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Abstract 

In this paper we present two novel techniques for
improving the performance of the Internet Small
Computer Systems Interface (iSCSI) protocol, which is
the basis for IP-based networked block storage today.
We demonstrate that by making a few modifications to
an existing iSCSI implementation, it is possible to 
increase the iSCSI protocol processing throughput from
1.4 Gbps to 3.6 Gbps. Our solution scales with the CPU
clock speed and can be easily implemented in software 
using any general purpose processor without requiring
specialized iSCSI protocol processing hardware.  

To gain an in-depth understanding of the processing
costs associated with an iSCSI protocol 
implementation, we built an iSCSI fast path in a user-
level sandbox environment. We discovered that the
generation of Cyclic Redundancy Codes (CRCs) which
is required for data integrity, and the data copy
operations which are required for the interaction
between iSCSI and TCP represent the main bottlenecks 
in iSCSI protocol processing. We propose two
optimizations to iSCSI implementations to address 
these bottlenecks. Our first optimization is on the way
CRCs are being calculated. We replace the industry 
standard algorithm proposed by Prof. Dilip Sarwate 
with ‘Slicing-by-8’ (SB8), a new algorithm capable of 
ideally reading arbitrarily large amounts of data at a
time while keeping its memory requirement at
reasonable level. Our second optimization is on the way
iSCSI interacts with the TCP layer. We interleave the 
compute-intensive data integrity checks with the 
memory access-intensive data copy operations to
benefit from cache effects and hardware pipeline 
parallelism.

1. Introduction 

Networked block storage technologies are likely to
play a major role in the development of next generation
data centers. In this paper we address the problem of 
efficiently implementing networked block storage
systems focusing on systems that operate on top of the 
TCP/IP protocol stack. We analyze the performance of 
the iSCSI protocol [30], which is the basis for IP-based
networked block storage today and suggest ways to
improve its performance. There are two primary 
reasons why we believe IP-based networked block

storage is important. First, such type of storage enables
efficient remote backup and recovery operations on top 
of large-scale and geographically distributed networks.
Second, using the same IP-based technology in both 
storage and regular communication networks makes 
network management easier and less expensive since 
there is only one type of network to manage. More 
elaborate discussions on networked storage are
presented in [28, 33]. 

Commercial iSCSI solutions have been designed thus
far using TCP/IP offload engines (TOEs) or iSCSI host
bus adapters (HBAs). These systems offload either the
TCP/IP protocol stack or both the TCP/IP and the
iSCSI protocols into specialized hardware units. In this 
paper we follow an alternative approach to offloading
by focusing on a software-only iSCSI implementation.
The reason why we focus on a software iSCSI 
implementation is because such implementation scales
better with the CPU clock speed and the number of
processing units available and can be easily realized 
using general purpose processors without specialized
iSCSI protocol processing hardware. Our work is also
motivated by earlier studies that have demonstrated that
accessing protocol offload engines may become a
bottleneck for some protocol processing workloads. For 
example, Sarkar et al [27] compare a software iSCSI 
stack with two industry standard solutions, a TOE and 
an HBA, operating at 1 Gbps. Their paper shows that 
while current generation hardware solutions do achieve 
better throughput-utilization efficiency as compared to
software for large block sizes, accessing the hardware 
offload engines becomes a bottleneck for small block
sizes.  

The contributions of this paper can be summarized as 
follows: First, through measurements and simulations
performed on a sandbox implementation of iSCSI, we
quantify the processing costs of each of the protocol 
components including data structure manipulation,
CRC generation, and data copies. We identify the CRC 
generation and data copies as the primary bottleneck in 
iSCSI processing. Second we replace the industry-
standard CRC generation algorithm developed by Prof. 
Dilip Sarwate [29] with a new ‘Slicing-by-8’ (SB8) 
algorithm, capable of ideally reading arbitrarily large 
amounts of data at a time while keeping its memory
requirement at reasonable level. A third contribution of
our paper is a novel way to implement the interaction
between the iSCSI and TCP layers. We interleave the 
compute-intensive data integrity checks with the 
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memory access-intensive data copy operations to
benefit from cache effects and hardware pipeline 
parallelism. This optimization was inspired by the idea 
of integrated copy-checksum as first suggested by Clark 
et al [6]. We demonstrate that these two novel 
implementation techniques can increase the processing
throughput of our implementation from 1.4 Gbps to 3.6
Gbps. These optimizations correspond to a small 
number of changes in the source code of a software 
iSCSI implementation. Our work relies on the 
acceleration of TCP on the CPU which is a well 
researched problem [4, 5, 13, 26]. 

The paper is organized as follows. In Section 2 we
provide an overview of the iSCSI protocol, and
describe typical receive and transmit fast paths in an
iSCSI initiator stack.  The information presented in this 
section is essential so as the reader can understand our 
optimizations. For more information on iSCSI, the
reader can look at [30]. In section 3, we propose two 
optimizations that address the two primary bottlenecks 
in an iSCSI implementation - the CRC generation
process and the data copies. In Section 4, we describe 
our sandbox iSCSI implementation, and our 
measurement and simulation methodology. In Section 5
we evaluate our approach and discuss our results. In
Section 6 we present related work in the area and, 
finally, in Section 7 we provide some concluding
remarks. 

2. Overview of iSCSI processing 

2.1 The Protocol 

The iSCSI protocol maps the SCSI client-server
protocol onto a TCP/IP interconnect.  Initiators (clients) 
on a SCSI interface issue commands to a SCSI target 
(server) in order to request the transfer of data to or
from I/O devices. The iSCSI protocol encapsulates 
these SCSI commands and the corresponding data into
iSCSI Protocol Data Units (PDUs) and transmits them
over a TCP connection. An iSCSI PDU includes a 
Basic Header Segment (BHS), followed by one or more
Additional Header Segments (AHS). Additional header 
segments are followed by a data segment. Headers and 
data are protected separately by a digest based on the 
CRC32c standard [30]. 

