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Abstract

Storage servers, as well as storage clients, typically have
large memories in which they cache data blocks. This
creates a two-tier cache hierarchy in which the presence
of a first-tier cache (at the storage client) makes it more
difficult to manage the second-tier cache (at the storage
server). Many techniques have been proposed for im-
proving the management of second-tier caches, but none
of these techniques use the information that is provided
by writes of data blocks from the first tier to help man-
age the second-tier cache. In this paper, we illustrate how
the information contained in writes from the first tier can
be used to improve the performance of the second-tier
cache. In particular, we argue that there are very different
reasons why storage clients write data blocks to storage
servers (e.g., cleaning dirty blocks vs. limiting the time
to recover from failure). These different types of writes
can provide strong indications about the current state and
future access patterns of a first-tier cache, which can help
in managing the second-tier cache. We propose that stor-
age clients inform the storage servers about the types of
writes that they perform by passing write hints. These
write hints can then be used by the server to manage the
second-tier cache. We focus on the common and impor-
tant case in which the storage client is a database system
running a transactional (OLTP) workload. We describe,
for this case, the different types of write hints that can
be passed to the storage server, and we present several
cache management policies that rely on these write hints.
We demonstrate using trace driven simulations that these
simple and inexpensive write hints can significantly im-
prove the performance of the second-tier cache.

1 Introduction

Current storage servers have large memories which they
use to cache data blocks that they serve to their clients.
The storage clients, in turn, typically cache these data

blocks in their own memories. This creates a two-tier
cache hierarchy in which both the storage server and the
storage client cache the same data with the goal of im-
proving performance.1

Managing the second-tier (storage server) cache is
more difficult than managing the first-tier (storage client)
cache for several reasons. One reason is that the first-tier
cache captures the accesses to the hot blocks in the work-
load. This reduces the temporal locality in the accesses
to the second-tier cache, which makes recency-based re-
placement policies (e.g., LRU or Clock) less effective for
the second tier.

Another reason why managing second-tier caches is
difficult is that the second-tier cache may include blocks
that are already present in the first-tier cache. Accesses
to these blocks would hit in the first tier, so caching them
in the second tier is a poor use of available cache space.
Hence, second-tier cache management has the additional
requirement of trying to maintain exclusiveness between
the blocks in the first and second tiers [20].

Managing second-tier caches is also difficult because
the cache manager needs to make placement and replace-
ment decisions without full knowledge of the access pat-
tern or cache management policy at the first tier. For ex-
ample, a request to the second-tier for a block indicates
a first-tier miss on that block, but does not provide infor-
mation on how many first-tier hits to the block preceded
this miss.

The difficulty of managing second-tier caches has
been recognized in the literature, and various techniques
for second-tier cache management have been proposed.
Examples of these techniques include:

• Using cache replacement policies that rely on fre-
quency as well as recency to manage second-tier
caches [22].

• Passing hints from the storage client to the storage
server about which requested blocks are likely to be
retained and which are likely to be evicted [8, 5].
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• Using knowledge of the algorithms and access pat-
terns of the storage client to prefetch blocks into the
second-tier cache [18, 2].

• Placing blocks into the second-tier cache not when
they are referenced but when they are evicted by the
first-tier cache [20, 6, 21].

• Evicting blocks requested by the first tier quickly
from the second-tier cache [8, 20, 2].

• Using a single cache manager to manage both the
client and the server caches [11].

Some of these techniques place extra responsibil-
ities on the storage client for managing the storage
server cache, and therefore require modifying the stor-
age client [8, 20, 11, 5]. Other techniques do not require
any modifications to the storage client, but spend CPU
and I/O bandwidth trying to infer the contents of the stor-
age client cache and predict its access patterns [1, 6, 2].
A common characteristic of all these techniques is that
they do not have any special treatment for writes of data
blocks from the storage client to the storage server.

In this paper, we focus on using write requests from
the storage client to improve the performance of the stor-
age server cache. Storage clients write data blocks to
the storage server for different reasons. For example,
one reason is writing a dirty (i.e., modified) block while
evicting it to make room in the cache for another block.
Another, very different, reason is periodically writing
frequently modified blocks to guarantee reliability. The
different types of writes provide strong indications about
the state of the first-tier cache and the future access pat-
terns of the storage client, and could therefore be used to
improve cache management at the storage server.

We propose associating with every write request a
write hint indicating its type (i.e., why the storage client
is writing this block). We also present different methods
for using these write hints to improve second-tier cache
replacement, either by adding hint-awareness to existing
replacement policies (e.g., MQ [21] and LRU) or by de-
veloping new hint-based replacement policies.

Our approach requires modifying the storage client to
provide write hints. However, the necessary changes are
simple and cheap. In particular, we are not requiring the
storage client to make decisions about the management
of the second-tier cache. We are only requiring the stor-
age client to choose from a small number of explanations
of why it is writing each block it writes, and to pass this
information to the storage server as a write hint.

The write hints that we consider in this paper are fairly
general, and could potentially be provided by a variety of
storage clients. However, to explore the feasibility and
efficacy of the proposed write hints, we focus on one
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Figure 1: DBMS as the Storage Client

common and important scenario: a database manage-
ment system (DBMS) running an on-line transaction pro-
cessing (OLTP) workload as the storage client (Figure 1).
For this scenario, we demonstrate using trace driven sim-
ulations that write hints can improve the performance of
the recently proposed MQ cache replacement policy by
almost 30%, and that TQ, a new hint-based replacement
policy that we propose, can perform twice as well as MQ.

Our approach, while not transparent to the storage
client, has the following key advantages:

• It is simple and cheap to implement at the storage
server. There is no need to simulate or track the
contents of the first-tier cache.

