USENIX Association

Proceedings of
FAST '03:
2nd USENIX Conference on
File and Storage Technologies

San Francisco, CA, USA
March 31-April 2, 2003

USENIX
SAGE

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




USENIX Association

Pond: the OceanStore Prototype*

Sean Rhea, Patrick Eaton, Dennis Geels,
Hakim Weatherspoon, Ben Zhao, and John Kubiatowicz
University of California, Berkeley
{srhea,eaton,geel s, hweather,ravenben,kubitron} @cs.ber kel ey.edu

Abstract

OceanStoreis an Internet-scale, persistent data store de-
signed for incremental scalability, secure sharing, and
long-term durability. Pond is the OceanSore proto-
type; it contains many of the features of a complete
system including location-independent routing, Byzan-
tine update commitment, push-based update of cached
copiesthrough an overlay multicast network, and contin-
uous archiving to erasure-coded form. In the wide area,
Pond outperforms NFS by up to a factor of 4.6 on read-
intensive phases of the Andrew benchmark, but under-
performs NFS by as much as a factor of 7.3 on write-
intensive phases. Microbenchmarks show that write
performance is limited by the speed of erasure coding
and threshold signature generation, two important ar-
eas of future research. Further microbenchmarks show
that Pond manages replica consistency in a bandwidth-
efficient manner and quantify the latency cost imposed
by this bandwidth savings.

1 Introduction

One of the dominant costs of storage today is manage-
ment: maintaining the health and performance charac-
teristics of data over the long term. Two recent trends
can help ameliorate this problem. First, the rise of the
Internet over the last decade has spawned the advent of
universal connectivity; the average computer user today
is increasingly likely to be connected to the Internet via
a high-bandwidth link. Second, disk storage capacity per
unit cost has skyrocketed; assuming growth continues ac-
cording to Moore’s law, a terabyte of EIDE storage will
cost $100 US in under three years. These trends present
a unique opportunity for file system designers: for the
first time, one can imagine providing truly durable, self-
maintaining storage to every computer user.

OceanStore [14, 26] is an Internet-scale, cooperative
file system designed to harness these trends to provide

*Research supported by NSF career award #ANI-9985250, NFS
ITR award #CCR-0085899, and California MICRO award #00-049.
Dennis Geels is supported by the Fannie and John Hertz Foundation.

high durability and universal availability to its users
through a two-tiered storage system. The upper tier
in this hierarchy consists of powerful, well-connected
hosts which serialize changes and archive results. The
lower tier, in contrast, consists of less powerful hosts—
including users’ workstations—which mainly provide
storage resources to the system. Dividing the system
into two tiers in this manner allows for powerful, well-
connected hosts to provide services that demand many
resources, while at the same time harnessing the vast
storage resources available on less powerful or less well-
connected hosts.

The unit of storage in OceanStore is the data object,
onto which applications map more familiar user inter-
faces. For example, Pond includes both an electronic
mail application and a UNIX file system. To allow for the
greatest number of potential OceanStore applications,
we place the following requirements on the object inter-
face. First, information must be universally accessible;
the ability to read a particular object should not be lim-
ited by the user’s physical location. Second, the system
should balance the tension between privacy and informa-
tion sharing; while some applications demand the ability
to aggressively read- and write-share data between users,
others require their data to be kept in the strictest confi-
dence. Third, an easily understandable and usable con-
sistency model is crucial to information sharing. Fourth,
privacy complements integrity; the system should guar-
antee that the data read is that which was written.

With this interface in mind, we designed OceanStore
under the guidance of two assumptions. First, the in-
frastructure is untrusted except in aggregate. We expect
hosts and routers to fail arbitrarily. This failure may be
passive, such as a host snooping messages in attempt to
violate users’ privacy, or it may be active, such as a host
injecting messages to disrupt some protocol. In aggre-
gate, however, we expect hosts to be trustworthy; specif-
ically, we often assume that no more than some fraction
of a given set of hosts are faulty or malicious.

A second assumption is that the infrastructure is con-
stantly changing. The performance of existing com-
munication paths varies, and resources continually en-

2nd USENIX Conference on File and Storage Technologies



Name |  Meaning | Description
BGUID block GUID secure hash of a block of data
VGUID version GUID BGUID of the root block of a version
AGUID active GUID names a complete stream of versions

Table 1: Summary of Globally Unique Identifiers (GUIDs).

ter and exit the network, often without warning. Such
constant flux has historically proven difficult for admin-
istrators to handle. At a minimum, the system must be
self-organizing and self-repairing; ideally, it will be self-
tuning as well. Achieving such a level of adaptability
requires both the redundancy to tolerate faults and dy-
namic algorithms to efficiently utilize this redundancy.

The challenge of OceanStore, then, is to design a
system which provides an expressive storage interface
to users while guaranteeing high durability atop an un-
trusted and constantly changing base. In this paper, we
present Pond, the OceanStore prototype. This prototype
contains most of the features essential to a full system;
it is built on a self-organizing location and routing in-
frastructure, it automatically allocates new replicas of
data objects based on usage patterns, it utilizes fault-
tolerant algorithms for critical services, and it durably
stores data in erasure-coded form. Most importantly,
Pond contains a sufficiently complete implementation of
the OceanStore design to give a reasonable estimate of
the performance of a full system.

The remainder of this paper is organized as follows.
We present the OceanStore interface in Section 2, fol-
lowed by a description of the system architecture in Sec-
tion 3. We discuss implementation details particular to
the current prototype in Section 4, and in Sections 5 and 6
we discuss our experimental framework and performance
results. We discuss related work in Section 7, and we
conclude in Section 8.

2 Data Modd

This section describes the OceanStore data model—the
view of the system that is presented to client applications.
This model is designed to be quite general, allowing
for a diverse set of possible applications—including file
systems, electronic mail, and databases with full ACID
(atomicity, consistency, isolation, and durability) seman-
tics. We first describe the storage layout.

2.1 Storage Organization

An OceanStore data object is an analog to a file in a tra-
ditional file system. These data objects are ordered se-
quences of read-only versions, and—in principle—every
version of every object is kept forever. Versioning sim-
plifies many issues with OceanStore’s caching and repli-

2nd USENIX Conference on File and Storage Technologies

VGUID,, 1

A oot tock ! T

! I backpointer '
e -
|
+ 1

copy on write |

I

I

| | !

I | I !

! indirect | ! o :

: blocks : : |

: T copy on write : :
I

! data  [dTdo[d3[dg]ds[de[d7] ! dgd3] |

:block5123d4567\ | 5:
I

,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1: A data object is a sequence of read-only versions,
collectively named by an active GUID, or AGUID. Each ver-
sion is a B-tree of read-only blocks; child pointers are secure
hashes of the blocks to which they point and are called block
GUIDs. User data is stored in the leaf blocks. The block GUID
of the top block is called the version GUID, or VGUID. Here,
in version ¢ + 1, only data blocks 6 and 7 were changed from
version , so only those two new blocks (and their new parents)
are added to the system; all other blocks are simply referenced
by the same BGUIDs as in the previous version.

cation model. As an additional benefit, it allows for time
travel, as popularized by Postgres [34] and the Elephant
File System [30]; users can view past versions of a file or
directory in order to recover accidentally deleted data.

Figure 1 illustrates the storage layout of a data object.
Each version of an object contains metadata, the actual
user-specified data, and one or more references to pre-
vious versions. The entire stream of versions of a given
data object is named by an identifier we call its active
globally-unique identifier, or AGUID for short, which
is a cryptographically-secure hash of the concatenation
of an application-specified name and the owner’s public
key. Including this key securely prevents namespace col-
lisions between users and simplifies access control.