An iSCSI session has two phases. It starts with a
‘login’ phase during which the initiator and target 
negotiate the parameters for the rest of the session.
Then, a ‘full feature’ phase is used for sending SCSI
commands and data. Based on the parameters 
negotiated during the login phase, an iSCSI session can
use multiple TCP connections multiplexed over one or
more physical interfaces, enable data integrity checks
over PDUs, and even incorporate different levels of

error recovery. iSCSI sessions are typically long-lived. 
The login phase represents only a small part of the 
overall protocol processing load. Because of this reason
we have decided to investigate optimizations on the
‘full feature’ phase of the protocol only. Figure 1
depicts a typical layered protocol stack on an initiator.  

User Application

Block Device Subsystem

SCSI Subsystem

File System

TCP/IP

iSCSI

User Space

Kernel Space

Kernel Space API to TCP/IP

Figure 1: Typical initiator protocol stack 

User-level applications issue ‘read’ and ‘write’ 
system calls that are serviced by the SCSI subsystem 
through the file system and block device layers. A SCSI
‘upper’ layer creates a SCSI Command Descriptor 
Block (CDB) and passes it to a SCSI ‘lower’ layer. The
SCSI lower layer is the iSCSI driver for an IP
interconnect. This iSCSI driver uses the kernel interface 
to the TCP/IP stack to transmit SCSI commands and 
data to a target. Each SCSI read command is
transmitted as an iSCSI command PDU to a target. A 
target then services the read command by encapsulating 
SCSI data into one or multiple iSCSI data PDUs and by
sending them to the initiator. The data PDUs are 
eventually followed by a status PDU from the target
signaling the completion of the read operation.  SCSI
write commands are similarly implemented by first
sending a SCSI write command to a target followed by
a pre-negotiated number of unsolicited bytes. The target 
paces the flow of data from the initiator by issuing 
flow-control messages based on the availability of
target buffers. As in the case of the read command, the 
end of the data transfer is indicated by the transmission 
of a status PDU from the target to the initiator. 

2.2 iSCSI Read Processing 

Figure 2 shows the processing of an incoming data
PDU (also called ‘data-in’ PDU) in an initiator stack 
performing SCSI read operations.  
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Figure 2: Incoming data PDU processing for reads

An iSCSI PDU, which has a default size of 8KB, can
span multiple TCP segments. As the Network Interface 
Card (NIC) receives these segments, it places them
using the Direct Memory Access (DMA) technique into
a number of NIC buffers and interrupts the CPU (step 1
in the figure). The device driver and stack then use the 
Rx descriptors and the TCP Control block in order to
perform TCP/IP processing and to strip off the
Eth/IP/TCP headers (steps 2 and 3). The segment 
payloads are then queued into socket descriptor
structures (steps 4 and 5). So far, steps 1-5 describe
processing associated at the TCP/IP layer and below. 

Steps 6-10 describe processing associated with the
iSCSI layer. The iSCSI layer first reads the iSCSI 
header from the socket layer into an internal scratch 
buffer (step 6). The header consists of a fixed 48 byte
basic header, a header CRC, and in some cases
additional header bytes. It then computes a CRC over 
the header and validates this CRC value by comparing
it with the CRC attached to the header. If the CRC 
value is valid, the iSCSI layer processes the header and
identifies the incoming iSCSI PDU as a data PDU (step 
7).  A tag value included in the header is used for 
identifying the SCSI buffer where the data PDU should 
be placed. Based on the length of the PDU and its
associated offset, both of which are indicated in the
iSCSI header, the iSCSI layer creates a scatter-list 
pointing to the SCSI buffer. Then, the iSCSI layer 
passes the scatter list to the socket layer which copies 
the iSCSI PDU payload from the TCP segments into 
the SCSI buffer (steps 8 and 9). Finally, the data CRC 
is computed and validated over the entire PDU payload 

(step 10). This is the last step in the processing of an 
incoming PDU.

2.3 iSCSI Write Processing 

Figure 3 shows the handling of an outgoing data PDU
(also called ‘data-out’ PDU) in an initiator stack
performing SCSI writes to the target. 
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Figure 3: Outgoing data PDU processing for writes 

The iSCSI protocol layer at the initiator maintains a 
pointer into the SCSI buffer for the next data PDU to be
sent to the target. In reply to flow control (i.e., R2T)
PDUs that are received from the target, the iSCSI layer 
transmits the data PDU.  It first constructs the iSCSI 
header that describes the data PDU, computes a CRC
value on the header, and attaches this CRC value to the
header (step 1). The iSCSI layer then builds a gather list 
that describes the header, the header CRC, and the 
payload of the iSCSI PDU. It computes a data CRC on
the payload and attaches it to the gather list (step 2). 
Finally, it uses the kernel interface to the TCP/IP stack 
to send the PDU to the target.  

Based on the TCP/IP stack implementation, the data
is either directly transmitted from the SCSI buffer to the 
NIC or undergoes a copy to temporary socket buffers, 
as shown in steps 3, 4, and 5. The TCP/IP stack then 
creates the transport, network, and link headers
associated with each of the TCP segments that hold a
portion of the iSCSI PDU. It also creates header and 
payload descriptors that point to the packet headers and 
the TCP payload respectively (steps 6 and 7). Finally, 
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the stack signals the NIC to send the packets out onto
the wire via DMA (step 8).  

3. Software Optimizations 

One can expect that the CRC generation process and 
data copies are the most time consuming parts of iSCSI
processing.  CRC generation is costly because it 
requires several logical operations to be performed on a 
byte-by-byte basis for each byte of data. Data copies are
costly because accessing off-chip memory units
typically requires several hundreds of clock cycles to
complete.  In sections 4 and 5, we describe our sandbox 
implementation and processing profile of the iSCSI 
stack. The performance of our sandbox implementation
was measured on a 1.7 GHz Intel® Pentium® M 
processor with a 400 MHz Front Side Bus (FSB), and a
single channel DDR-266 memory subsystem. In 
summary, we found that the generation of CRC32c
codes indeed represents the most time consuming 
component of the stack operating at a rate of 6.5 cycles
per byte, followed by data copy operations that operate
at a rate of 2.2 cycles per byte.  In this section, we 
describe how we address these bottlenecks using a new
CRC generation algorithm and a technique to interleave
data copies with the CRC generation process. 