• It is purely opportunistic, and does not place ad-
ditional load on the storage devices and network.
When the storage server receives a write request,
the request (a) contains a copy of the data to be
written, and (b) must be flushed to the storage de-
vice at some point in time. Thus, if the second-tier
cache manager decides, based on the write hints, to
cache the block contained in a write request, it does
not need to fetch this block from the storage device.
On the other hand, if the second-tier cache manager
decides not to cache the block contained in a write
request, it has to flush this block to the storage de-

USENIX Association116



vice, but this flushing operation must be performed
in any case, whether or not hints are used.

• As mentioned earlier, the first-tier cache typically
captures most of the temporal locality in the work-
load. Thus, many reads will be served from the first-
tier cache. Writes, on the other hand, must go to the
second tier. Thus, the second-tier cache will see a
higher fraction of writes in its workload than if it
were the only cache in the system. This provides
many opportunities for generating and using write
hints.

• Using write hints is complementary to previous
approaches for managing second-tier caches. We
could exploit other kinds of hints, demotion infor-
mation, or inferences about the state of the first-tier
cache in addition to using the write hints.

• If the workload has few writes (e.g., a decision-
support workload), the behavior of the proposed
hint-aware replacement policies will degenerate to
that of the underlying hint-oblivious policies. In
that case, we expect neither benefit nor harm from
using write hints.

Our contributions in this paper can be summarized
as follows. We propose different types of write hints
that can be generated by storage clients, and we propose
second-tier cache replacement policies that exploit these
hints. We evaluate the performance of these policies us-
ing traces collected from a real commercial DBMS run-
ning the industry standard TPC-C benchmark, and we
compare them to the hint-oblivious alternatives. We also
study an optimal replacement technique to provide an up-
per bound on how well we can do at the second tier.

The rest of this paper is organized as follows. In
Section 2, we give some background about the archi-
tecture of a modern DBMS and its characteristics as a
storage client. In Section 3, we present our proposal
for using write hints, and in Section 4, we present three
cache replacement policies that use these hints. Section 5
presents an evaluation of the proposed policies. Section 6
provides an overview of related work. We present our
conclusions in Section 7.

2 Background

The I/O workload experienced by a storage server de-
pends on the properties of its clients. Since we are
considering a scenario in which the storage client is a
DBMS, we first present, in this section, the relevant as-
pects of the process architecture and buffer management
of a modern commercial DBMS. The specifics of this
presentation are taken from DB2 Universal Database [9].

DBMS
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SQL requests

cache

storage server

buffer pool

read/write requests

prefetch
requests

flush
requests
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prefetchers
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Figure 2: DBMS Architecture

However, similar features are found in other major com-
mercial and open-source database management systems.

Figure 2 provides a simplified illustration of the multi-
threaded (or multi-process, depending on the platform)
execution architecture of the DBMS. The DBMS is capa-
ble of processing several application SQL requests con-
currently. One or more threads, known as agents, are
used to execute each SQL statement. As the agents
run, they read and update the database structures, such
as tables and indexes, through a block-oriented buffer
pool. The DBMS may actually maintain several, inde-
pendently managed buffer pools (not illustrated in Fig-
ure 2). Together, these pools constitute the storage client
cache.

Each buffer pool is managed using a clock-based al-
gorithm, so recency of reference is important in replace-
ment decisions. However, the replacement policy also
considers a number of other factors, including the type
of data in the block, whether the block is clean or dirty,
and the expected access pattern of the last agent to have
used the block. Blocks are loaded into the buffer pool
on demand from agents. Depending on the type of query
being executed, prefetching may also be employed as a
means of removing demand paging delays from the criti-
cal paths of the agents. Agents send read-ahead requests
to a prefetching queue, which is serviced by a pool of
prefetching threads. Prefetching threads retrieve blocks
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from the underlying storage system and load them into
the buffer pool, replacing blocks as necessary.

As agents run, they may modify the contents of blocks
that are cached in the buffer pools. Modified (dirty) data
blocks are generally not written immediately to the un-
derlying storage system. Instead, one or more threads
known as page cleaners are used to implement asyn-
chronous (with respect to the agents) copy-back of dirty
blocks from the buffer pool. In the event that the buffer
replacement policy calls for the eviction of an updated
block that has not been cleaned by a page cleaner, the
agent (or prefetcher) that is responsible for the replace-
ment flushes (writes) the dirty block back to the under-
lying storage system before completing the replacement.
Note that flushing a dirty block does not by itself remove
that block from the buffer pool. It simply ensures that
the underlying storage device holds an up-to-date copy
of the block.

The page cleaners must choose which dirty blocks to
copy back to the storage system. There are two issues
which affect this choice. First, the page cleaners try to
ensure that blocks that are likely to be replaced by the
agents will be clean at the time of the replacement. This
removes the burden and latency associated with flush-
ing dirty blocks from the execution path of the agents.
To accomplish this, the page cleaners try to flush dirty
blocks that would otherwise be good candidates for re-
placement.

The second issue considered by the page cleaners is
failure recovery time. The DBMS uses write-ahead log-
ging to ensure that committed database updates will sur-
vive DBMS failures. When the DBMS is recovering
from a failure, the log is replayed to recreate any up-
dates that were lost because they had not been flushed to
the underlying storage system prior to the failure. The
amount of log data that must be read and replayed to re-
cover the proper database state depends on the age of the
oldest changes that are in the buffer pool at the time of
the failure. By copying relatively old updates from the
buffer pools to the storage system, the page cleaners try
to ensure that a configurable recovery time threshold will
not be exceeded.