To provide secure and efficient support for versioning,
each version of a data object is stored in a data structure
similar to a B-tree, in which a block references each child
by a cryptographically-secure hash of the child block’s
contents. This hash is called the block GUID, or BGUID,
and we define the version GUID, or VGUID, to be the
BGUID of the top block. When two versions of a data
object share the same contents, they reference the same
BGUIDs; a small difference between versions requires
only a small amount of additional storage. Because they
are named by secure hashes, child blocks are read-only.
It can be shown that this hierarchical hashing technique
produces a VGUID which is a cryptographically-secure
hash of the entire contents of a version [20]. Table 1
enumerates the types of GUIDs in the system.

USENIX Association



USENIX Association

2.2 Application-specific Consistency

In this section, we describe the consistency mechanisms
provided to readers and writers of data objects. We define
an update to be the operation of adding a new version
to the head of the version stream of one or more data
objects. In OceanStore, updates are applied atomically
and are represented as an array of potential actions each
guarded by a predicate. This choice was inspired by the
Bayou system [8]. Example actions include replacing
a set of bytes in the object, appending new data to the
end of the object, and truncating the object. Example
predicates include checking the latest version number of
the object and comparing a region of bytes within the
object to an expected value.

Encoding updates in this way allows OceanStore to
support a wide variety of application-defined consistency
semantics. For example, a database application could im-
plement optimistic concurrency control with ACID se-
mantics by letting the predicate of each update check for
changes in the read set, and if none are found, apply-
ing the write set in the update’s action. In contrast, the
operation of adding a message to a mailbox stored as a
data object could be implemented as an append opera-
tion with a vacuous predicate. One important design de-
cision in OceanStore was not to support explicit locks or
leases on data, and to instead rely on our update model
to provide consistency; if necessary, the atomicity of our
updates allows locks to be built at the application layer.

Along with predicates over updates, OceanStore al-
lows client applications to specify predicates over reads.
For example, a client may require that the data of a read
be no older than 30 seconds, it may require the most-
recently written data, or it may require the data from a
specific version in the past.

3 System Architecture

We now discuss the architecture of the OceanStore
system that implements the application-level interface
of the previous section. The unit of synchronization
in OceanStore is the data object. Consequently, al-
though changes to a particular object must be coordi-
nated through shared resources, changes to different ob-
jects are independent. OceanStore exploits this inter-
object parallelism in order to achieve scalability; adding
additional physical components allows the system to sup-
port more data objects.

3.1 Virtualization through Tapestry

OceanStore is constructed from interacting resources
(such as permanent blocks of storage or processes man-
aging the consistency of data). These resources are Vir-

tual in that they are not permanently tied to a particular
piece of hardware and can move at any time. A virtual
resource is named by a globally uniqueidentifier (GUID)
and contains the state required to provide some service.
For caches or blocks of storage, this state is the data it-
self. For more complicated services, this state involves
things like history, pending queues, or commit logs.

Virtualization is enabled by a decentralized object lo-
cation and routing system (DOLR) called Tapestry [12].
Tapestry is a scalable overlay network, built on TCP/IP,
that frees the OceanStore implementation from worry-
ing about the location of resources. Each message sent
through Tapestry is addressed with a GUID rather than
an IP address; Tapestry routes the message to a physi-
cal host containing a resource with that GUID. Further,
Tapestry is locality aware: if there are several resources
with the same GUID, it locates (with high probability)
one that is among the closest to the message source.

Both hosts and resources are named by GUIDs. A
physical host joins Tapestry by supplying a GUID to
identify itself, after which other hosts can route mes-
sages to it. Hosts publish the GUIDs of their resources
in Tapestry. Other hosts can then route messages to these
resources. Unlike other overlay networks, Tapestry does
not restrict the placement of resources in the system. Of
course, a node may unpublish a resource or leave the net-
work at any time.

3.2 Replication and Consistency

A data object is a sequence of read-only versions, con-
sisting of read-only blocks, securely named by BGUIDs.
Consequently, the replication of these blocks introduces
no consistency issues; a block may be replicated as
widely as is convenient, and simply knowing the BGUID
of a block allows a host to verify its integrity. For this
reason, OceanStore hosts publish the BGUIDs of the
blocks they store in Tapestry. Remote hosts can then read
these blocks by sending messages addressed with the de-
sired BGUIDs through Tapestry.

In contrast, the mapping from the name of a data
object (its AGUID) to the latest version of that object
(named by a VGUID), may change over time as the file
changes. To limit consistency traffic, OceanStore imple-
ments primary-copy replication [10]. Each object has a
single primary replica, which serializes and applies all
updates to the object and creates a digital certificate map-
ping an AGUID to the VGUID of the most recent ver-
sion. The certificate, called a heartbeat, is a tuple con-
taining an AGUID, a VGUID, a timestamp, and a version
sequence number. In addition to maintaining the AGUID
to latest VGUID mapping, the primary replica also en-
forces access control restrictions and serializes concur-
rent updates from multiple users.

2nd USENIX Conference on File and Storage Technologies



To securely verify that it receives the latest heartbeat
for a given object, a client may include a nonce in its
signed request; in this case the resulting response from
the primary replica will also contain the client’s name
and nonce and be signed with the primary’s key. This
procedure is rarely necessary, however, since common
applications can tolerate somewhat looser consistency
semantics. Our NFS client, for example, only requests
new heartbeats which are less than 30 seconds old.

We implement the primary replica as a small set of co-
operating servers to avoid giving a single machine com-
plete control over a user’s data. These servers, col-
lectively called the inner ring, use a Byzantine-fault-
tolerant protocol to agree on all updates to the data object
and digitally sign the result. This protocol allows the ring
to operate correctly even if some members fail or behave
maliciously. The inner ring implementation is discussed
in detail in Section 3.6. The primary replica is a virtual
resource, and can be mapped on a variety of different
physical servers during the lifetime of an object. Further,
the fact that objects are independent of one another pro-
vides maximal flexibility to distribute primary replicas
among physical inner ring servers to balance load.

In addition to the primary replica, there are two other
types of resources used to store information about an ob-
ject: archival fragments and secondary replicas. These
are mapped on different OceanStore servers from those
handling the inner ring. We discuss each in turn.

3.3 Archival Storage

While simple replication provides for some fault toler-
ance, it is quite inefficient with respect to the total stor-
age consumed. For example, by creating two replicas of
a data block, we achieve tolerance of one failure for an
addition 100% storage cost. In contrast, erasure codes
achieve much higher fault tolerance for the same addi-
tional storage cost.

An erasure code [2] is a mathematical technique by
which a block is divided into m identically-sized frag-
ments, which are then encoded into n fragments, where
n > m. The quantity r = ' < 1 is called the rate
of encoding. A rate  code increases the storage cost
by a factor of % The key property of erasure codes is
that the original object can be reconstructed from any m
fragments. For example, encoding a block using a rate
% code and m = 16 produces 32 fragments, any arbi-
trary 16 of which are sufficient to reconstruct the original
block. Intuitively, one can thus see that erasure encoding
produces far higher fault tolerance for the storage used
than replication. A detailed analysis confirming this in-
tuition can be found in our earlier work [36]. In the pro-
totype, we use a Cauchy Reed-Solomon code [2] with
m = 16 and n = 32.

2nd USENIX Conference on File and Storage Technologies

Erasure codes are utilized in OceanStore as follows.
After an update is applied by the primary replica, all
newly created blocks are erasure-coded and the result-
ing fragments are distributed to OceanStore servers for
storage. Any machine in the system may store archival
fragments, and the primary replica uses Tapestry to dis-
tribute the fragments uniformly throughout the system
based on a deterministic function of their fragment num-
ber and the BGUID of the block they encode.! To re-
construct a block at some future time, a host simply uses
Tapestry to discover a sufficient number of fragments and
then performs the decoding process.