3.1 The CRC generation process 

Cyclic redundancy codes (CRC) are used for
detecting the corruption of digital content during its
production, transmission, processing or storage. CRC
algorithms treat each bit stream as a binary polynomial 
B(x) and calculate the remainder R(x) from the division
of B(x) with a standard ‘generator’ polynomial G(x).
The binary words corresponding to R(x) are transmitted
together with the bit stream associated with B(x). The
length of R(x) in bits is equal to the length of G(x)
minus one. At the receiver side, CRC algorithms verify 
that R(x) is the correct remainder. Long division is
performed using modulo-2 arithmetic. Additions and 
subtractions in module-2 arithmetic are ‘carry-less’ as
illustrated in Table 1. In this way additions and 
subtractions are equal to the exclusive OR (XOR) 
logical operation. 

0+0 = 0-0 = 0 
0+1 = 0-1 = 1 
1+0 = 1-0 = 1 
1+1 = 1-1 = 0 

Table 1: Modulo-2 arithmetic

Figure 4 illustrates a long division example. In the 
example, the divisor is equal to ‘11011’ whereas the 
dividend is equal to ‘1000111011000’. The long 

division process begins by placing the 5 bits of the
divisor below the 5 most significant bits of the
dividend. The next step in the long division process is
to find how many times the divisor ‘11011’ ‘goes’ into
the 5 most significant bits of the dividend ‘10001’. In
ordinary arithmetic 11011 goes zero times into 10001 
because the second number is smaller than the first. In 
modulo-2 arithmetic, however, the number 11011 goes
exactly one time into 10001. To decide how many times
a binary number goes into another in modulo-2
arithmetic, a check is being made on the most 
significant bits of the two numbers. If both are equal to
‘1’ and the numbers have the same length, then the first
number goes exactly one time into the second number, 
otherwise zero times. Next, the divisor 11011 is 
subtracted from the most significant bits of the dividend
10001 by performing an XOR logical operation. The 
next bit of the dividend, which is ‘1’, is then marked
and appended to the remainder ‘1010’. The process is
repeated until all the bits of the dividend are marked. 
The remainder that results from such long division
process is the CRC value. 

Figure 4: Long division using modulo-2 arithmetic 

Figure 5: Accelerating the long division using table
lookups 

The long division process is a compute-intensive
operation because it requires in the worst case one shift
operation and one XOR logical operation for every bit
of a bit stream. Most software-based CRC generation 
algorithms, however, perform the long division quicker
than the bit-by-bit marking process described above.
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One commonly used technique for accelerating the long 
division process is to pre-compute the current
remainder that results from a group of bits and place the
result in a table. Before the beginning of the long 
division process all possible remainders which result
from groups of bits are pre-computed and placed into a
lookup table. In this way, several long division steps 
can be replaced by a single table lookup step.  

The main idea behind this technique is shown in
Figure 5. In the example of Figure 5, the remainder
‘0110’, which is formed in the third step of the long
division process is a function of the five most
significant bits of the dividend ‘10001’ and the next
two bits ‘11’. Since these bits are known, the remainder 
0110 can be calculated in advance. As a result, 3 long
division steps can be replaced by a single table lookup. 
Additional table lookups can further replace subsequent
long division steps. To avoid using large tables, table-
driven CRC acceleration algorithms typically read no 
more than 8 bits at a time.  

Step 1 Step 2

current
byte

XOR current CRC

=

modified
byte

byte 3 byte 2 byte 1 byte 0

current
byte

XOR current CRC

=

modified
byte

byte 3 byte 2 byte 1 byte 0

modified
byte

entry

table

lookup

Figure 6: The Sarwate algorithm 

The most representative table-driven CRC generation 
algorithm used today is the algorithm proposed by Dilip
V. Sarwate, shown in Figure 6. The length of the CRC
value generated by the Sarwate algorithm is 32 bits. 
The Sarwate algorithm is more complicated than the
straightforward lookup process of Figure 5 because the

amount of bits read at a time (8 bits) is smaller than the 
degree of the generator polynomial. 

Initially, the CRC value is set to a given number 
which depends on the standard implemented (e.g., this
number is 0xFFFFFFFF for CRC32c). For every byte
of an input stream the algorithm performs the following
steps: First, the algorithm performs an XOR operation 
between the most significant byte of the current CRC
value and the byte from the stream which is read (Step 
1). The 8-bit number which is produced by this XOR
operation is used as an index for accessing a 256 entry 
table (Step 2). The lookup table used by the Sarwate 
algorithm stores the remainders from the division of all
possible 8-bit numbers shifted by 32 bits to the left with
the generator polynomial. The value returned from the 
table lookup is then XOR-ed with the 24 least 
significant bits of the current CRC value, shifted by 8 
bit positions to the left (Step 3). The result from this last
XOR operation is the CRC value used in the next
iteration of the algorithm’s main loop. The iteration
stops when all bits of the input stream have been taken 
into account. Detailed justification and proof of
correctness of the Sarwate algorithm is beyond the 
scope of this paper. The reader can learn more about the 
Sarwate algorithm in [29]. 

3.2 Optimizing the CRC generation process

The Sarwate algorithm was designed at a time when 
most computer architectures supported XOR operations
between 8 bit quantities. Since then, computer 
architecture technology has progressed to the point
where arithmetic operations can be performed 
efficiently between 32 or 64 bit quantities. In addition
modern computer architectures comprise large on-chip
cache memory units which can be accessed in a few 
clock cycle time. We believe that such advances call for 
re-examination of the mathematical principles behind
software-based CRC generation.  

The main disadvantage of existing table-driven CRC
generation algorithms is their memory space 
requirement when reading a large number of bits at a
time. For example, to achieve acceleration by reading 
32 bits at a time, table-driven algorithms require storing 
pre-computed remainders in a table of 232 = 4G entries. 
To solve this problem we propose a new algorithm that
slices the CRC value produced in every iteration as well 
as the data bits read into small terms. These terms are
used as indexes for performing lookups on different
tables in parallel. The tables differ between each other 
and are constructed in a different manner than Sarwate
as explained in detail below. In this way, our algorithm
is capable of reading 64 bits at a time, as opposed to 8, 
while keeping its memory space requirement to 8KB.