Several aspects of these mechanisms are worth not-
ing. First, block writes to the underlying storage system
usually do not correspond to evictions from the DBMS
buffer pools. Writes correspond closely to evictions only
when they are performed synchronously, by the agents.
However, in a well-tuned system, the page cleaners try
to ensure that such synchronous block writes are rare.
Thus, if management of the storage server cache de-
pends on knowledge of evictions from the client cache,
that knowledge must be obtained by some other means,
e.g., through the introduction of an explicit DEMOTE
operation [20]. Second, the replacement algorithm used

to manage the DBMS buffer pool is complex and uses
application-specific information. This poses a challenge
to storage server cache managers that rely on simula-
tion of the storage client as a means of predicting which
blocks are in the client’s cache [2].

3 Write Hints

As was noted in Section 1, we propose to use write re-
quests to improve the performance of the storage server
cache. Each write request generated by the storage client
includes a copy of the block being written, so write
requests provide low-overhead opportunities to place
blocks into the storage server’s cache. Furthermore, the
fact that the storage client has written block b to the stor-
age server may also provide some clues as to the state of
the storage client’s cache. The storage server can exploit
these hints to improve the exclusiveness of its cache with
respect to the client’s.

What can the storage server infer about the storage
client from the occurrence of a write? One key to an-
swering this question is the fact that there are several dis-
tinct reasons why the storage client issues write requests,
as described in Section 2. The first reason is block re-
placement: if the client wants to replace block b and b

has been updated, then the client must write b back to the
storage server before replacing it. We call such write re-
quests replacement writes. The second reason for writing
is to limit data loss in the event of a failure at the storage
client. Thus, the storage client may write a block to the
storage server even through that block is not a likely re-
placement candidate, in order to ensure the recoverabil-
ity of changes that have been made to that block. We call
such write requests recoverability writes.

A second key issue is the relationship between the time
of the client’s write of block b and the time of b’s eviction
from the client’s cache. In some cases, the client writes
a dirty block b to the storage server because it is about
to evict b from its cache. In the DBMS architecture de-
scribed in Section 2, such writes may be generated by
the agent threads when they need to replace a dirty block
in the buffer pool. We call these eviction-synchronous
writes, or simply synchronous writes. In other cases,
such as when pages are flushed by the page cleaners, the
eviction of the block is not imminent, and in fact may not
occur at all. We call these eviction-asynchronous writes,
or simply asynchronous writes. Note that the distinc-
tion between synchronous and asynchronous writes and
the distinction between replacement and recoverability
writes are essentially orthogonal.

Assuming that the storage server could somehow
make these distinctions, what kinds of hints could it take
from write requests? We present several cases here.
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• synchronous writes: A synchronous write of block
b indicates that b is about to be evicted from the stor-
age client’s cache. If the storage server chooses to
place b into its cache, it can be confident that b is
not also in the storage client’s cache.

• asynchronous replacement writes: An asyn-
chronous replacement write of block b indicates two
things. First, b is present in the storage client’s
cache. Second, the storage client is preparing b for
eventual eviction, although eviction may not be im-
minent. Thus, in this case, it is not obvious what the
storage server should infer from the occurrence of
the write. However, we observe that if the storage
client is well-designed, an asynchronous replace-
ment write does suggest that b is quite likely to be
evicted from the storage client cache in the near
future. This is a weaker hint than that provided
by a synchronous write. However, given that a
well-designed client will seek to avoid synchronous
writes, asynchronous replacement write hints may
ultimately be more useful because they are more
frequent.

• asynchronous recoverability writes: An asyn-
chronous recoverability write of block b indicates
that b is present in the storage client’s cache and
that it may have been present there for some time,
since recoverability writes should target old unwrit-
ten updates. Unlike an asynchronous replacement
write, a recoverability write of block b does not in-
dicate that b’s eviction from the storage client cache
is imminent, so b is a poor candidate for placement
in the storage server cache.

To exploit these hints, it is necessary for the storage
server to distinguish between these different types of
writes. One possibility is for the server to attempt to in-
fer the type of write based on the information carried in
the write request: the source of the block, the destina-
tion of the block in the storage server, or the contents of
the block. Another alternative is for the storage client
to determine the type of each write and then label each
write with its type for the benefit of the storage server.
This is the approach that we have taken. Specifically,
we propose that the storage client associate a write hint
with each write request that it generates. A write hint is
simply a tag with one of three possible values: SYNCH,
REPLACE, or RECOV. These tags correspond to the three
cases described earlier.

The necessity of tagging means that the use of write
hints is not entirely transparent to the storage client.
Thus, under the classification proposed by Chen et al [5],
write hints would be considered to be an “aggressively
collaborative” technique, although they would be among

the least aggressive techniques in that category. On the
positive side, only a couple of bits per request are re-
quired for tagging, a negligible overhead. More impor-
tantly, we believe that it should be relatively easy and nat-
ural to identify write types from within the storage client.
As noted in Section 5, we easily instrumented DB2 Uni-
versal Database to label each write with one of the three
possible write types described above. Moreover, the
types of write requests that we consider are not spe-
cific to DB2. Other major commercial database manage-
ment systems, including Oracle [17] and Microsoft SQL
Server [14], distinguish recoverability writes from re-
placement writes and try to do the writes asynchronously,
resorting to synchronous writes only when necessary.
Non-DBMS storage clients, such as file systems, also
face similar issues. Finally, it is worth noting that the
storage client does not need to understand how the stor-
age server’s cache operates in order to attach hints to its
writes. Write hints provide information that may be use-
ful to the storage server, but they do not specify how it
should manage its cache.

4 Managing the Storage Server Cache

In this section, we discuss using the write hints in-
troduced in Section 3 to improve the performance of
second-tier cache replacement policies. We present tech-
niques for extending two important cache replacement
policies (LRU and MQ) so that they take advantage of
write hints. We also present a new cache replacement al-
gorithm that relies primarily on the information provided
by write hints. But first, we address the question of how
write hints can be used to achieve the goals of second-tier
cache management.