3.4 Caching of Data Objects

Erasure coding, as we have seen, provides very high
durability for the storage used. However, reconstruct-
ing a block from erasure codes is an expensive process;
at least m fragments must be recovered, and assuming
that the fragments of a block were stored on distinct ma-
chines for failure independence, this recovery requires
the use of m distinct network cards and disk arms.

To avoid the costs of erasure codes on frequently-read
objects, OceanStore also employs whole-block caching.
To read a block, a host first queries Tapestry for the block
itself; if it is not available the host then retrieves the frag-
ments for the block using Tapestry and performs the de-
coding process. In either case, the host next publishes
its possession of the block in Tapestry; a subsequent read
by a second host will find the cached block through the
first. Thus the cost of retrieval from the archive is amor-
tized over all of the readers. Importantly, reconstructed
blocks are only soft state; since they can be reconstructed
from the archive at any time (for some cost), they can be
discarded whenever convenient. This soft-state nature of
reconstructed blocks allows for caching decisions to be
made in a locally greedy manner (Pond uses LRU).

For reading a particular version of a document, the
technique described in the previous paragraph is suffi-
cient to ensure a correct result. However, often an ap-
plication needs to read the latest version of a document.
To do so, it utilizes Tapestry to retrieve a heartbeat for
the object from its primary replica. This heartbeat is a
signed and dated certificate that securely maps the ob-
ject’s AGUID to the VGUID of its latest version.

OceanStore supports efficient, push-based update of
the secondary replicas of an object by organizing them
into an application-level multicast tree. This tree, rooted
at the primary replica for the object, is called the dis-
semination tree for that object. Every time the primary

While using Tapestry in this manner yields some degree of failure
independence between fragments encoding the same block, it is prefer-
able to achieve this independence more explicitly. We have a proposal
for doing so [37], but it is not yet implemented.

USENIX Association



USENIX Association

Tarchivc
(-]

Primary Replica
(Inner Ring)
IN=

5 ‘ ;
SR
PN

Secondary App

Replica
Secondary :
Replica

Secondary

Replica
Thop
T req Tagree Tdisseminale
-

Time

Figure 2: The path of an OceanSore update. An update pro-
ceeds from the client to the primary replica for its target data
object. There, it is serialized with other updates and applied to
that target. A heartbeat is generated, certifying the new latest
version, and multicast along with the update down the dissem-
ination tree to other replicas. Simultaneously, the new version
is erasure-coded and sent to archival storage servers.

replica applies an update to create a new version, it sends
the corresponding update and heartbeat down the dissem-
ination tree. Updates are thus multicast directly to sec-
ondary replicas. The dissemination tree is built in a self-
organizing fashion; each new secondary replica utilizes
Tapestry to locate a nearby, pre-existing replica to serve
as a parent in this tree. A more sophisticated version of
this algorithm is examined elsewhere [5].

3.5 TheFull Update Path

In this section, we review the full path of an update. We
will postpone the description of the primary replica until
the next section.

Figure 2 shows the path of an update in OceanStore.
As shown, updates to an object are passed through
Tapestry to the primary replica for that object. Once
the updates are serialized and committed by the primary
replica, they are passed down the dissemination tree to
secondary replicas that are currently caching the object.
These updates are applied to replicas, thereby keeping
them up-to-date. Once updates are applied, they become
visible to clients sharing that object. Simultaneous with
updating secondary replicas, the primary replica encodes
new data in an erasure code, sending the resulting frag-
ments to other OceanStore servers for long-term storage.

Note that Figure 2 illustrates the path of updates for a
single object. As shown in Section 6, the process of com-
mitting updates by the primary replica is computationally
intensive. Thus, it is an important aspect of the system
that primary replicas can be distributed among inner ring
servers to balance load.

3.6 ThePrimary Replica

Section 3.2 shows that each data object in OceanStore is
assigned an inner ring, a set of servers that implement the
object’s primary replica. These servers securely apply
updates and create new versions. They serialize concur-
rent writes, enforce access control, check update predi-
cates, and sign a heartbeat for each new version.

To construct this primary replica in a fault-tolerant
manner, we adapt a Byzantine agreement protocol devel-
oped by Castro and Liskov [4]. Byzantine agreement is a
distributed decision process in which all non-faulty par-
ticipants reach the same decision as long as more than
two-thirds of the participants follow the protocol cor-
rectly. That is, for a group of size 3f + 1, no more
than f servers may be faulty. The faulty machines may
fail arbitrarily: they may halt, send incorrect messages,
or deliberately try to disrupt the agreement. Unfortu-
nately, Byzantine agreement requires a number of mes-
sages quadratic in the number of participants, so it is in-
feasible for use in synchronizing a large number of repli-
cas; this infeasibility motivates our desire to keep the pri-
mary replicas of an object small in number.

The Castro and Liskov algorithm has been shown to
perform quite well in a fault-tolerant network file system.
We modify the algorithm for our distributed file system
in the following important ways.

Public Key Cryptography: Byzantine agreement pro-
tocols require that participants authenticate the messages
they send. There are two versions of the Castro-Liskov
protocol. In the first version, this authentication was ac-
complished with public-key cryptography. A more re-
cent version used symmetric-key message authentication
codes (MACs) for performance reasons: a MAC can be
computed two or three orders of magnitude faster than a
public-key signature.

MAC s, however, have a downside common to all sym-
metric key cryptography: they only authenticate mes-
sages between two fixed machines. Neither machine can
subsequently prove the authenticity of a message to a
third party. MACs complicate Castro and Liskov’s lat-
ter algorithm, but they feel the resulting improvement in
performance justifies the extra complexity.

In OceanStore we use aggressive replication to im-
prove data object availability and client-perceived access
latency. Without third-party verification, each machine
would have to communicate directly with the inner ring
to validate the integrity of the data it stores. The compu-
tation and communication required to keep each replica
consistent would limit the maximum number of copies
of any data object—even for read-only data.

We therefore modified the Castro-Liskov protocol to
use MACs for all communication internal to the inner
ring, while using public-key cryptography to commu-

2nd USENIX Conference on File and Storage Technologies



nicate with all other machines. In particular, a digital
signature certifies each agreement result. As such, sec-
ondary replicas can locally verify the authenticity of data
received from other replicas or out of the archive. Con-
sequently, most read traffic can be satisfied completely
by the second tier of replicas. Even when clients insist
on communicating directly with the ring for maximum
consistency, it need only provide a heartbeat certifying
the latest version; data blocks can still be sourced from
secondary replicas.

Computing signatures is expensive; however, we
amortize the added cost of each agreement over the num-
ber of replicas that receive the result. Public-key cryp-
tography allows the inner ring to push updates to repli-
cas without authenticating the result for each individu-
ally. Also, the increased ability of secondary replicas to
handle client requests without contacting the inner ring
may significantly reduce the number of agreements per-
formed on the inner ring. We analyze the full perfor-
mance implications of digital signatures in Section 6.

Proactive Threshold Signatures: Traditional Byzantine
agreement protocols guarantee correctness if no more
than f servers fail during the life of the system; this
restriction is impractical for a long-lived system. Cas-
tro and Liskov address this shortcoming by rebooting
servers from a secure operating system image at regu-
lar intervals [4]. They assume that keys are protected via
cryptographic hardware and that the set of servers partic-
ipating in the Byzantine agreement is fixed.

In OceanStore, we would like considerable more flex-
ibility in choosing the membership of the inner ring. To
do so, we employ proactive threshold signatures [22],
which allow us to replace machines in the inner ring
without changing public keys.

A threshold signature algorithm pairs a single public
key with [ private key shares. Each of the [ servers uses
its key share to generate a signature share, and any k
correctly generated signature shares may be combined
by any party to produce a full signature. We set [ =
3f +1land k = f + 1, so that a correct signature proves
that the inner ring made a decision under the Byzantine
agreement algorithm.