Step 3: 

byte 2 byte 1 byte 0 0

shifted current CRC

XOR entry

= next CRC

byte 2 byte 1 byte 0 0

shifted current CRC

XOR entry

= next CRC
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Figure 7: The Bit slicing principle 

CRC is a linear code. This means that CRC(A+B) =
CRC(A) + CRC(B). The linearity of CRC derives from
the arithmetic used (modulo 2). The design of our
algorithm is based on two principles associated with the
linearity of CRC, namely a ‘bit slicing’ and a ‘bit
replacement’ principle. The bit slicing principle is
shown in Figure 7. According to this principle, if a 
binary number is sliced into two or more constituent
terms the CRC value associated with the binary number
can be calculated as a function of the CRC values of its 
constituent terms. As it is shown in the figure, the CRC
of the number consisting of slices S1, S2, S3, and S4 is 
the result of an XOR operation between values R1, R2,
R3, and S4. Value R1 is the CRC of the original number 
if all slices but S1 are replaced with zeros. Values R2
and R3 are defined in a similar manner.  The bit slicing 
principle is important because it allows us to compute 
the CRC of a potentially large number as a function of
the CRCs of smaller terms. Thus, the bit slicing 
principle can potentially solve the memory explosion 
problem associated with existing table-driven
algorithms.  

The bit replacement principle is shown in Figure 8.
According to this principle, an arbitrarily long prefix of
a bit stream can be replaced by an appropriately 
selected binary number, without changing the CRC
value of the stream. The binary number used for
replacing a prefix is the remainder from the division of
the prefix with the CRC generator polynomial. In the 
example of Figure 8, the U1 prefix of the binary number 
[U1:U2] can be replaced by the remainder R1 from the 
division of U1 with G. It is this bit replacement principle
which we take advantage of in the design of our 
algorithm in order to read 64 bits at a time. 

Figure 8: The Bit replacement principle 

Our algorithm, called ‘Slicing-by-8’ (SB8), is 
illustrated in Figure 9. As in the case of the Sarwate 
algorithm, the initial CRC value of a stream is set to a
given number which depends on the standard
implemented (e.g., this number is 0xFFFFFFFF for 
CRC32c). For every 64-bit chunk of an input stream
the algorithm performs the following steps: First, 
the algorithm performs an XOR operation between 
the 32 most significant bits of the chunk and the 
current CRC value (Step 1). The 64-bit value
produced from this XOR operation is then sliced 
into 8 slices of equal length (Step 2). Each slice is 
used for accessing a separate lookup table (Step 3). 
The lookup tables used by the algorithm store the 
remainders from the division of all possible 8-bit
numbers shifted by a variable number of bits to the
left with the generator polynomial. The offset 
values used for calculating the table entries begin
with 32 for Table 1 and increase by 8 for every
table. The values returned form all table lookups are 
XOR-ed to one another producing the CRC value 
used in the next iteration of the algorithm’s main loop. 

The benefit from slicing comes from the fact that 
modern processor architectures comprise large cache
units. These cache units are capable of storing moderate
size tables (e.g., 8KB tables as required by the Slicing-
by-8 algorithm) but not sufficient for storing tables 
associated with significantly larger strides (e.g., 16GB 
tables associated with 32-bit strides). If tables are stored
in an external memory unit, the latency associated with 
accessing these tables may be significantly higher than
when tables are stored in a cache unit. For example, a
DRAM memory access requires several hundreds of 
clock cycles to complete by a Pentium® M processor, 
whereas an access to a first level cache memory unit 
requires less than five clock cycles to complete.  The
processing cost associated with slicing is typically
insignificant when compared to the cost of accessing 
off-chip memory units. 

with generator polynomial: G

The CRC of: S1 S2 S4S3

is equal to: R1R1 XOR R2 XOR R3 XOR S4

where:

R1
is the remainder from
the division of:

S1 zeros with G

R2R2
is the remainder from
the division of:

zeros with GS2

R3
is the remainder from
the division of: zeros

with GS3

U1 U2

The CRC of the number:

with generator polynomial: G

is equal to the CRC of: R1 U2

where: R1

U1

is the remainder form the division of

Gwith

U1 U2

The CRC of the number:

with generator polynomial: G

is equal to the CRC of: R1 U2
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USENIX Association272



Step 1: 

current chunk

XOR

current 
CRC

zeros

=

modified chunk

current chunk

XOR

current 
CRC

zeros

=

modified chunk

Step 2: 

is sliced into:

modified chunk

S8 S7 S6 S7 S4 S3 S2 S1

is sliced into:

modified chunk

S8 S7 S6 S7 S4 S3 S2 S1

Step 3: 

Table 1

S8 S7 S6 S7 S4 S3 S2 S1

Table 8

entry 8
entry 1…

lookups

Table 1

S8 S7 S6 S7 S4 S3 S2 S1

Table 8

entry 8
entry 1…

lookups

Step 4: 

entry 1

XOR

entry 8

…

=
next
CRC

entry 1

XOR

entry 8

…

=
next
CRC

Figure 9: The Slicing-by-8 algorithm 

Slicing is also important because it reduces the
number of operations performed for each byte of an
input stream when compared to Sarwate. For each byte
of an input stream the Sarwate algorithm performs the 
following: (i) an XOR operation between a byte read 
and the most significant byte of the current CRC value; 
(ii) a table lookup; (iii) a shift operation on the current
CRC value; and (iv) an XOR operation between the 

shifted CRC value and the word read from the table. In 
contrast, for every byte of an input stream the Slicing-
by-8-algorithm performs only a table lookup and an
XOR operation. This is the reason why the Sicing-by-8
algorithm is faster than the Sarwate algorithm. Detailed
description and proof of correctness of Slicing-by-8
can be found in reference [16]. 

3.3 Interleaving data copies with the CRC 
generation process 

Following CRC, the next big overhead in iSCSI
processing is data copy. Data copy is a memory access-
intensive operation, and as such its performance
depends on the memory subsystem used. In this respect,
data copy differs from the CRC generation process 
since the latter is compute-intensive and scales with the 
CPU clock. To further speed up data touching
operations beyond CRC as discussed in Sections 3.1 
and 3.2, we investigate how data copies and CRC 
generation take place in iSCSI. 