4.1 Using Hints for Cache Management
Our goals in managing the second-tier cache are twofold.
We want to maintain exclusiveness between the first-
and second-tier caches, which means that the second tier
should not cache blocks that are already cached in the
first tier. At the same time, we want the second tier to
cache blocks that will eventually be useful for the first
tier. These are blocks whose re-reference distance (de-
fined as the number of requests in the I/O stream between
successive references to the block) is beyond the locality
that could be captured in the first tier, and so will even-
tually miss in the first tier.

When choosing blocks to cache in the second tier, we
should bear in mind that hits in the second tier are only
useful for read requests from the first tier, but not write
requests. Thus, the second-tier cache management policy
should try to cache blocks that will cause read misses in
the first tier.
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We should also bear in mind that the second tier does
not have to cache every block that is accessed by the
first tier. The storage server could choose not to cache
a block that is accessed, but rather to send the block
from the storage device directly to the storage client (on
a read miss), or from the client directly to the device (on
a write).2 This is different from other caching scenar-
ios (e.g., virtual memory) in which the cache manager
must cache every block that is accessed. Thus, storage
server cache management has an extra degree of flexi-
bility when compared to other kinds of cache manage-
ment: when a new block arrives and the cache is full, the
cache manager can evict a block to make room for the
new block, or it can choose not to cache the new block.

With these points in mind, we consider the information
provided by SYNCH, REPLACE, and RECOV write re-
quests and also by read requests (which we label READ).
SYNCH and REPLACE writes of a block b indicate that
the block will be evicted from the first tier, so they pro-
vide hints that b should be cached in the second tier,
with SYNCH providing a stronger hint than REPLACE.
Caching b in the second tier will not violate exclusive-
ness, and future read accesses to b, which most likely
will miss in the first tier, will hit in the second tier.

Conversely, a READ request for block b indicates that
b will have just been loaded into the first-tier cache. We
cannot determine from the READ request how long b

will be retained in the first-tier cache. If recency-of-use
plays a role in the storage client’s cache management de-
cisions, then we can expect that b will be a very poor
candidate for caching at the storage server, as it is likely
to remain in the client’s cache for some time. On the
other hand, the client’s cache manager may take factors
besides recency-of-use into account in deciding to evict
b quickly. For example, if b is being read as part of a
large sequential table scan performed by a database sys-
tem then b may be quickly evicted from the client, and
potentially re-referenced.

RECOV writes provides little information to the stor-
age server cache. On the one hand, the written block is
known to be in the storage client cache, which makes it
a poor candidate for caching at the server. On the other
hand, a RECOV write of b indicates that b has probably
been in the storage client cache for a long time. Thus, the
RECOV write does not provide as strong a negative hint
as a READ.

Next, we illustrate how two important cache replace-
ment policies (LRU and MQ) can be extended to take
advantage of hints, and we present a new algorithm that
relies primarily on request types (i.e., hints) to manage
the cache.

4.2 LRU+Hints

We extend the least recently used (LRU) cache replace-
ment policy by using hints to manage the LRU list and to
decide whether or not to cache accessed blocks. We con-
sider a simple extension: we cache blocks that occur in
SYNCH or REPLACE write requests, since such blocks
are likely to be evicted from the storage client cache.
Blocks that occur in RECOV write requests or READ re-
quests are not added to the cache.

Specifically, in the case of a SYNCH or REPLACE
write for block b, we add b to the cache if it is not there
and we move it to the most-recently-used (MRU) end of
the LRU list. If a replacement is necessary, the LRU
block is replaced. In the case of a RECOV or READ re-
quest for block b, we make no changes to the contents of
the cache or to the recency of the blocks, except during
cold start, when the cache is not full. During cold start,
RECOV and READ blocks are cached and placed at the
LRU end of the LRU list. Of course, in the case of a
READ request, the server checks whether the requested
block is in its cache, and it serves the requested block
from the cache in case of a hit. This hint-aware policy is
summarized in Algorithm 1.

4.3 MQ+Hints

The Multi-Queue (MQ) [21] algorithm is a recently pro-
posed cache replacement algorithm designed specifically
for second-tier cache management. It has been shown
to perform better than prior cache replacement algo-
rithms, including other recently proposed ones such as
ARC [13] and LIRS [10]. The algorithm uses multi-
ple LRU queues, with each queue representing a range
of reference frequencies. Blocks are promoted to higher
frequency queues as they get referenced more frequently,
and when we need to evict a block, we evict from the
lower frequency queues first. Thus, MQ chooses the
block for eviction based on a combination of recency and
frequency.

To implement its eviction policy, MQ tracks the re-
cency and frequency of references to the blocks that
are currently cached. MQ also uses an auxiliary data
structure called the out queue to maintain statistics about
some blocks that have been evicted from the cache, Each
entry in the out queue records only the block statistics,
not the block itself, so the entries are relatively small.
The out queue has a maximum size, which is a config-
urable parameter of the MQ policy, and it is managed as
an LRU list.

We extend the MQ algorithm with hints in the same
way in which we extended LRU. If a request is a SYNCH
or REPLACE, we treat it exactly as it would be treated un-
der the original MQ algorithm. If the request is a READ,
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Algorithm 1 LRU+Hints

LRUWITHHINTS(b : block access)
1 if b is already in the cache /* cache hit */
2 then if type(b) = SYNCH or type(b) = REPLACE
3 then move b to the MRU end of the LRU list;
4 elseif type(b) = SYNCH or type(b) = REPLACE /* cache miss */
5 then insert b at the MRU end of the LRU list, evicting the LRU block to make room if needed;
6 elseif cache is not full /* cache miss and not SYNCH or REPLACE */
7 then insert b at the LRU end of the LRU list;

we check the queues for a hit as usual. However, the
queues are not updated at all unless the cache is not full,
in which case the block is added as it would be under the
original algorithm. RECOV requests are ignored com-
pletely unless the cache is not full, in which case the
block is added as in the original algorithm.

