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Abstract 

 
This paper explores the effect of the current generation of hardware support for IP storage area networks on applica-
tion performance. In this regard, this paper presents a comprehensive analysis of three competing approaches to 
build an IP storage area network that differ in their level of hardware support: software, TOE (TCP Offload Engine) 
and HBA (Host Bus Adapter). The software approach is based on the unmodified TCP/IP stacks that are part of a 
standard operating system distribution. For the two hardware-based approaches (TOE, HBA), we experimented with 
a range of adapters and chose a representative adapter for the current generation of each of the hardware approaches. 
 
The micro-benchmark analysis reveals that while hardware support does reduce the CPU utilization for large block 
sizes, the hardware support can itself be a performance bottleneck that hurts throughput and latency with small block 
sizes. Furthermore, the macro-benchmark analysis demonstrates that while the current generation of the hardware 
approaches may have the potential to provide performance improvements in CPU-intensive applications, overall the 
analysis does not demonstrate any performance benefits in database, scientific and email benchmarks. The analysis in 
this paper points out that a disparity in the processing power between the host and the adapter is the primary cause of 
the performance bottleneck in the current generation of the hardware approaches. The paper aims to guide the de-
signers of the next generation of hardware-assisted adapters to better leverage the increasing processing power in the 
host. In particular, future adapters should be capable of handling small operations at wire speed. 
 
1. Introduction  

In the past, a typical server-class installation assumed 
the presence of storage attached to every host system.  
This type of host system-attached storage relied primar-
ily on the block-based SCSI protocol. The preferred 
transport for the SCSI protocol in this model was Paral-
lel SCSI where the storage devices were connected to 
the host system via a cable-based parallel bus. However, 
as the need for storage grew, the limitations of this 
technology became obvious. The physical characteris-
tics of the cable limited the number of storage devices 
as well as the distance of the storage devices from the 
host system. Also, storage had to be managed on a per-
host system basis. 

The lack of scalability and manageability of the host 
system-attached storage model led to the evolution of 
the concept of a storage area network. In this new 
model, storage devices are independent entities that 
provide block storage service via a network to a multi-
tude of host systems. The advent of gigabit networking 
coupled with the development of high-speed transport 
protocols further facilitates the service of storage over 
networks. Most storage area networks use Fibre Chan-
nel [Benner96]; other storage area network technologies 

are Infiniband [Shankley02], VaxClusters [Kronen-
berg86], HIPPI [Ansi90] and IP [Satran02, Rajago-
pal02]. A comparison of the principal storage area net-
working technologies can be found in [Voruganti01]. 

This paper focuses on storage area networks based on 
IP networking technology. The advantages of using IP 
networks are many. First, using the same IP technology 
for both regular (non-storage) networks as well as stor-
age networks removes the need to have two different 
types of networks in any infrastructure. Also, the use of 
a single popular networking infrastructure can leverage 
widely available network management skills. Second, 
the presence of well tested and established protocols 
allow IP networks both wide-area connectivity, scalable 
routing as well as proven bandwidth sharing capabili-
ties. Third, the emergence of Gigabit Ethernet seems to 
indicate that the bandwidth requirements of serving 
storage over a network should not be an issue. Finally, 
the availability of commodity IP networking infrastruc-
ture indicates the cost of building a storage area net-
work will not be prohibitive. 

The aim of this paper is to explore the effect of the cur-
rent generation of hardware support for IP storage area 
networks on application performance. The paper begins 
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by describing the various approaches possible in IP 
storage area networks, and focuses on the three preva-
lent approaches that differ in the level of hardware sup-
port. In the software approach, all TCP/IP and storage 
transport protocol processing is done on the host sys-
tem. In addition, the software approach relies on un-
modified TCP/IP stacks that are part of the standard 
operating system distribution. In the TOE (TCP Offload 
Engine) approach, the TCP/IP protocol processing is 
offloaded to the network adapter while the storage 
transport protocol processing is done in the host system. 
Finally, in the HBA (Host Bus Adapter) approach, the 
entire storage transport protocol processing is offloaded 
to the network adapter along with TCP/IP protocol 
processing.   

The key contribution of this paper is to compare these 
three approaches for IP storage area networks with the 
help of micro-benchmarks and macro-benchmarks. In 
the micro-benchmark analysis, the three approaches 
were compared with respect to latency and throughput 
by measuring their sensitivity to block sizes as well as 
CPU, I/O bus and memory speeds. The micro-
benchmark analysis was projected onto the real world 
by running database, scientific and email macro-
benchmarks on each of the three approaches. To obtain 
a representative adapter for each of the hardware ap-
proaches, we experimented with a range of adapters and 
then chose the one with the best performance profile for 
the micro-benchmark and macro-benchmark analysis. 