A proactive threshold signature scheme is a threshold
signature scheme in which a new set of / key shares may
be computed that are independent of any previous set;
while k of the new shares may be combined to produce
a correct signature, signature shares generated from key
shares from distinct sets cannot be combined to produce
full signatures.

To change the composition of an inner ring, the exist-
ing hosts of that ring participate in a distributed algorithm
with the new hosts to compute a second set of / shares.
These shares are independent of the original set: shares

2nd USENIX Conference on File and Storage Technologies

from the two sets cannot be combined to produce a valid
signature. Once the new shares are generated and dis-
tributed to the new servers, the old servers delete their old
shares. By the Byzantine assumption, at most f = k — 1
of the old servers are faulty, and the remainder will cor-
rectly delete their old key shares, rendering it impossi-
ble to generate new signatures with the them. Because
the public key has not changed, however, clients can still
verify new signatures using the same public key.

A final benefit of threshold signatures is revealed when
they are combined with the routing and location services
of Tapestry. Rather than directly publishing their own
GUIDs, the hosts in the inner ring publish themselves
under the AGUIDs of the objects they serve. When the
composition of the ring changes, the new servers publish
themselves in the same manner. Since the ring’s public
key does not change, clients of the ring need not worry
about its exact composition; the knowledge of its key and
the presence of Tapestry are sufficient to contact it.

The Responsible Party: Byzantine agreement allows us
to build a fault-tolerant primary replica for each data ob-
ject. By also using public-key cryptography, threshold
signatures, and Tapestry, we achieve the ability to dy-
namically change the hosts implementing that replica in
response to failures or changing usage conditions. One
difficulty remains, however: who chooses the hosts in the
first place?

To solve this problem, we rely on an entity known as
the responsible party, so named for its responsibility to
choose the hosts that make up inner rings. This entity
is a server which publishes sets of failure-independent
nodes discovered through offline measurement and anal-
ysis [37]. Currently, we access this server through
Tapestry, but simply publishing such sets on a secure web
site would also suffice. An inner ring is created by select-
ing one node from each of 3f + 1 independent sets.

Superficially, the responsible party seems to introduce
a single point of failure into the system. While this is true
to an extent, it is a limited one. The responsible party it-
self never sees the private key shares used by the primary
replica; these are generated through a distributed algo-
rithm involving only the servers of the inner ring, and
new groups of shares are also generated in this manner.
Thus, a compromise in the privacy of the data stored by
the responsible party will not endanger the integrity of
file data. As with primary replicas, there can be many re-
sponsible parties in the system; the responsible party thus
presents no scalability issue. Furthermore, the online in-
terface to the responsible party only provides the read-
only results of an offline computation; there are known
solutions for building scalable servers to provide such a
service.

USENIX Association



USENIX Association

4 Prototype

This section describes important aspects of the imple-
mentation of the prototype, as well as the ways in which
it differs from our system description.

4.1 Software Architecture

We built Pond in Java, atop the Staged Event-Driven Ar-
chitecture (SEDA) [39], since prior research indicates
that event-driven servers behave more gracefully under
high load than traditional threading mechanisms [39].
Each Pond subsystem is implemented as a stage, a self-
contained component with its own state and thread pool.
Stages communicate with each other by sending events.

Figure 3 shows the main stages in Pond and their in-
terconnections. Not all components are required for all
OceanStore machines; stages may be added or removed
to reconfigure a server. Stages on the left are necessary
for servers in the inner ring, while stages on the right are
generally associated with clients’ machines.

The current code base of Pond contains approximately
50,000 semicolons and is the work of five core graduate
student developers and as many undergraduate interns.

4.2 Language Choice

We implemented Pond in Java for several reasons. The
most important was speed of development. Unlike C or
C++, Java is strongly typed and garbage collected. These
two features greatly reduce debugging time, especially
for a large project with a rapid development pace.

The second reason we chose Java was that we wanted
to build our system using an event driven architecture,
and the SEDA prototype, SandStorm, was readily avail-
able. Furthermore, unlike multithreaded code written
in C or C++, multithreaded code in Java is quite easy
to port. To illustrate this portability, our code base,
which was implemented and tested solely on Debian
GNU/Linux workstations, was ported to Windows 2000
in under a week of part-time work.

Unfortunately our choice of programming language
also introduced some complications; foremost among
these is the unpredictability introduced by garbage col-
lection. All current production Java Virtual Machines
(JVMs) we surveyed use so-called “stop the world” col-
lectors, in which every thread in the system is halted
while the garbage collector runs>. Any requests cur-
rently being processed when garbage collection starts are
stalled for on the order of one hundred milliseconds. Re-
quests that travel across machines may be stopped by
several collections in serial. While this event does not

2We currently use JDK 1.3 for Linux from IBM. See
http://www.ibm.com/developerworks/java/jdk/linux 130/.

Down Tree Msg
Agreement Init

Generate Frags
Aggrement Exec Di . Frags
g

Read Object
Get Heartbeat

-

OSCreate
OSRead
OSWrite

JUOWRIT Y
sunuezAg
Sury 1euuy
JATYOIY
eorday] / 991,
UONRUIIASSI(]
ERIAREINI
i) 9)
suoneorddy

Preprepare
Prepare
Commit

Up Tree
Down Tree

Create Object
Update Object

Update Store Frag
Object Get Frag

\ Tapestry |
\ Network (Java NBIO) |

Figure 3: Prototype Software Architecture. Pond is built
atop SEDA. Components within a single host are implemented
as stages (shown as boxes) which communicate through events
(shown as arrows). Not all stages run on every host; only inner
ring hosts run the Byzantine agreement stage, for example.

happen often, it can add several seconds of delay to a
task normally measured in tens of milliseconds.

To adjust for these anomalies, we report the median
value and the Oth and 95th percentile values for exper-
iments that are severely effected by garbage collection
instead of the more typical mean and standard deviation.
We feel this decision is justified because the effects of
garbage collection are merely an artifact of our choice of
language rather than an inherent property of the system;
an implementation of our system in C or C++ would not
exhibit this behavior.

4.3 Inner Ring Issues

Most of the core functionality of the inner ring is imple-
mented in Pond, with the following exception. We do
not currently implement view changes or checkpoints,
two components of the Castro-Liskov algorithm which
are used to handle host failure. However, this defi-
ciency should not sufficiently affect our results; Castro
and Liskov found only a 2% performance degradation
due to recovery operations while running the Andrew500
benchmark [4] on their system.

Lastly, our current signature scheme is a threshold ver-
sion of RSA developed by Shoup [32]. We plan to im-
plement a proactive algorithm, most likely Rabin’s [22],
soon; since the mathematics of the two schemes is simi-
lar, we expect similar performance from them as well.

5 Experimental Setup

We use two experimental test beds to measure our sys-
tem. The first test bed consists of a local cluster of forty-
two machines at Berkeley. Each machine in the cluster is
a IBM xSeries 330 1U rackmount PC with two 1.0 GHz
Pentium III CPUs, 1.5 GB ECC PC133 SDRAM, and

2nd USENIX Conference on File and Storage Technologies



Storage Overhead vs. Object Size

Q

.(}l:; 13 . . . . 13
- Cauchy Rate 1/4, 32 Fragments

,éi 11 | Cauchy Rate 1/2, 32 Fragments -~ 11
8 No Archive -

3 9 r 19
E \

g 70 17
g

o 5t 15
Q N

= 3 T 43
2

‘5 1 1 1 1

&= 4 16 64 256 1024 4096

Object Size (kB)

Figure 4: Sorage Overhead. Objects of size less than the
block size of 8 kB still require one block of storage. For suffi-
ciently large objects, the metadata is negligible. The cost added
by the archive is a function of the encoding rate. For example,
arate 1/4 code increases the storage cost by a factor of 4.8.

two 36 GB IBM UltraStar 36L.ZX hard drives. The ma-
chines use a single Intel PRO/1000 XF gigabit Ethernet
adaptor to connect to a Packet Engines PowerRail giga-
bit switch. The operating system on each node is Debian
GNU/Linux 3.0 (woody), running the Linux 2.4.18 SMP
kernel. The two disks run in software RAID O (striping)
mode using md raidtools-0.90. During our experiments
the cluster is otherwise unused.