On the inbound path, a packet which is part of an 
iSCSI PDU is copied from the network buffer to its 
appropriate offset in the SCSI buffer. In a typical 
software Linux iSCSI implementation, the placement of
the data is controlled by the iSCSI layer, and is 
performed based on the information contained in the
iSCSI PDU header. The copy operation by itself, 
however, is performed by the sockets/TCP layer. Once 
the entire PDU payload is placed in the SCSI buffer, the
iSCSI layer computes and validates a CRC value over 
the entire payload. On the outbound path, the iSCSI 
layer calculates CRC over the entire PDU payload. It 
then uses the kernel sockets layer to send out this PDU 
as multiple TCP packets. Again, the CRC is 
implemented at the iSCSI layer, while the copy is a part 
of the kernel sockets layer.  

Thus, if iSCSI is implemented in a strictly layered
fashion over a kernel sockets interface to TCP/IP, copy 
and CRC are treated as two separate operations. 
However, if copy and CRC are interleaved, the
combined operation results in better system
performance because of two reasons: 
x Parallelism among the CRC generation (compute-

intensive) and data copy (memory access-intensive) 
operations. 

x Warming of the cache memory since the data upon 
which CRC is computed is transferred to the cache as 
the copy operation runs ahead.

In essence, we apply the principle of Integrated Layer 
Processing (ILP) [6] in order to interleave the iSCSI 
CRC generation process with the data copy operations. 
In our approach, the sockets/TCP layer computes a 
CRC over the payload while copying the data between
the sockets/TCP buffers and the SCSI buffers. On the
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inbound path, the generated CRC value is pushed up to
the iSCSI layer for validation. On the outbound path, it
is inserted into the iSCSI stream. Figure 10 illustrates 
how the sequential and interleaved copy-CRC
operations take place over time. 

Time

Time

CRC 8 bytes fetched
from the network buffer

CRC the entire PDU 
payload after it is 

placed into the SCSI
buffer

Sequential copy-CRC

Read 8 bytes fetched
from the network buffer

Write these 8 bytes

Copy data from the network
buffers into the SCSI buffer

Action

Read 8 bytes fetched 
from the network buffer

Write these 8 bytes

Interleaved copy-CRC

Figure 10: Sequential versus interleaved data copies and
CRC

To enable our interleaved copy-CRC optimization,
the interface between the iSCSI and TCP layers needs
to be modified. This interface needs to allow the
calculation of a CRC value on some specified set of 
bytes while performing a copy. If iSCSI markers are
disabled [30], then the bytes that are copied are the
same as the bytes on which the CRC is computed. 
However, when markers are enabled, the copy and CRC
bytes are different, since iSCSI CRC does not cover 
markers. Solving the marker problem is fairly simple. 
As explained in Section 2, the iSCSI layer creates a
scatter-gather list that describes the SCSI buffer 
elements where the PDU payload is to be copied from
or copied to. If the payload contains markers, then the
scatter-gather list also includes descriptors pointing to
the scratch buffers that receive/source marker bytes. 
Each such list element can use a single bit ‘C’ in its 
descriptor to differentiate between marker versus non-
marker bytes. If the bit C is equal to 1, this implies that 
the socket/TCP layer must validate the data pointed to

by the descriptor. If C is equal to 0, this implies that
only a copy operation should be performed on the data
without CRC validation. With this scheme, skipping
markers for CRC computation becomes easy. The 
iSCSI layer can simply set C equal to 0 for list elements
that describe marker bytes and 1 for all other bytes.  

Interleaving data copies and the CRC generation 
process does not typically modify the functional
behavior of the iSCSI protocol stack. This is the case 
for most stack implementations, which use intermediate 
buffers for validating PDUs before copying these PDUs
into their final buffers (e.g., application or file cache
buffers). In our approach, the data copies into these 
intermediate buffers are interleaved with the CRC
generation process. Some stack implementations,
however, avoid the extra copy by directly copying the 
PDU to their application/file cache buffers from the 
socket/TCP buffers. If the PDU data is corrupted, then 
these stacks can end up polluting the application/file
cache buffers. This can happen if the data is not
validated before the copy. Interleaving copy and CRC 
cannot be used in such stacks if such pollution cannot 
be tolerated. However, for implementations where the 
application/file system does not make any assumptions
about the buffer contents, the interleaving optimization
can still be applied.

4. The iSCSI fast-path  

4.1 User-level Sandbox Environment

There are several open-source prototype 
implementations of iSCSI (e.g. [22], [32]). Some of the
earlier work in this area [14, 15, 27, 28] has used these
implementations to analyze the iSCSI performance 
characteristics. These implementations, however,
operate on top of standard, unmodified TCP/IP stacks.
To evaluate iSCSI in an environment where TCP/IP 
optimizations like header splitting and interrupt 
coalescing [4, 26] are present, we took the alternative 
approach of implementing our own iSCSI fast-path in a 
user-level sandbox environment. This sandbox 
environment is closely coupled with an optimized
TCP/IP implementation developed at Intel labs [26]. 
Our implementation is compliant with iSCSI RFC 3720 
[30], and includes all protocol level checks in the fast-
path as indicated by the specification of the protocol.  

There are several benefits associated with a user-level
sandbox implementation of a protocol. First, the time
required for implementing and testing new ideas in a 
sandbox is typically much smaller than the time 
required for a kernel-level prototype. Second, it is
easier to run the sandbox implementation on different
processor and platform simulators in order to study the
scaling of processing costs with architectural
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improvements on processors. The main drawback of a
sandbox implementation is that it cannot put bits on the 
wire and thus cannot interact with real world protocol
stacks. However, we believe that such an
implementation is a useful first step in analyzing 
complex protocols, especially when protocols are 
implemented in the kernel. 