The results show that contrary to intuition, the represen-
tative adapters of the current generation of the hardware 
approaches are not inherently superior in terms of per-
formance, which is surprising given the cost of hard-
ware offload. The results indicate that while the hard-
ware support decreases the CPU utilization-to-
throughput ratio for large block sizes, the hardware 
support can itself be a performance bottleneck that hurts 
the rate of I/O operations in comparison to the software 
approach for small block sizes. This performance bot-
tleneck can be isolated to the disparity in computing 
power between the host and the current generation of 
the hardware-assisted adapters. Consequently, the cur-
rent generation of the hardware approaches is not supe-
rior in terms of latency and throughput. This phenome-
non is also observed in database, email and scientific 
benchmarks. This calls for the need for intelligent 
hardware support that can take advantage of the in-
creased computing power of general-purpose proces-
sors.  

 

2. IP Storage 

The emerging field of IP storage area networks has the 
necessary technical infrastructure that makes it possible 
to transport block storage traffic: 

A high-bandwidth scalable network interconnect. A 
storage area network must provide high network band-
widths for storage to be delivered as a scalable service 
to applications residing in host systems. In the context 
of IP networks, Gigabit Ethernet can provide the neces-
sary infrastructure for a high-bandwidth storage area 
network.  

Reliable delivery. A storage area network needs a reli-
able transport protocol to exchange control and data 
between the host systems and the storage devices. For-
tunately, the IP networking community has invested a 
lot of research into building a widely-deployed, reliable 
and in-order transport protocol called TCP. With this in 
mind, the architects for IP storage area networks chose 
TCP as the primary transport protocol rather than pur-
sue the time-consuming approach of inventing, deploy-
ing and fine-tuning a specialized protocol for storage 
transport. 

Security and management. The IP networking infra-
structure has support for security and management pro-
tocols that address the needs of a storage area network. 
SSL, Kerberos and IPSec are some of the available se-
curity mechanisms. In terms of management, DNS al-
lows for unique worldwide naming, SLP for discovery 
of resources on an IP network, and SNMP and SMI for 
monitoring and diagnosis of IP network nodes. 

It should be noted here that IP storage area networks 
focus on block service in contrast to network file sys-
tems that provide remote file access over IP networks.  

2.1. Approaches to IP Storage Area Net-
works 

There are three main approaches to building an IP stor-
age area network, each with its distinct performance 
characteristics. 

2.1.1. Software 

The software approach envisages using a software 
TCP/IP stack for storage transport. Proponents of this 
approach claim that performance should scale with 
ever-increasing CPU speeds, obviating the need for any 
hardware assistance. However, preliminary results 
[Sarkar02] using this approach indicate that the main 
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performance bottleneck is the high CPU utilization in-
volved in large block transfers. The two major compo-
nents of this high CPU utilization are: 

Interrupt overhead due to the high rate of 
Ethernet frame-sized transfers from the adapter 
to the host. 

The TCP copy-and-checksum overhead for 
large block transfers. 
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Figure 1. This figure shows the flow of a read response in each of the three approaches to IP storage for both the initiator and target (assuming 

that a read request has been made earlier). The storage transport protocol in this figure is assumed to be iSCSI. The software approach is shown 

in part (a) where the SCSI/iSCSI stack in the target copies the requested SCSI buffer into a TCP/IP buffer for transmission by the TCP/IP stack. 

The TCP/IP buffer is then DMA-ed onto the network adapter card where it is transmitted over the network. The receiving NIC then DMA-s this 

buffer into a TCP/IP buffer on the host for TCP/IP stack processing, after which the buffer is copied into the destination SCSI buffer for 

SCSI/iSCSI stack processing. The TOE approach is shown in part (b) where the SCSI/iSCSI stack in the target DMA-s the requested SCSI buffer 

directly onto a TCP/IP-capable NIC, where it is transmitted after the requisite TCP/IP protocol processing. On receiving the buffer, the TCP/IP-

capable NIC on the receiving side DMA-s the buffer onto an anonymous TCP/IP buffer on the target. This anonymous buffer is then copied into 

the destination SCSI buffer for SCSI/iSCSI stack processing. The HBA approach is shown in part (c) where the SCSI stack in the target DMA’s 

the requested buffer into the iSCSI-capable NIC for iSCSI/TCP/IP processing and transmission over the network. On receiving the buffer, the 

iSCSI-capable NIC in the receiving side performs iSCSI/TCP/IP protocol processing to learn the identity of the destination buffer and directly 

DMA-s to this destination buffer for SCSI protocol processing. 
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The jumbo frame approach is a variant of the software 
approach and improves on the software approach by 
using 9KB Jumbo Ethernet frames to reduce the per-
packet overhead. However, Jumbo Ethernet frames are 
controversial as detractors claim that large frame sizes 
are detrimental to efficient routing and quality of serv-
ice. Due to a lack of consensus, Jumbo Ethernet frames 
are not standardized and may not be present in the fu-
ture. Consequently, this approach is not examined fur-
ther in the paper.  