The second test bed is PlanetLab, an open, global test
bed for developing, deploying, and accessing new net-
work services (see http://www.planet-lab.org/). The sys-
tem currently operates on 101 nodes spread across 43
sites throughout North America, Europe, Australia, and
New Zealand. While the hardware configuration of the
machines varies slightly, most of the nodes are 1.2 GHz
Pentium III CPUs with 1 GB of memory.

For some of our experiments we use a subset of Plan-
etLab distributed throughout the San Francisco Bay Area
in California, USA. The machines that comprise the
group of “Bay Area” servers include one machine from
each of the following sites: University of California in
Berkeley, CA; Lawrence Berkeley National Laboratories
in Berkeley, CA; Intel Research Berkeley in Berkeley,
CA; and Stanford University in Palo Alto, CA.

6 Results

In this section, we present a detailed performance anal-
ysis of Pond. Our results demonstrate the performance
characteristics of the system and highlight promising
areas for further research.

2nd USENIX Conference on File and Storage Technologies

Key | Update Update Latency (ms)
Size | Size Archive 5% | Median | 95%
512 4 kB off 36 37 38
on 39 40 41
2 MB off | 494 513 778
on | 1037 1086 | 1348
1024 | 4kB off 94 95 96
on 98 99 100
2 MB off | 557 572 875
on | 1098 1150 | 1448

Table 2: Results of the Latency Microbenchmark in the Local
Area. All nodes are hosted on the cluster. Ping latency between
nodes in the cluster is 0.2 ms. We run with the archive enabled
and disabled while varying the update size and key length.

6.1 Storage Overhead

We first measure the storage overhead imposed by our
data model. As discussed in Section 2, the data object
is represented as a B-tree with metadata appended to the
top block. When the user data portion of the data object
is smaller than the block size, the overhead of the top
block dominates the storage overhead. As the user data
increases in size, the overhead of the top block and any
interior blocks becomes negligible. Figure 4 shows the
overhead due to the B-tree for varying data sizes.

The storage overhead is further increased by erasure
coding each block. Figure 4 shows that this increase is
proportional to the inverse of the rate of encoding. En-
coding an 8kB block using a rate r = % (m = 16,n =
32)and r = i (m = 16,n = 64) code increases the
storage overhead by a factor of 2.7 and 4.8, respectfully.
The overhead is somewhat higher than the inverse rate
of encoding because some additional space is required to
make fragments self-verifying. See [38] for details.

6.2 Update Performance

We use two benchmarks to understand the raw update
performance of Pond.

The Latency Microbenchmark: 1In the first mi-
crobenchmark, a single client submits updates of vari-
ous sizes to a four-node inner ring and measures the time
from before the request is signed until the signature over
the result is checked. To warm the JVM?3, we update 40
MB of data or perform 1000 updates, depending on the
size of the update being tested. We pause for ten sec-
onds to allow the system to quiesce and then perform a
number of updates, pausing 100 ms between the response
from one update and the request for the next. We report

3Because Java code is generally optimized at runtime, the first sev-
eral executions of a line of code are generally slow, as the runtime sys-
tem is still optimizing it. Performing several passes through the code
to allow this optimization to occur is called warming the JVM.

USENIX Association



USENIX Association

Time (ms)
Phase 4 kB Update | 2 MB Update
Check Validity 0.3 0.4
Serialize 6.1 26.6
Update 1.5 113.0
Archive 4.5 566.9
Sign Result 71.8 75.8
Table 3:  Latency Breakdown of an Update. The majority

of the time in a small update performed on the cluster is spent
computing the threshold signature share over the result. With
larger updates, the time to apply and archive the update domi-
nates signature time.

Inner Avg. | Update Update Latency (ms)
Ring Client Ping Size 5% | Median 95%
Cluster | Cluster 0.2 4 kB 98 99 100
2MB | 1098 1150 1448
Cluster | UCSD | 27.0 4kB 125 126 128
2MB | 2748 2800 3036
Bay UCSD | 232 4 kB 144 155 166
Area 2MB | 8763 9626 | 10231

Table 4: Results of the Latency Microbenchmark Run in the
Wide Area. All tests were run with the archive enabled using
1024-bit keys. “Avg. Ping” is the average ping time in millisec-
onds from the client machine to each of the inner ring servers.
UCSD is the University of California at San Diego.

the latency of the median, the fifth percentile, and the
ninety-fifth percentile.

We run this benchmark with a variety of parameters,
placing the nodes in various locations through the net-
work. Table 2 presents the results of several experiments
running the benchmark on the cluster, which show the
performance of the system apart from wide-area network
effects. This isolation highlights the computational cost
of an update. While 512-bit RSA keys do not provide
sufficient security, we present the latency of the system
using them as an estimate of the effect of increasing
processor performance. Signature computation time is
quadratic in the number of bits; a 1024-bit key signature
takes four times as long to compute as a 512-bit one. The
performance of the system using 512-bit keys is thus a
conservative estimate of its speed after two iterations of
Moore’s law (roughly 36 months).

Table 3 presents a breakdown of the latency of an
update on the cluster. In the check validity phase, the
client’s signature over the object is checked. In the se-
rialization phase, the inner ring servers perform the first
half of the Byzantine agreement process, ensuring they
all process the same updates in the same order. In the
update and archive phases, the update is applied to a data
object and the resulting version is archived. The final
phase completes the process, producing a signed heart-
beat over the new version. It is clear from Table 3 that
most of the time in a small update is spent computing the

Update Throughput vs. Update Size

=)
. . . . 12

§ 140 Ops/s, Archive Disabled ——

A Ops/s, Archive Enabled - 110 2

5 120 1 MB/s, Archive Disabled - A

= MB/s, Archive Enabled = s

2 100 ot 8 ad

S - =

8 =

g 80 6 =

Q. k=)

©) 60 g

L 4 m

.é 40 =
5]

2 2 2 F

s .

2 0 - 0

4 16 64 256 1024
Size of Update (kB)

Figure 5: Throughput in the Local Area. This graph shows
the update throughput in terms of both operations per second
(left axis) and bytes per second (right axis) as a function of up-
date size. While the ops/s number falls off quickly with update
size, throughput in bytes per second continues to increase. All
experiments are run with 1024-bit keys. The data shown is the
average of three trials, and the standard deviation for all points
is less than 3% of the mean.

threshold signature share over the result. With larger up-
dates, the time to apply and archive the update is large,
and the signature time is less important. Although we
have not yet quantified the cost of increasing the ring
size, the serialize phase requires quadratic communica-
tion costs in the size of the ring. The other phases, in
contrast, scale at worst linearly in the ring size.

Table 4 presents the cost of the update including net-
work effects. Comparing rows one and two, we see that
moving the client to UCSD adds only the network la-
tency between it and the inner ring to the total update
time for small updates. Comparing rows two and three
we see that distributing the inner ring throughout the
Bay Area increases the median latency by only 23% for
small updates. Since increased geographic scale yields
increased failure independence, this point is very en-
couraging. For larger updates, bandwidth limitations be-
tween the PlanetLab machines prevent optimal times in
the wide area; it is thus important that a service provider
implementing a distributed inner ring supply sufficient
bandwidth between sites.