4.4 The TQ Algorithm

In this section, we present a new cache replacement algo-
rithm that relies primarily on request types, as indicated
by write hints, to make replacement decisions. We call
this algorithm the type queue (TQ) algorithm. Among
our hint-aware algorithms, TQ places the most emphasis
on using request types (or hints) for replacement. We
show in Section 5 that the TQ algorithm outperforms
other candidate algorithms. TQ is summarized in Fig-
ure 3 and Algorithm 2.

As described earlier, blocks that occur in SYNCH and
REPLACE write requests are good candidates for caching
at the storage server, since there is a good chance that
they will soon be evicted from the storage client. Blocks
that are requested in READ requests are not likely to be
requested soon, although we can not be certain of this.
The TQ policy accounts for this by caching READ re-
quests at the server, but at lower priority than SYNCH
and REPLACE requests. Thus, if a block is read, we will
retain it in the storage server cache if possible, but not
at the expense of SYNCH or REPLACE blocks. RECOV
writes provide neither a strong positive hint to cache the
block (since the block is known to be at the client) nor
a strong negative hint that the block should be removed
from the server’s cache. To reflect this, the TQ policy
effectively ignores RECOV writes.

The TQ algorithm works by maintaining two queues
for replacement. A high priority queue holds cached
blocks for which the most recent non-RECOV request
was a SYNCH or REPLACE write. A low priority queue
holds cached blocks for which the most recent non-
RECOV request was a READ. When a SYNCH or RE-
PLACE request for block b occurs, b is added to the high

priority queue if b is not cached, or moved to the high
priority queue if it is in the low priority queue. If b is
in the high priority queue and a READ request for b oc-
curs, then it is moved to the low priority queue. Thus, the
sizes of these two queues are not fixed, and will vary over
time depending on the request pattern. Replacements,
when they are necessary, are always made from the low
priority queue unless that queue is empty. If the low pri-
ority queue is empty, then replacements are made from
the high priority queue.

RECOV writes are ignored, which means that they do
not affect the contents of the cache or the order of the
blocks in the two queues. The only exception to this
is during cold start, when the cache is not full. During
cold start, blocks that occur in RECOV write requests are
added to the low priority queue if they are not already in
the cache.

The low priority queue is managed using an LRU pol-
icy.3 The high priority queue, which is where we expect
most read hits to occur, is managed using a replacement
policy that we call latest predicted read, or LPR. When
block b is placed into the high priority queue (because
of a REPLACE or SYNCH write to b), the TQ algorithm
makes a prediction, nextReadPosition(b), of the time
at which the next READ request for b will occur. When
block replacement in the high priority queue is necessary,
the algorithm replaces the block b with the latest (largest)
nextReadPosition(b).

This policy is similar in principle to the optimal
off-line policy. However, unlike the off-line pol-
icy, LPR must rely on an imperfect prediction of
nextReadPosition(b). To allow it to make these pre-
dictions, the TQ algorithm maintains an estimate of the
expected write-to-read distance of each block, which is
the distance (number of cache requests) between a RE-
PLACE or SYNCH write to the block and the first sub-
sequent READ request for the block. When block b is
added to the high priority queue, nextReadPosition(b)
is set to the current cache request count plus the expected
write-to-read distance for b.

The TQ policy uses a running average of all the past
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Figure 3: Structures used by TQ. Arrows show possi-
ble movements between queues in response to cache re-
quests.

write-to-read distances of a block as its estimate of the
expected write-to-read distance of this block. The policy
maintains this running average of write-to-read distances
for each block in the cache. In addition, like the MQ pol-
icy, TQ maintains an auxiliary data structure in which it
tracks write-to-read distances and other reference statis-
tics for a limited number of blocks that have previously
been in the cache but have been evicted. For consistency
with the terminology used by MQ, we call this data struc-
ture the TQ out queue. The maximum number of en-
tries in the out queue is a parameter to the TQ algorithm.
When an eviction from the out queue is necessary, the
entry with the largest write-to-read distance is evicted.

When a block is added to the cache, TQ checks the out
queue for an entry containing reference statistics about
this block. If the block is found in the out queue, its
write-to-read distance is obtained from the out queue,
and the entry for the block is then removed from the out
queue. If the block is not found in the out queue, its ex-
pected write-to-read distance in the cache is assumed to
be infinite.

To maintain the running average of write-to-read dis-
tances for the blocks in the cache, TQ tracks the cache re-
quest count of the last REPLACE or SYNCH write request
to each block in the high priority queue of the cache. This
is done whether the request is bringing a new block into
the cache, or whether it is a hit on a block already in the
cache. When a READ request is a hit on a block in the
high priority queue of the cache, the distance between
this read and the most recent REPLACE or SYNCH re-
quest to this block is computed. The running average
of write-to-read distances for this block is updated to in-

clude this new write-to-read distance.
When a block is evicted from the cache, an entry

recording the expected write-to-read distance and the po-
sition of the most recent REPLACE or SYNCH write of
this block is added to the out queue, and the out queue
entry with the highest write-to-read distance is evicted to
make room if necessary.

5 Evaluation

We used trace-driven simulations to evaluate the perfor-
mance of the cache management techniques described in
Section 4. The goal of our evaluation is to determine
whether the use of write hints can improve the perfor-
mance of the storage server cache. We also studied the
performance of an optimal cache management technique
to determine how much room remains for improvement.

5.1 Methodology
For the purposes of our evaluation, we used DB2 Univer-
sal Database (version 8.2) as the storage system client.
We instrumented DB2 so that it would record traces of
its I/O requests. We also modified DB2 so that it would
record an appropriate write hint with each I/O request
that it generates. These hints are recorded in the I/O trace
records.