Yet another variant of the software approach is the zero-
copy approach which uses modified TCP/IP stacks with 
zero-copy transmit capability. This approach reduces 
the TCP copy-and-checksum overhead as the responsi-
bility of generating the checksum is offloaded to the 
network adapter. However, zero-copy receives are typi-
cally not possible on such stacks because the network 
adapters are unaware of the final destination of any 
frame. Re-mapping the network buffer onto an applica-
tion buffer can remove the copy on the receive path. 
However, issues with page-alignment and virtual mem-
ory costs (particularly in SMP environments) have hin-
dered adoption in production operating systems. Since 
the primary overheads on storage area networks occur 
on the receive path [Sarkar02], this approach is also not 
examined further in the paper because of the lack of 
stable support for zero-copy receives. 

2.1.2. TOE  

The TOE approach involves network adapters with 
TCP/IP offload engines where the entire TCP/IP stack 
is offloaded onto the network adapter. This also reduces 
the TCP copy-and-checksum overhead. The interrupt 
overhead is also reduced because of the adapter gener-
ates at most one interrupt for every large block transfer. 
However, zero-copy receives are usually not possible 
on such stacks because the TCP/IP stack is also typi-
cally unaware of the final destination of any TCP/IP 
packet, though the discussion of re-mapping the net-
work buffer in Section 2.1.1 is also relevant here. An-
other complication for zero-copy receives is the pres-
ence of higher-level protocol headers in the data stream 
that complicates buffer alignment. 

2.1.3. HBA 

The HBA approach envisages the use of network adapt-
ers that have a specific storage transport interface (such 
as iSCSI) and is aware of the storage protocol seman-
tics. This approach will also reduce the interrupt over-
head, as the network adapter will ensure at most one 
interrupt per data transfer. More importantly, the proto-

col-specific direct data placement support in the adapter 
ensures that there are no copies on the receive path. As 
with the TOE approach, offloading the protocol proc-
essing to the adapter will eliminate the TCP/IP copy-
and-checksum overhead.  

The HBA approach can be envisaged as a specialized 
version of the RDMA approach [Bailey02, Compaq97], 
which provides zero-copy receive support via direct 
data placement to any transport protocol. However, in 
terms of performance analysis, the HBA and RDMA 
approaches both provide zero-copy receives and 
TCP/IP offload and are functionally similar. 

The software, TOE and HBA approaches are also cur-
rently the mainstream in IP storage area networks. Fig-
ure 1 shows the data flow of a read response in the 
software, TOE, and HBA approaches to better exem-
plify the differences between the approaches. 

The rest of this paper compares the software, TOE and 
HBA approaches in terms of both micro-benchmarks 
and macro-benchmarks. The goal is to identify whether 
the incremental hardware support necessarily improves 
performance. The micro-benchmarks do a sensitivity 
analysis of each of these approaches with respect to 
block sizes, CPU, memory and I/O bus speeds so as to 
identify potential performance bottlenecks. The macro-
benchmarks project the various performance character-
istics of each of these approaches onto real-world appli-
cations. 

3. Micro-benchmarks 

3.1. Experimental Setup 

To evaluate the performance of IP storage, the protocol 
of choice was iSCSI [Satran02]. The iSCSI protocol is 
an IETF proposed standard for transporting SCSI over 
TCP/IP. There are sufficient iSCSI products available 
from many industry vendors to do an experimental 
analysis of all three approaches. For the micro-
benchmark analysis, the experimental setup consisted of 
an iSCSI initiator workstation connected through an 
Alteon 180 Gigabit Ethernet switch to an iSCSI target 
server.  

3.1.1.  Initiator Workstation Setup  

The iSCSI initiator workstation was powered by an 
AMD Athlon MP 1900 CPU (1.6 GHz CPU clock 
speed) with 4 GB of PC2100 DDR memory, and sup-
ported both 64-bit 66 MHz and 32-bit 33 MHz PCI 
slots. The Athlon 1900 CPU was in the 48-th percentile 
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of all the available CPUs in terms of SpecInt perform-
ance at the time of testing. The motherboard in the ini-
tiator workstation allowed the CPU front-side bus 
(FSB) speed to be varied from 90 MHz to 141 MHz 
with a fixed CPU clock multiplier; this enabled CPU 
speed variations from 1.1 GHz to 1.7 GHz. The operat-
ing system running on the iSCSI initiator workstation 
was Windows 2000 SP3. There were no modifications 
made to the TCP/IP stack or any other kernel compo-
nent. 