4.2 Implementation 

Our sandbox implementation includes the iSCSI fast-
path code for read and write commands, packet data
structures, an interface to the SCSI layer, and an 
interface to the sockets/TCP layer.  Our implementation 
is optimized to align key data structures along cache
lines and uses pre-fetching of data structures wherever
possible to avoid high memory access latencies. 
Similarly, SCSI buffers are page aligned and initialized
so that the operating system can page-in the buffers.
This emulates the effect of pre-pinned SCSI buffers in 
real implementations so that there are no page faults
during the fast path. Before running the code of interest, 
the test application purges the fast-path data structures
out of the cache memory. It then pre-fetches the packet
headers or other data structures in order to warm the 
cache. For example, for inbound read processing 
operations, the application warms packet headers in 
order to emulate the effect of TCP header processing. 
Similarly, SCSI buffers are purged out of the cache or 
warmed based on whether the run is emulating cold
data or recently created application warm data.

For studying the processing costs associated with the
incoming (data-in) PDUs of read commands, our 
initialization code creates state at each layer (i.e., the
SCSI, iSCSI and sockets/TCP layer) to emulate the 
outstanding read commands sent to a target. This
includes creating SCSI command structures, the SCSI
buffer, iSCSI session information, and command
contexts. Incoming TCP segments that make up an
iSCSI data PDU and a status PDU are created at the 
TCP/sockets layer. State is created at the TCP layer as 
if TCP processing is over and the TCP payload is
queued into socket buffers.  The cache memory is then 
purged and, if required, any warming of the cache is
done as described earlier. The test application is now
ready to execute and measure the fast path, as described 
in Section 2.1.  

For studying the processing costs associated with the
outgoing (data-out) PDUs of write commands, our
initialization code creates state that emulates
outstanding SCSI write commands. This includes
creating the SCSI commands and inserting them into 
the iSCSI session queues based on a Logical Unit
Number (LUN). The fast-path then measures the cost of 
sending out unsolicited data-out PDUs for the write 
commands. For solicited data-out PDUs, the 

initialization code also creates state as if R2T PDUs 
were received from the target soliciting specific
portions of the SCSI write data. The fast path then 
measures the cost to send out solicited data-out PDUs 
to the target, as described in Section 2.2.  

4.3 Measurement and Simulation 
techniques 

We measure the processing cost of executing the 
iSCSI stack using two techniques. The first technique
runs the stack on a real machine. We use the RDTSC
and CPUID instructions [11] of the IA32 processor 
architecture to measure the cycles spent in the fast path 
code. To minimize operating system interruptions, our
implementation ran at real-time priority and suspended 
itself before each performance run in order to keep the 
system stable. Using processor performance counters, 
we were also able to find out other interesting statistics 
like instructions retired per PDU, number of second 
level (L2) cache misses per PDU, and average cycles
per instruction (CPI). 

The second technique we used involves examining 
our iSCSI implementation on an instruction-by-
instruction basis by running it on a cycle-accurate CPU 
simulator. The simulator allows us to take a closer look
at the micro-architectural behavior of the protocol on a 
particular processor family. This helps us determine 
portions of the code that result in cache misses and 
optimize the code by issuing pre-fetches wherever
possible. Simulator runs also help in projecting protocol
performance on future processors and platforms. In this
way we can determine how different optimizations 
scale with architectural or clock-speed improvements. 

5. Evaluation 

5.1 Analysis of iSCSI processing 

We begin our evaluation by examining how existing
iSCSI implementations perform (i.e., implementations
with Sarwate CRC and no copy-CRC interleaving). As 
mentioned earlier iSCSI processing involves four main
components – data structure manipulation, CRC 
generation, data copies, and marker processing. In this
section we also refer to data structure manipulation as
‘protocol processing’ (even though CRC generation and
copies are also part of the protocol processing). Our
implementation supports all features except markers.
Since we started our investigation on a pure software
implementation that uses standard kernel sockets for 
interfacing iSCSI with TCP, we did not implement
markers since marker benefits are tied to the close
coupling between iSCSI and TCP.  
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For both the direct execution (i.e., the execution on a
real machine) and the CPU simulation runs, we used a
1.7 GHz Intel® Pentium® M processor, with a 400
MHz FSB, and a single channel DDR-266 memory
subsystem. The workload consisted of a single session
with 8 connections, and 40 commands (read and write
commands) issued on a round-robin fashion over the 
connections. Table 2 shows our parameters for read
command processing. 

Table 2: Read command parameters
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Figure 11: Data-in PDU processing cost (with Sarwate 
CRC) 

Figure 11 shows the iSCSI processing cost for a
single data-in (read) PDU at the initiator. The 
horizontal axis represents the size of the read I/O 
command issued by the initiator. The primary vertical 
axis (i.e., the axis on the left) represents the relative 
processing costs of the protocol, the CRC generation
process, and the data copies. The secondary vertical 
axis (i.e., the axis on the right) represents the absolute 
number of cycles spent on iSCSI processing for a single 
data-in PDU. Since the read I/O workload size varies 
from 512B to 8KB, and the PDU size is set to 8KB, this
implies that each iSCSI read command results in the 
reception of a single data-in PDU. In this experiment 
we also enabled the ‘phase-collapse’ feature of iSCSI. 
Thus each data-in PDU also carried a status response
from the target.  

For the smallest I/O size (i.e., 512B), the protocol
cost is about 28% of the total cost, the copy cost is 
about 14% of the total cost, whereas CRC accounts for 
the remaining 58%. As the PDU size increases, the 
protocol cost remains the same on a per PDU basis, 
whereas the CRC and copy costs increase. For the 
largest I/O size (i.e., 8KB) the protocol cost is barely
3% of the total cost, whereas CRC is 73% of the total 
cost and copy accounts for 24%. 