To collect our traces, we drove the instrumented DB2
with a TPC-C [19] OLTP workload, using a scale fac-
tor of 25. The initial size of the database, including all
tables and indexes, is 606,317 4KB blocks, or approx-
imately 2.3 Gbytes. The database grows slowly during
the simulation run. The I/O request stream generated by
DB2 depends on the settings of a variety of parameters.
Table 1 shows the settings for the most significant param-
eters. We studied DB2 buffer pools ranging from 10% of
the (initial) size of the database to 90% of the database
size. The softmax and chngpgs thresh parame-
ters are important because they control the mix of write
types in the request stream. The chngpgs thresh
gives the percentage of buffer pool pages that must be
dirty to cause the page cleaners to begin generating re-
placement writes to clean them. The softmax param-
eter defines an upper bound on the amount of log data
that will have to be read after a failure to recover the
database. Larger values of softmax allow longer re-
covery times and result in fewer recoverability writes by
the page cleaners. By fixing chngpgs thresh at 50%
(near DB2’s default value) and varying softmax, we
are able to control the mix of replacement and recover-
ability writes generated by the page cleaners.

Table 2 summarizes the traces that we collected and
used for our evaluation. The 300 400 trace is our base-
line trace, collected using our default DB2 parameter set-
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Algorithm 2 The TQ Algorithm

TQACCESS(b : block access)
1 /* for the sake of simplicity, this assumes that the cache and the out queue are already full */
2 if type(b) = READ
3 then if b is in Qhigh /* b is in high priority queue */
4 then move b to Qlow; /* move b to low priority queue */
5 /* if this READ follows a SYNCH or REPLACE, update write-to-read distance */
6 if b is in cache or Qout and lastWritePosition(b) > 0
7 then update avgWriteReadDist(b) using (currentPosition − lastWritePosition(b));
8 lastWritePosition(b) = 0;
9 elseif type(b) = SYNCH or type(b) = REPLACE

10 then if b is in Qlow

11 then nextReadPosition(b) = currentPosition + avgWriteReadDist(b);
12 move b to Qhigh; /* move b to high priority queue */
13 lastWritePosition(b) = currentPosition; /* remember when this write happened */
14 elseif b in in Qout and lastWritePosition = 0
15 then nextReadPosition(b) = currentPosition + avgWriteReadDist(b);
16 move victim from cache to Qout;
17 /* victim is LRU in Qlow , or latest nextReadPosition in Qhigh if Qlow is empty */
18 move b to Qhigh; /* put b into high priority queue */
19 lastWritePosition(b) = currentPosition; /* remember when this write happened */
20 elseif b is not in Qhigh and b is not in Qout

21 then remove Qout entry with largest avgWriteReadDist;
22 move victim from cache to Qout;
23 /* victim is LRU in Qlow , or latest nextReadPosition in Qhigh if Qlow is empty */
24 put b into Qhigh; /* put b into high priority queue */
25 lastWritePosition(b) = currentPosition; /* remember when this write happened */
26 nextReadPosition(b) = ∞;

Parameter Our Default Value Other Values Description
bufferpool size 300000 4KB blocks 60000, 540000 blocks size of the DBMS buffer pool

softmax 400 50, 4000 recovery effort threshold
chngpgs thresh 50% - buffer pool dirtiness threshold

maxagents 1000 - maximum number of agent threads
num iocleaners 50 - number of page cleaner threads

Table 1: DB2 Parameter Settings

Buffer Asynchronous Asynchronous
Trace Pool Number of Synch. Replacement Recoverability
Name Size in blocks softmax Requests Writes Writes Writes Reads

300 400 300K (1.1 GB) 400 13269706 0.00% 62.57% 3.60% 33.83%
60 400 60K (234 MB) 400 15792519 0.08% 48.89% 0.18% 50.85%

540 400 540K (2.1 GB) 400 12238848 0.00% 35.78% 49.89% 14.33%
300 4000 300K (1.1 GB) 4000 13226138 0.01% 65.37% 0.11% 34.51%

300 50 300K (1.1 GB) 50 15175377 0.00% 0.03% 74.33% 25.64%

Table 2: I/O Request Traces
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tings. The remaining traces were collected using alterna-
tive buffer pool sizes and softmax settings. Not sur-
prisingly, increasing the size of the DB2 buffer pool de-
creases the percentage of read requests in the trace (be-
cause more read requests hit in the buffer pool). Large
buffer pools also tend to increase the frequency of recov-
erability writes, since updated pages tend to remain in
the buffer pool longer. As discussed above, smaller val-
ues of softmax increase the prevalence of recoverabil-
ity writes. The 300 50 trace represents a fairly extreme
scenario with a very low softmax setting. This causes
DB2 to issue a recoverability write soon after a page has
been updated, so that recovery will be extremely fast. Al-
though these settings are unlikely to be used in practice,
we have included this trace for the sake of completeness.

We used these traces to drive simulations of a storage
server buffer cache running the various algorithms de-
scribed in Section 4. In addition, we implemented a vari-
ation of the off-line MIN algorithm [4], which we call
OPT, as a means of establishing an upper bound on the
hit ratio that we can expect in the storage server’s buffer.
Suppose that a storage server cache with capacity C has
just received a request for block b. The OPT algorithm
works as follows:

• If the cache is not full, put b into the cache.

• If the cache is full and it includes b, leave the cache
contents unchanged.

• If the cache is full and it does not include b, then
from among the C blocks currently in the cache plus
b, eliminate the block that will not be read for the
longest time. Keep the C remaining blocks in the
cache.

Note that this algorithm may choose not to buffer b at all
if it is advantageous to leave the contents of the cache
unchanged.