The Throughput Microbenchmark: In the second mi-
crobenchmark, a number of clients submit updates of
various sizes to a four-node inner ring. Each client sub-
mits updates for a different data object. The clients create
their objects, synchronize themselves, and then update
the object as many times as possible in a 100 second pe-
riod. We measure the number of updates completed by
all clients and report the update and data throughput.

Figure 5 shows the results of running the throughput

2nd USENIX Conference on File and Storage Technologies



10

IR Location | Client Location | Throughput (MB/s)

Cluster Cluster 2.59
Cluster PlanetLab 1.22
Bay Area PlanetLab 1.19

Table 5: Throughput in the Wide Area. The throughput for a
distributed ring is limited by the wide-area bandwidth. All tests
are run with the archive on and 1024-bit keys.

Read Latency vs. Read Size

200 -
Read From Archive
Read From Remote Cache -~~~
150 |
\é}/
g 100 |
5
<
—
50 |
0 L ‘ ‘ ‘
8 16 24 32
Read Size (kB)
Figure 6: Latency to Read Objects from the Archive. The

latency to read data from the archive depends on the latency to
retrieve enough fragments for reconstruction.

test on the cluster. Again, running the test in the local
area illustrates the computational limitations of the inner
ring. Lines sloping downward show the number of oper-
ations completed per second as a function of the update
size and archival policy; lines sloping upward show the
corresponding throughput in megabytes per second.

If the inner ring agrees about each update individually,
the maximum possible number of operations completed
per second is bounded by the speed of threshold signa-
ture generation, or approximately 10 operations per sec-
ond. Instead, the inner ring batches updates and agrees
on them in groups (as suggested by [4]); because of this,
we have found that the throughput of the system does
not change much when using 512-bit keys. Unfortu-
nately, there are other costs associated with each update,
so batching only helps to a degree. As suggested by Ta-
ble 3, however, as the update size increases the signature
phase becomes only a small part of the load, so through-
put in megabytes per second continues to increase. From
Figure 5, we see the maximum throughput of the proto-
type with the archive disabled is roughly 8 MB/s.

The throughput of the prototype with the archival sub-
system enabled is significantly lower. This is not sur-
prising given the effect of the computationally-intensive
archiving process we observed in Table 2. From Figure 5,
we see that the maximum sustainable throughput of the
archival process is roughly 2.6 MB/s. As such, we plan

2nd USENIX Conference on File and Storage Technologies

to focus a significant component of our future work on
tuning the archival process.

Table 5 shows the results of running the throughput
test with the archive running and hosts located through-
out the network. In the wide area, throughput is limited
by the bandwidth available.

6.3 Archive Retrieval Performance

To read a data object in OceanStore, a client can lo-
cate a replica in Tapestry. If no replica exists, one
must be reconstructed from archival fragments. The
latency of accessing a replica is simply the latency of
through Tapestry. Reconstructing data from the archive
is a more complicated operation that requires retrieving
several fragments through Tapestry and recomputing the
data from them.

To measure the latency of reading data from the
archive, we perform a simple experiment. First, we pop-
ulate the archive by submitting updates of various sizes
to a four-node inner ring. Next, we delete all copies
of the data in its reconstructed form. Finally, a single
client submits disjoint read events synchronously, mea-
suring the time from each request until a response is re-
ceived. We perform 1,000 reads to warm the JVM, pause
for thirty seconds, then perform 1,000 more, with 5 ms
between the response to each read and the subsequent
request. For comparison, we also measure the cost of
reading remote replicas through Tapestry. We report the
minimum, median, and 95th percentile latency.

Figure 6 presents the latency of reading objects from
the archive running on the cluster. The archive is using a
rate r = % = é—g code; the system must retrieve 16 frag-
ments to reconstruct a block from the archive. The graph
shows that the time to read an object increases with the
number of 8kB blocks that must be retrieved. The me-
dian cost of reading an object from the archive is never
more the 1.7 times the cost of reading from a previously
reconstructed remote replica.

6.4 Secondary Replication

In this section, we describe two benchmarks designed to
evaluate the efficiency and performance of the dissemi-
nation tree that connects the second tier of replicas.

The Stream Benchmark: The first benchmark mea-
sures the network resources consumed by streaming data
through the dissemination tree from a content creator to
a number of replicas. We define the efficiency of the tree
as the percentage of bytes sent down high-latency links
while distributing an update to every replica. We assume
that most high-latency links will either have low band-
width or high contention; local, low-latency links should
be used whenever possible.

USENIX Association



USENIX Association

100

&
s 80 | |
5z -
4 e A
o8 B
> 5,
£z wp A
E” 20 - 50 Replicas |
6 20 Replicas -

0 . 10Replicas -

0 20 40 60 80 100 120 140 160 180 200
Link RTT (ms)

Figure 7: Results of the Stream Benchmark. The graph shows
the percentage of bytes sent over links of different latency as
the number of replicas varies.

In this benchmark, we create a Tapestry network with
500 virtual OceanStore nodes spread across the hosts
in 30 PlanetLab sites. We then create a single shared
OceanStore data object with a Bay Area inner ring and a
variable number of replicas hosted on the seven largest
PlanetLab sites. One of these sites lies in the United
Kingdom; the other six are in the United States. A single
replica repeatedly submits updates that append data to
the object. We measure the bandwidth consumed push-
ing the updates to all other replicas.

Figure 7 shows the percentage of bytes sent across net-
work links of various latencies in this benchmark. Ac-
cording to our metric, the dissemination tree distributes
the data efficiently. With only 10 replicas, there are 1.4
replicas per site on average, and 64% of all bytes sent are
transmitted across links of latency greater than 20 ms.
With 50 replicas, however, there are an average of 7.1
replicas per site, and only 24% of all bytes are sent across
links of latency greater than 20 ms.

The Tag Benchmark: The next benchmark measures
data sharing in a more interactive scenario, such as a chat
room. We arrange for a group of OceanStore replicas to
play a distributed game of “tag”. To play tag, replicas
pass a small piece of data—or token—among the group
and measure how quickly the token is passed.

In this benchmark, we create a Tapestry network with
200 virtual OceanStore nodes spread across the same 30
PlanetLab sites used in the stream benchmark. We create
a single shared data object with a Bay Area inner ring
and 50 replicas hosted on the large PlanetLab sites. To
pass the token, the replica holding it writes the name of
another replica into the data object. A replica receives the
token when it reads the new version and finds its name.
We measure the average latency over 500 passes.

To put these latencies in perspective, we run two con-
trol experiments without using Pond. In these experi-
ments, a coordinator node is placed on one of the ma-

Tokens Passed Using | Latency per Tag (ms)

OceanStore 329
Tapestry 104
TCP/IP 73

Table 6: Results of the Tag Microbenchmark. Each experiment
was run at least three times, and the standard deviation across
experiments was less than 10% of the mean. All experiments
are run using 1024-bit keys and with the archive disabled.

chines that hosted an inner ring node in the OceanStore
experiment. To pass the token, a replica sends a mes-
sage to the coordinator; the coordinator forwards the to-
ken to the next recipient. In one control experiment,
Tapestry is used to communicate between nodes; in the
other, TCP/IP is used.

As demonstrated by the stream benchmark, the dis-
semination tree is bandwidth efficient; the tag benchmark
shows that this efficiency comes at the cost of latency.
Table 6 presents the results of the tag benchmark. In the
control cases, the average time to pass the token is 73 ms
or 104 ms, depending on whether TCP/IP or Tapestry
is used. Using OceanStore, passing the token requires an
average of 329 ms. Subtracting the minimum time to per-
form an update (99 ms, according to Table 4), we see that
the latency to pass the token through the dissemination
tree is 2.2 times slower than passing the token through
Tapestry and 3.2 times slower than using TCP/IP.