The protocol cost is paid once per PDU. It is about
1800 cycles and remains constant for each command 
with a slight bump at the page boundary (i.e., at 4KB), 
since crossing a page boundary involves adding another
scatter element to the SCSI buffer.  On the other hand,
the CRC cost is paid on a per byte basis and increases 
linearly as the I/O size increases.  For a workload of
8KB, the total CRC cost is about 54000 cycles, or about
6.5 cycles per byte, while the copy cost is about 2.15
cycles per byte. Thus for the 8KB PDU size which is a 
common PDU size, the CRC cost completely dominates 
the iSCSI protocol processing cost, and is significantly
more than the copy cost.  
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0
200
400
600
800

1000
1200
1400
1600
1800
2000

8 16 24 32 40 48 56 64
Read size (KB)

Cycles per
PDU

Protocol cost

Figure 12: Data-in PDU Protocol processing cost 

To get a deeper understanding of the cycles spent on 
protocol processing and the CRC generation process, 
we ran the same experiment on a cycle accurate 
simulator and measured the number of instructions
executed on a per PDU basis and the number of L2
misses occurring per PDU. The protocol execution path
for an 8KB PDU was about 438 instructions long, with
about 6 L2 misses per PDU. These L2 misses can be
attributed to accessing an iSCSI connection context, a 
command context, a score-boarding data structure for
out-of-order PDUs, a SCSI buffer descriptor, and a 
SCSI context to store the response received from the 
target. The instruction path length for CRC is about 8 
instructions per byte. We measured that it takes about 
6.55 cycles per byte to compute a CRC value, with a 

Parameter Value 
Maximum receive data segment length 8KB 

Max burst length 256KB 
Data PDU in order No 

Data sequence in order No 
Header digest CRC32c 

Data digest CRC32c 
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‘Cycles per Instruction’ (CPI) value of slightly less than
1.  Next, we ran our simulator with a ‘perfect cache’
option enabled in order to simulate the ideal case in
which all contexts and data are warm in the cache. In 
this way we were able to measure the best-case protocol
processing cost that needs to be paid for processing a
single data-in PDU with an embedded response. This
cost was about 430 cycles which agrees with the 
instruction path length of 438.  

In order to determine how close the protocol
processing cost for a data-in PDU can approach the
asymptote of 430 cycles, we ran the same experiment 
but with the read I/O workload size ranging from 8KB
to 64 KB. Since the PDU size is fixed at 8KB, this
means that each iSCSI command resulted in the 
reception of 1 to 8 data-in PDUs. For these experiments
the last data-in PDU contained the embedded status.  

Figure 12 shows the average protocol processing cost
for an 8KB PDU. As seen in the graph, this cost drops
down from about 1800 cycles to about 770 cycles. This 
drop can be attributed to the fact that some of the
contexts like the SCSI descriptors are now warm in the
cache. Thus, subsequent PDUs after the first PDU 
benefit from cache warming. The larger the read size is, 
the lower the per-PDU protocol cost becomes. On the
other hand, the per byte cost of CRC remains the same
whether the initiator reads 64 KB of data as a single 
64KB read operation or 8 8KB read operations. Thus, 
while data structure manipulation becomes more 
efficient with larger read sizes, the CRC cost remains 
the same.  

The protocol processing cost of write commands is
smaller than the cost of read commands, while the CRC 
processing cost is the same since CRC generation
incurs the same per byte cost independent of the 
direction of the data. In addition most stacks completely
avoid or have at most one copy operation on the
outbound path. Because of these reasons, CRC is a
bigger bottleneck for write commands as compared to
read commands. 

5.2. Impact of Optimizations 

To evaluate the performance benefits of the software
optimizations we discussed in Section 3, we added the
Slicing-by-8 (SB8) CRC implementation into our 
sandbox iSCSI stack. The test system and workload for 
these experiments were the same as described in
Section 5.1. Figure 14 compares the performance of
iSCSI read runs with two different CRC generation 
algorithms. The read I/O workload size ranges from
512B to 8KB. The horizontal axis represents the read
I/O size, while the vertical axis shows the total cycles
spent on computing a CRC over that I/O size.  

As seen in the graph, the Slicing-by-8 algorithm
requires lesser cycles than the Sarwate algorithm to 
compute the CRC at all data points. Specifically, for the 
8KB data point, the Slicing-by-8 algorithm takes about 
2.15 cycles per byte to generate a CRC value, while the
Sarwate algorithm takes 6.55 cycles per byte. Thus,
Slicing-by-8 accelerates the CRC generation process by 
a factor of 3, as compared to Sarwate. The Sarwate
algorithm requires executing 35 IA32 instructions in
order to validate 32 bits of data whereas the Slicing-by-
8 algorithm requires 13 instructions only. This is the 
reason why the Slicing-by-8 algorithm is three times
faster than the Sarwate algorithm.
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Figure 14: SB8 CRC versus Sarwate CRC 
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Figure 15: Data-in PDU processing cost (with SB8 CRC) 

Figure 15 shows the performance profile
characterizing the processing of a data-in PDU where 
the CRC generation algorithm is Slicing-by-8. 
Operating at 2.15 cycles per byte, the Slicing-by-8
algorithm demonstrates the same cost as the data
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copies. For the 8KB PDU size, each of data copies and 
CRC generation represent about 47% of the total
processing cost, while the protocol processing is about
5%. Comparing these numbers with the costs of Figure
11 (similar profile but with the Sarwate CRC
algorithm),  we can see that the total processing cost for
an 8KB PDU has now decreased from 73761 cycles to
about 37579 cycles, resulting in two times faster iSCSI 
processing. 

We also performed a second group of experiments to
evaluate the impact of interleaving data copies with the
CRC generation process. We modified our sandbox 
implementation in order to support a new iSCSI/TCP 
interface and the interleaved copy-CRC operations as
described in Section 3.3. 

Sequential versus interleaved copy-CRC
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Figure 16: Interleaved Copy-CRC cost

Figure 16 shows the measured cost of sequential
copy and CRC operations for both the Sarwate and 
Slicing-by-8 algorithms while executing iSCSI reads. It 
also shows the interleaved copy-CRC cost. As seen in
the figure, for both CRC algorithms, interleaving copy
with CRC reduces the overall cycle cost for the two 
operations. For the interleaved Sarwate CRC and copy, 
the total cycle reduction is about 13000 cycles or 18%. 
For the interleaved Slicing-by-8 CRC and copy, the 
cycle reduction is about 11570 cycles corresponding to
a performance improvement of 32%.  