For the MQ, MQ+Hints, and TQ algorithm, we set
maximum number of entries in the out queue to be equal
to the number of blocks that fit into the server’s buffer
cache. Thus, for each of these algorithms, the server
tracks statistics for the pages that are currently buffered,
plus an equal number of previously buffered pages. We
subtracted the space required for the out queue from the
available buffer space for each of these algorithms so that
our comparisons with LRU and LRU+Hints, which do
not require an out queue, would be on an equal-space
basis.

On each simulation run, we first allow the storage
server’s cache to fill. Once the cache is warm, we then
measure the read hit ratio for the storage server cache.
This is the percentage of read requests that are found in
the cache.
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Figure 4: Read Hit Ratios in Storage Server Cache.
Baseline (300 400) trace. Storage client cache size is
300K blocks (1.1 Gbytes), storage server cache size is
120K blocks (469 Mbytes).

5.2 Results: Baseline Case
Figure 4 shows the read hit ratios of the storage server
cache under each of the techniques described in Section 4
for the baseline 300 400 trace with the storage server
cache size set to 120K blocks (469 Mbytes). These re-
sults show that the LRU policy has very poor perfor-
mance, which is consistent with other previous eval-
uations of LRU in second-tier caches [15, 21]. The
LRU+Hints algorithm, which takes advantage of write
hints, results in a hit ratio more than three times that of
LRU, but it is still very low in absolute terms. The MQ
algorithm, which considers frequency as well as recency,
performs significantly better than LRU, and MQ+Hints
improves on hint-oblivious MQ. The write hint based TQ
algorithm provides the best performance, with a hit ratio
nearly double that of MQ. TQ achieves more than half of
the hit ratio of the off-line OPT algorithm.

5.3 Results: Sensitivity Analysis
We evaluated the sensitivity of the baseline results in Fig-
ure 4 to changes in three significant parameters: the size
of the storage server cache, the size of the storage client
cache (i.e., the DBMS buffer pool), and the value of the
softmax parameter, which controls the mix of write
types among the I/O requests.

Figure 5 shows the read hit ratio of the storage server
cache as its size varies from 60K blocks (234 Mbytes)
to 300K blocks (1.1 Gbytes), which is the size of the
first-tier cache. Several observations can be made about
these data. First, the relative advantage of the TQ algo-
rithm is consistent until the server’s cache reaches the
largest size (300K blocks, 1.1 Gbytes) that we consid-
ered, at which point the advantage of TQ begins to di-
minish. For this large cache size, the improvement ob-
tained by adding hints to MQ also becomes negligible.
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However, for large cache sizes the performance of the
simple LRU+Hints algorithm is much better than that of
plain LRU, and comparable to that of TQ and the MQ
policies. As the storage server cache gets smaller, the
performance of LRU+Hints (and plain LRU) drops off
quickly.

Figure 6 illustrates the impact of changing the storage
client (DBMS) cache size, with the storage server cache
size fixed at 120K blocks (469 Mbytes). These results
show that management of the storage server cache be-
comes more difficult as the storage client cache becomes
larger. Large storage client caches absorb most of the
locality available in the request stream, leaving little for
the storage server cache to exploit. Larger storage client
caches also make it more difficult to maintain exclusive-
ness between the client and server caches. For very large
client caches, the TQ algorithm performs more than five
times better than the best hint-oblivious algorithm. How-
ever, all of the algorithms, including TQ, have poor per-
formance in absolute terms, with read hit ratios far be-
low that of the off-line OPT algorithm. When the stor-
age client buffer is very small (60K blocks), all of the
algorithms provide similar performance. In this case, the
small storage client cache leaves temporal locality for the
storage server cache to exploit, so that the difference be-
tween LRU and the remaining algorithms is not as great
as it is when the client’s cache is large.

Finally, Figure 7 shows the server cache read hit ra-
tios as the softmax parameter increases from 50 to
4000. When softmax is very large (4000), the DBMS
is effectively being told that long recovery times are ac-
ceptable. Under those conditions (trace 300 4000), the
DBMS generates almost no recoverability writes; this
is the primary difference between the baseline 300 400
trace and the 300 4000 trace. This has little impact on
the performance of any of the algorithms.

At a softmax setting of 50, all of the hint-based al-
gorithms, have similar performance, which is better than
that of MQ and much better than LRU. When softmax
is 50, almost three quarters of the I/O requests are recov-
erability writes, and there are no replacement writes. As
was noted earlier, this represents an extreme scenario in
which changes are flushed to the storage server almost
immediately. As a result, this softmax setting gener-
ally gives poor overall system performance because of
the substantial I/O write bandwidth that it requires, and
is unlikely to be used in practice.

6 Related Work

Classical, general-purpose replacement algorithms, such
as LRU and LFU, rely on the recency and frequency
of requests to each block to determine which blocks to
replace. More recent general-purpose algorithms, such

as 2Q [12], LRU-k [16], ARC [13], and CAR [3] im-
prove on these classical algorithms, usually by balancing
recency and frequency when making replacement deci-
sions. Special purpose algorithms have been developed
for use in database management systems [7] and other
kinds of applications that cache data.

While any of the general-purpose algorithms can be
used at any level of a cache hierarchy, researchers have
recognized that cache management at the lower tiers of
a hierarchy poses particular challenges, as was noted in
Section 1. Zhou et al observed that access patterns at
second tier caches are quite different from those at the
first tier [21]. Muntz and Honeyman found that the
second-tier cache in a distributed file system had low
hit ratios because of this problem [15]. A second prob-
lem, pointed out by Wong and Wilkes, is that lower tier
caches may contain many of the same blocks as upper
tier caches [20]. This lack of exclusiveness wastes space
and hurts the overall performance of the hierarchy.