6.5 The Andrew Benchmark

To illustrate the performance of Pond on a workload fa-
miliar to systems researchers, we implemented a UNIX
file system interface to OceanStore using an NFS loop-
back server [19] and ran the Andrew benchmark. To map
the NFS interface to OceanStore, we store files and direc-
tories as OceanStore data objects. We use a file’s AGUID
as its NFS file handle; directories are represented as sim-
ple lists of the files that they contain. The information
normally stored in a file’s inode is stored in the metadata
portion of the OceanStore object.

When an application references a file, the replica code
creates a local replica and integrates itself into the cor-
responding object’s dissemination tree. From that point
on, all changes to the object will be proactively pushed
to the client down the dissemination tree, so there is no
need to consult the inner ring on read-only operations.

Write operations are always sent directly to the in-
ner ring. NFS semantics require that client writes not
be comingled, but imposes no ordering between them.
The inner ring applies all updates atomically, so enclos-
ing each write operation in a single update is sufficient
to satisfy the specification; writes never abort. Directo-
ries must be handled more carefully. On every directory

2nd USENIX Conference on File and Storage Technologies

11



12

LAN WAN
Linux  OceanStore | Linux OceanStore

Phase NFS 512 1024 NFS 512 1024
I 0.0 1.9 4.3 0.9 2.8 6.6
11 03 11.0 240 94 16.8 40.4
1T 1.1 1.8 1.9 8.3 1.8 1.9
v 0.5 1.5 1.6 6.9 1.5 1.5
\'% 26 21.0 422 21.5 32.0 70.0
Total 45 372 739 47.0 549 1203

Table 7: Results of the Andrew Benchmark. All experiments
are run with the archive disabled using 512 or 1024-bit keys,
as indicated by the column headers. Times are in seconds, and
each data point is an average over at least three trials. The stan-
dard deviation for all points was less than 7.5% of the mean.

change, we specify that the change only be applied if
the directory has not changed since we last read it. This
policy could theoretically lead to livelock, but we expect
contention of directory modifications by users to be rare.

The benchmark results are shown in Table 7. In the
LAN case, the Linux NFS server and the OceanStore in-
ner ring run on our local cluster. In the WAN case, the
Linux NFS server runs on the University of Washington
PlanetLab site, while the inner ring runs on the UCB,
Stanford, Intel Berkeley, and UW sites. As predicted
by the microbenchmarks, OceanStore outperforms NFS
in the wide area by a factor of 4.6 during the read-
intensive phases (III and IV) of the benchmark. Con-
versely, the write performance (phases I and II) is worse
by as much as a factor of 7.3. This latter difference is due
largely to the threshold signature operation rather than
wide-area latencies; with 512-bit keys, OceanStore is no
more than a factor of 3.1 slower than NFS. When writes
are interspersed with reads and computation (phase V),
OceanStore performs within a factor of 3.3 of NFS, even
with large keys.

7 Related Work

A number of distributed storage systems have preceded
OceanStore; notable examples include [31, 13, 8]. More
recently, as the unreliability of hosts in a distributed
setting has been studied, Byzantine fault-tolerant ser-
vices have become popular. FarSite [3] aims to build
an enterprise-scale distributed file system, using Byzan-
tine fault-tolerance for directories only. The ITTC
project [40] and the COCA project [42] both build cer-
tificate authorities (CAs) using threshold signatures; the
later combines this scheme with a quorum-based Byzan-
tine fault-tolerant algorithm. The Fleet [16] persistent
object system also uses a quorum-based algorithm.
Quorum-based Byzantine agreement requires less
communication per replica than the state-machine based

2nd USENIX Conference on File and Storage Technologies

agreement used in OceanStore; however, it tolerates pro-
portionally less faults. It was this tradeoff that led us to
our architecture; we use primary-copy replication [10] to
reduce communication costs, but implement the primary
replica as a small set servers using state-machine Byzan-
tine agreement to achieve fault tolerance.

In the same way that OceanStore is built atop Tapestry,
a number of other peer-to-peer systems are construct-
ing self-organizing storage on distributed routing pro-
tocols. The PAST project [28] is producing a global-
scale storage system data using replication for durabil-
ity. The cooperative file system (CFS) [7] also tar-
gets wide-area storage. We chose Tapestry for its lo-
cality properties; functionally, however, other routing
protocols ([17, 18, 23, 27, 33]) could be used instead.
Like OceanStore, both PAST and CFS provide proba-
bilistic guarantees of performance and robustness; un-
like OceanStore, however, they are not designed for
write sharing. Ivy [21] is a fully peer-to-peer read-write
file system built atop the CFS storage layer. Unlike
OceanStore, it provides no single point of consistency
for data objects; conflicting writes must be repaired at
the application level. Similarly, Pangaea [29] provides
only “eventual” consistency in the presence of conflict-
ing writes. By supporting Bayou-style update seman-
tics and having a single point of consistency per object,
OceanStore is able to support higher degrees of consis-
tency (including full ACID semantics) than Ivy or Pan-
gaea; by distributing this single point through a Byzan-
tine agreement protocol, OceanStore avoids losses of
availability due to server failures.

Still other distributed storage systems use erasure-
coding for durability. One of the earliest is Intermem-
ory [9], a large-scale, distributed system that provides
durable archival storage using erasure codes. The Pa-
sis [41] system uses erasure-coding to provide durabil-
ity and confidentiality in a distributed storage system.
Pasis and Intermemory both focus on archival storage,
rather than consistent write sharing. Mnemosyne [11]
combines erasure-codes with client-directed refresh to
achieve durability; clients rewrite data at a rate sufficient
to guarantee the desired survival probability.

A final class of systems are also related to OceanStore
by the techniques they use, if not in the focus of their
design. Publius [15], the Freenet [6], and Eternity Ser-
vice [1] all focus on preventing censorship of distributed
data, each in their own way. Publius uses threshold cryp-
tography to allow a host to store data without knowing its
content, as a method of allowing deniability for the host’s
operators. Freenet also uses coding for deniability, and is
built on a routing overlay similar in interface to Tapestry.
Finally, the Eternity Service uses erasure coding to make
censoring data beyond the resources of any one entity.

USENIX Association



USENIX Association

8 Conclusions and Future Work

We have described and characterized Pond, the
OceanStore prototype. While many important challenges
remain, this prototype is a working subset of the vision
presented in the original OceanStore paper [14].

Building this prototype has refined our plans for future
research. We initially feared that the increased latency of
a distributed Byzantine agreement process might be pro-
hibitive, a fear this work has relieved. Instead, thresh-
old signatures have proven far more costly than we an-
ticipated, requiring an order of magnitude more time to
compute than regular public key signatures. We plan to
spend significant time researching more efficient thresh-
old schemes, or possibly even alternate methods for
achieving the benefits they provide. Likewise, we plan
to focus on improving the speed of generating erasure-
encoded fragments of archival data. Not discussed in this
work is the overhead of virtualization. While the latency
overhead of Tapestry has been examined before [24],
quantifying the additional storage costs it imposes is a
topic for future research.

Our future work should not focus entirely on perfor-
mance, however. One interesting property of the cur-
rent system is the self-maintaining algorithms it employs.
Tapestry automatically builds an overlay network that
efficiently finds network resources, and the dissemina-
tion tree self-organizes to keep replicas synchronized.
The use of threshold signatures allows the inner ring
to change its composition without affecting the rest of
the system. We hope to make more aspects of the sys-
tem self-maintaining in the future. For example, algo-
rithms for predictive replica placement and efficient de-
tection and repair of lost data [35] are vital for lowering
the management costs of distributed storage systems like
OceanStore.

