CS-03-102, January 2003.

[2] J. Schindler, S. W. Schlosser, M. Shao, A. Ailamaki, and G. R.
Ganger. Atropos: A Disk Array Volume Manager for
Orchestrated Use of Disks. Proceedings of the USENIX
Conference on File and Storage Technologies, March 2004.

[3] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for XML
Data Management. VLDB, 2002.

1defined as a fixed-length sequence of blocks starting from the
rotationally-optimal block