Several general approaches to the problem of manag-
ing caches at the lower tiers in a hierarchy have been
proposed. Since there is little temporal locality avail-
able in requests to second-tier caches, one strategy is to
use a general-purpose replacement policy that is able to
consider request frequency in addition to recency. Zhou,
Philbin, and Li propose the multi-queue (MQ) algorithm
(Section 4.3) to address this problem [22].

Although the MQ algorithm has been shown to be
a better choice than LRU for managing a second-tier
cache, the algorithm itself is not sensitive to the fact
that it is operating in a hierarchy. Much of the work on
caching in hierarchies focuses instead on techniques that
are explicitly aware that they are operating in a hierarchy.
One very simple technique of this type is to quickly re-
move from a lower-tier cache any block that is requested
by an upper-tier, so that the block will not be cached re-
dundantly [8, 5]. Other techniques involve tracking or
simulating, at the second tier, certain aspects of the op-
eration of the first-tier cache. One example of this is
eviction-based caching, proposed by Chen, Zhou, and
Li [6]. Under this technique, the second-tier cache tracks
the target memory location of every block read by the
first tier. This identifies where in the first tier cache each
cached block has been placed. When the second-tier ob-
serves a new block being placed in the same location as a
previously-requested block, in infers that the previously-
requested block has been evicted from the first-tier cache
and should be fetched into the second-tier cache. This
places an extra load on the storage system, because it
speculatively prefetches blocks.

The X-RAY mechanism takes a similar approach [2].
However, X-RAY assumes that the first tier is a file sys-
tem, and it takes “gray-box” approach [1] to inferring the
contents of the file system’s cache. X-RAY can distin-
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Figure 5: Read Hit Ratios in the Storage Server Cache. Baseline (300 400) trace. Storage client cache size is 300K
blocks, storage server cache size varies from 60K blocks to 300K blocks.

guish file meta-data (i-nodes) from file data. It inspects
the meta-data when it is flushed to the tier-two cache,
and it uses the resulting information (e.g., access and up-
date timestamps) to predict which blocks are likely to
be in the file system’s cache. Sivathanu et al proposed
a related technique called semantically-smart disks [18].
Like X-RAY, this assumes that the first tier is a file sys-
tem. A probe process running against the file system al-
lows the disk system at the second tier to discover, e.g.,
which blocks hold file system meta-data. It then uses this
information to improve caching performance in the disk
system.

All of the techniques discussed above share the prop-
erty that they are transparent to the first-tier cache, i.e.,
they can be deployed without modifying the code that
manages the first tier. Chen et al called these techniques
“hierarchically aware” [5]. Other techniques, called “ag-
gressively collaborative” by the same authors, require
some modification to the first-tier. Wong and Wilkes
defined a DEMOTE operation that is issued by the first
tier cache to send evicted blocks to the second tier [20].
This operation can be used to achieve the same effect
as eviction-based caching, except that with DEMOTE it
is not necessary for the second-tier to infer the occur-
rence of first-tier evictions. Another possibility is for
the first tier to pass hints to the second tier. For exam-
ple, Chen et al describe Semantics-Directed Caching, in
which the first-tier cache provides hints to the second tier
about the importance (to the first tier) of blocks that it
requests [5]. Franklin et al propose a technique for col-
laboratively managing the caches at a database client and
a database server, in which the client passes a hint to the

server before it evicts a block, and the server can then ask
the client to send it the block on eviction if the client has
the only cached copy of this block [8].

The write hints proposed in this paper belong to the
general class of “aggressively collaborative” techniques.
However, they are complementary to previously pro-
posed techniques of this class. For example, we could
still exploit demotion information [20] or other kinds of
hints [8, 5] while using write hints.

Another approach for managing two or more tiers of
caches in a hierarchy is to use a single, unified controller.
The Unified and Level-aware Caching (ULC) protocol
controls a cache hierarchy from the first tier by issu-
ing RETRIEVE and DEMOTE commands to caches at the
lower tiers to cause them to move blocks up and down
the cache hierarchy [11]. Zhou, Chen, and Li describe
a similar approach, which they call “global” L2 buffer
cache management, for a two-level hierarchy [5].

7 Conclusion

In this paper we observe that write hints can provide use-
ful information that can be exploited by a storage server
to improve the efficiency of its cache. We propose hint-
aware versions of two existing hint-oblivious replace-
ment policies, as well as TQ, a new hint-based policy.
Trace-driven simulations show that the hint-aware poli-
cies perform better than the corresponding hint-oblivious
policies. Furthermore, the new policy, TQ, had the best
performance under almost all of the conditions that we
studied.
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Figure 6: Read Hit Ratios in the Storage Server Cache. Traces 60 400, 300 400, and 540 400. Storage client cache
size varies from 60K blocks (234 Mbytes) to 540K blocks (2.1 Gbytes). Storage server cache size is 120K blocks (469
Mbytes).

Our work focused on a configuration in which a
DBMS, running an OLTP workload, acts as the storage
client. In this common scenario, write hints are quite
valuable to the storage server. The write hints them-
selves, however, are general, and reflect issues that must
be faced by any type of storage client that caches data.
Thus, we are optimistic that the benefits of write hints
will extend to other types of storage clients that experi-
ence write-intensive workloads.

Possibilities for future work include investigating the
use of write hints for other types of workloads or storage
clients. They also include adding an aging mechanism
to the TQ policy, and investigating avenues for the real
world adoption of write hints, possibly through enhance-
ments to the the SCSI interface.
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Notes
1We focus on two-tier cache hierarchies for clarity of presentation,

but our discussion and proposed techniques extend to cache hierarchies
with more than two tiers.

2Some short-term buffering may be required to accommodate trans-
fer speed mismatches and request bursts. We have ignored this for the
sake of simplicity.

3We expect that hits in the low priority queue will be uncommon,
and that the behavior of the TQ policy will not be very sensitive to the
replacement policy in the low priority queue.
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