Increased stability and fault-tolerance are also impor-
tant if Pond is to become a research vehicle for even more
interesting projects. Our work in benchmarking Tapestry
and its peers [25] was started with the intention of im-
proving the stability of the lowest layer of Pond. More-
over, network partitions are a problem for most overlay
networks, and further research is needed to study the be-
havior of Tapestry under partition. As the stability of
Tapestry improves, our focus will shift to higher layers
of the system.

Finally, the OceanStore data model has proven expres-
sive enough to support several interesting applications,
including a UNIX file system with time travel, a dis-
tributed web cache, and an email application. Nonethe-
less, the developement of these applications has pointed
out areas in which the OceanStore API could be im-
proved; a more intuitive API will hopefully spur the de-
velopement of further OceanStore applications.

9 Availability

The Pond source code and benchmarks are published
under the BSD license and are freely available from
http://oceanstore.cs.berkeley.edu.

10 Acknowledgements

We would like thank IBM for providing the hardware in
our cluster, and all of the groups that have contributed to
PlanetLab. Without these two testbeds, this work would
not have been possible. Brent Chun and Mike Howard
were particularly helpful with our experiments. Anthony
Joseph and Timothy Roscoe provided valuable input on
the design and implementation of Pond. Jeremy Strib-
ling’s debugging skills were instrumental in bringing up
large Tapestry networks. Finally, we are grateful to our
anonymous reviewers and Frans Kaashoek, our paper’s
steward, whose comments and advice have greatly im-
proved this work.

References

[1] R. Anderson. The eternity service. In Proceedings of
Pragocrypt, 1996.

[2] J. Bloemer et al. An XOR-based erasure-resilient coding
scheme. Technical Report TR-95-048, The International
Computer Science Institute, Berkeley, CA, 1995.

[3] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasi-
bility of a serverless distributed file system deployed on
an existing set of desktop PCs. In Proc. of Sgmetrics,
June 2000.

[4] M. Castro and B. Liskov. Proactive recovery in a
byzantine-fault-tolerant system. In Proc. of OSDI, 2000.

[5] Y. Chen, R. Katz, and J. Kubiatowicz. SCAN: A dynamic,
scalable, and efficient content distribution network. In
Proc. of International Conference on Pervasive Comput-
ing, 2002.

[6] 1. Clark, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
distributed anonymous information storage and retrieval
system. In Proc. of the Workshop on Design Issues in
Anonymity and Unobservability, pages 311-320, Berke-
ley, CA, July 2000.

[7]1 F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proc. of ACM SOSP, October 2001.

[8] A.Demers et al. The Bayou architecture: Support for data
sharing among mobile users. In Proc. of IEEE Workshop
on Mobile Computing Systems & Applications, 1994.

[9]1 A. Goldberg and P. Yianilos. Towards an archival inter-
memory. In Proc. of |IEEE ADL, pages 147-156, April
1998.

[10] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers
of replication and a solution. In Proc. of ACM SGMOD
Conf., June 1996.

2nd USENIX Conference on File and Storage Technologies

13



14

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]
[25]

(26]

[27]

(28]

[29]

(30]

(31]

S. Hand and T. Roscoe. Mnemosyne: Peer-to-peer
steganographic storage. In Proc. of IPTPS March 2002.
K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Dis-
tributed object location in a dynamic network. In Proc. of
ACM SPAA, pages 41-52, August 2002.

J. Kistler and M. Satyanarayanan. Disconnected opera-
tion in the Coda file system. ACM Transactions on Com-
puter Systems, 10(1):3-25, February 1992.

J. Kubiatowicz et al. Oceanstore: An architecture for
global-scale persistent storage. In Proc. of ASPLOS,
2000.

A. Rubin M. Waldman and L. Cranor. Publius: A robust,
tamper-evident, censorship-resistant, web publishing sys-
tem. In Proc. 9th USENIX Security Symposium, 2000.

D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind. Per-
sistent objects in the fleet system. In DISCEX 11, 2001.
Dahlia Malkhi, Moni Naor, and David Ratajczak.
Viceroy: A scalable and dynamic emulation of the but-
terfly. In Proc. of ACM PODC Symp., 2002.

Petar Maymounkov and David Mazieres. Kademlia: A
peer-to-peer information system based on the XOR met-
ric. In Proc. of IPTPS 2002.

D. Mazieres. A toolkit for user-level file systems. In Proc.
of USENIX Summer Technical Conf., June 2001.

R. Merkle. A digital signature based on a conventional
encryption function. In Proc. of CRYPTO, pages 369—
378. Springer-Verlag, 1988.

A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. In Proc. of OSDI,
2002.

T. Rabin. A simplified approach to threshold and proac-
tive RSA. In Proceedings of Crypto, 1998.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proceedings of SGCOMM. ACM, August 2001.

S. Rhea and J. Kubiatowicz. Probabilistic location and
routing. In Proc. of INFOCOM. IEEE, June 2002.

S. Rhea, T. Roscoe, and J. Kubiatowicz. DHTSs need
application-driven benchmarks. In Proc. of IPTPS 2003.
S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weath-
erspoon, and J. Kubiatowicz. Maintenance free global
storage in oceanstore. In Proc. of |[EEE Internet Comput-
ing. IEEE, September 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large scale peer-
to-peer systems. In Proc. of IFIP/ACM Middleware,
November 2001.

A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proc. of ACM SOSP, 2001.

Y. Saito, C. Karamanolis, M. Karlsson, and M. Ma-
halingam. Taming aggressive replication in the pangaea
wide-area file system. In Proc. of OSDI, 2002.

D. Santry, M. Feeley, N. Hutchinson, A. Veitch, R. Car-
ton, and J. Ofir. Deciding when to forget in the Elephant
file system. In Proc. of ACM SOSP, December 1999.

M. Satyanarayanan. Scalable, secure, and highly avail-

2nd USENIX Conference on File and Storage Technologies

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

able distributed file access. |EEE Computer, 23(5), May
1990.

V. Shoup. Practical threshold signatures. In Proc. of EU-
ROCRYPT, 2000.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of S G-
COMM. ACM, August 2001.

M. Stonebraker. The design of the Postgres storage sys-
tem. In Proc. of Intl. Conf. on VLDB, September 1987.
H. Weatherspoon and J. Kubiatowicz. Efficient heartbeats
and repair of softstate in decentralized object location and
routing systems. In Proc. of SGOPS European Work-
shop, 2002.

H. Weatherspoon and J. Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. In Proc. of
IPTPS March 2002.

H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz. In-
trospective failure analysis: Avoiding correlated failures
in peer-to-peer systems. In Proc. of International Work-
shop on Reliable Peer-to-Peer Distributed Systems, Octo-
ber 2002.

H. Weatherspoon, C. Wells, and J. Kubiatowicz. Naming
and integrity: Self-verifying data in peer-to-peer systems.
In Proc. of International Workshop on Future Directions
of Distributed Systems, 2002.

M. Welsh, D. Culler, and E. Brewer. SEDA: An architec-
ture for well-conditioned, scalable internet services. In
Proc. of ACM SOSP, October 2001.

T. Wu, M. Malkin, and D. Boneh. Building intrusion-
tolerant applications. In Proc. of USENIX Security Symp.,
August 1999.

J. Wylie, M. Bigrigg, J. Strunk, G. Ganger, H. Kiliccote,
and P. Khosla. Survivable information storage systems.
|EEE Computer, 33(8):61-68, August 2000.

L. Zhou, E Schneider, and R. van Renesse. Coca: A
secure distributed on-line certification authority. Techni-
cal Report 2000-1828, Department of Computer Science,
Cornell University, Ithaca, NY USA, 2000.

USENIX Association