We then extended our measurements and analysis to 
an entire storage stack consisting of our iSCSI
implementation, and an optimized TCP/IP stack
implementation. Our goal was to understand the impact
of the optimizations (i.e., the Slicing-by-8 algorithm 
and the interleaved copy-CRC) on the performance of 
the entire stack. Figure 17 shows the overall throughput 
as seen at the iSCSI layer for different values of a read 
I/O workload size. The x-axis represents the size of the 
read command, while the y-axis shows the achieved

iSCSI throughput in MB/s across the range of read 
sizes. The topmost line depicts the maximum iSCSI line 
rate that can be achieved for a 10Gbps Ethernet link.
As seen in the figure, the iSCSI throughput improves 
from 175 MB per second (or 1.4 Gbps) to about 445 
MB per second (or 3.6 Gbps) when both the
optimizations are turned on.  
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Figure 17: Projected software Read throughput  

To further evaluate our Slicing-by-8 algorithm, we 
measured the impact of Slicing-by-8 on a real-world
Linux iSCSI stack developed by UNH [32]. We
modified this implementation by replacing the Sarwate
algorithm with the Slicing-by-8 algorithm. Our 
experimental environment consisted of a 3 GHz single-
threaded uni-processor Xeon server board with a 533
MHz FSB and a 64bit/133 MHz PCI bus for the 
initiator. The initiator was running Linux kernel 2.4.20. 
The iSCSI initiator stack was connected to 3 UNH 
iSCSI targets through gigabit NICs. We measured the
normalized throughput (bits/Hz) of iSCSI with the two
CRC algorithms and found that for an 8KB I/O
workload, replacing the Sarwate algorithm with 
Slicing-by-8 results in an increase in the normalized
throughput by 15%. 

The reason why Slicing-by-8 does not result in a
similar improvement like the one demonstrated in the 
sandbox environment is because the TCP/IP and SCSI
overheads are significant in the Linux 2.4 kernel [15]. 
The 2.6 kernel, though, supports a more optimized 
implementation of the TCP/IP and SCSI protocols.
Unfortunately at the time of writing we did not have
access to a modified 2.6 Linux kernel with TCP/IP 
optimizations. We believe that, as TCP/IP stack 
implementations become more optimized in the future 
the CRC overhead in iSCSI will stand out, and the 
impact of Slicing-by-8 will be greater. As future work, 
we plan to test our optimizations using the 2.6 kernel. 
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6. Related Work 

Several studies on the performance of iSCSI have
been published [1, 14, 15, 17, 21, 24, 27, 28]. These 
studies have focused on comparing software with
hardware implementations in LAN and WAN 
environments.  Sarkar et al [27] compared the 
performance of three competing approaches to
implementing iSCSI. Aiken et al [1] evaluated a 
commercial implementation of iSCSI and found it to be
competitive with a Fiber Channel interface at gigabit 
speeds. Khosravi et al [15] studied the architectural 
characteristics of iSCSI processing including CPI, 
cache effects, and instruction path length. Our work 
builds on all the previous work described above. We
implemented our own iSCSI fast path and demonstrated 
a performance improvement on the iSCSI processing
throughput using two new optimizations.  

Radkov et al [24], and Lu et al [17] have compared 
iSCSI and NFS/SMB-based storage. Magoutis et al [19]
performed a thorough comparison and analysis of the 
DAFS and NFS protocols. Our work is narrower in
scope in that it looks only at iSCSI-based storage, but
takes a much deeper dive into the performance issues of 
iSCSI. 

Efficient implementation of the CRC generation 
process has been the subject of substantial amount of
research [2, 3, 7-10, 12, 20, 25, 29, 31, 34]. Software-
based CRC generation has been investigated in [8-10,
12, 25, 29, 34]. Among these algorithms the most
commonly used today is the one proposed by Sarwate 
[29]. Feldmeier [8] motivated by the fact that table-
driven solutions are subject to cache pollution presented 
an alternative software technique that avoids the use of 
lookup tables. Our algorithm is distinguished from [8, 
9, 25, 29, 34] by the fact it can ideally read arbitrarily 
large amounts of data at a time. 

The concept of parallel table lookups which we use in
our algorithm also appears in early CRC5
implementations [10] and in the work done by Braun 
and Waldvogel [3] on performing incremental CRC
updates for IP over ATM networks. Our work is
distinguished from [3, 10] in that our algorithms reuse
the same lookup tables in each iteration, thus keeping 
the memory requirement of CRC generation at 
reasonable level. On the other hand, if the contribution
of each slice to the final CRC value is computed using
the square and multiply technique as in the work by
Doering and Waldvogel [7], the processing cost may be
too high in software.  

Our algorithm also bears some resemblance with a 
recent scheme published by Joshi, Dubey and Kaplan
[12]. Like our algorithm the Joshi-Dubey-Kaplan
scheme calculates the remainders from multiple slices 

of a stream in parallel. The Joshi-Dubey-Kaplan 
scheme has been designed to take advantage of the 128-
bit instruction set extensions to IBM’s PowerPC 
architecture. In our contrast our algorithm does not
make any assumptions about the instruction set used.  

7. Conclusions and Future Work 

In this paper, we report on an in-depth analysis of the
performance of IP-based networked block storage 
systems based on an implementation of the iSCSI 
protocol. Our data shows that CRC is by far the biggest
bottleneck in iSCSI processing, and its impact will
increase even further as TCP/IP stacks become more 
optimized in the future. We demonstrate significant
performance improvement through a new software
CRC algorithm that is 3 times faster than current 
industry standard algorithm and show that
enhancements to the iSCSI/TCP interface can result in
significant performance gains.

We expect that in the future, iSCSI performance will
demonstrate near linear scaling with the number of 
CPU cores available in a system and will support data 
rates greater than what a single 10 Gigabit Ethernet
interface will provide. Three factors lead us to this 
conclusion: (i) the increasing commercial availability of
dual-core and multiple-core CPUs; (ii) evolving 
operating system technologies such as receive-side 
scaling that allow distribution of network processing
across multiple CPUs; and (iii) the use of multiple
iSCSI connections between an initiator and one or more 
storage targets as supported in many iSCSI
implementations today. In the future, we would like to
extend our analysis to study the performance and 
scalability of iSCSI across multiple CPU cores, as well
as the application-level performance of iSCSI storage 
stacks for both transaction-oriented applications as well
as backup and recovery applications.
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