The initiator workstation was configured with all the 
three approaches: software, TOE, and HBA.  

The network adapter for each approach was chosen 
after evaluating five HBA and TOE cards from different 
manufacturer.  All of these products were released on 
2002 and represent the state of the art. We performed 
read-cache hit benchmarks with the block sizes of 512 
bytes and 64 KB from the initiator workstation to the 
target server to get an initial performance profile of 
each adapter.  We used this benchmarks to select the 
best adapter for each of the hardware approaches. The 
percentage difference between the best performing 
adapter and the worst performing adapter on the 512 
byte and 64 KB read-cache hit test was 12% and 15% 
respectively.  

In the software approach, the initiator workstation ran 
the IBM Windows initiator v1.2.2 kernel-mode driver 
that implemented draft version 8 of the iSCSI standard. 
The kernel-mode driver did not have support for zero-
copy receives because of buffer alignment issues. An 
Intel Pro/1000F Server NIC provided the connectivity. 
The checksum offloading feature of the NIC card was 
not utilized.  

In the TOE approach, the selected TOE adapter re-
placed the Intel NIC card. This TOE card provided 
ASIC support to offload the fast-path TCP/IP function-
ality from the Windows TCP/IP stack. With the TOE 
card, the iSCSI software used was still the IBM Win-
dows initiator v1.2.2 except that the fast-path TCP func-
tionality was taken over by a third-generation ASIC in 
the TOE card.  

In the HBA approach, the selected iSCSI HBA card 
replaced the TOE card. The TOE engine on the HBA 
card has an ASIC chip that provides TOE functionality. 
Firmware running on a CPU on-board the HBA card 
provides an implementation of the draft version 8 of the 
iSCSI standard, though data transfers between the host 
system and the HBA do not involve the CPU.  

Unless otherwise mentioned, the adapter cards for the 
three approaches were placed in a 64-bit 66 MHz PCI 
slot. In addition, the default CPU speed was always 1.6 
GHz (133 MHz FSB speed). The maximum number of 
outstanding I/Os in the iSCSI protocol was set to 60 in 
each of the three approaches.  Since jumbo frames were 
not universally supported, we used the default Ethernet 
frame size of 1.5K.  

3.1.2.  Target Server Setup 

The iSCSI target server was powered by a dual-800 
MHz Pentium III CPU configuration with 1 GB of 
PC133 SDRAM memory, and supported both 64-bit 66 
MHz and 32-bit 33 MHz PCI slots.  The target server 
was equipped with an IBM ServeRAID 4H SCSI PCI 
RAID controller card with 48 36-GB 10,000-RPM 
SCSI disks. An Intel Pro/1000F NIC provided the Gi-
gabit Ethernet connectivity. Both cards were placed in 
64-bit 66 MHz PCI slots in different PCI buses to avoid 
I/O bus contention. The operating system running on 
the target server was Linux 2.4.2-2 with no modification 
to the TCP/IP stack or any other kernel component.   

The target server was only configured with the software 
approach while the approaches were varied in the initia-
tor workstation to better identify the performance varia-
tion in the three approaches. Furthermore, the results of 
the performance analysis in Sections 3 and 4 also vali-
date the fairness in the choice of the software approach 
in the target server. The target server ran an iSCSI 
server kernel daemon (IBM target v1.2.2) that imple-
mented draft version 8 of the iSCSI standard. The ker-
nel daemon also provided read caching functionality 
that allowed repeated read requests for blocks to be 
satisfied from the host memory of the iSCSI target 
server rather than from the RAID controller. The target 
server also provided support for write-back caching. 

3.1.3. Measurement Tool 

In the micro-benchmark experiments, the Iometer 
measurement application [Intel02] on the initiator work-
station issued read() calls via the unbuffered block in-
terface (ASPI) to the SCSI layer. At this layer, the 
read() call got translated to the corresponding SCSI 
commands and was sent to the low-level iSCSI driver. 
The use of the unbuffered block interface inhibits the 
use of caching in the Initiator workstation memory. This 
allows us to better measure the cost of transporting 
SCSI over TCP/IP without being polluted by cache ef-
fects in the initiator workstation. Experiments were also 
performed using write() calls but as the results did not 
reveal anything beyond the available conclusions. 
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In addition, all the read requests were directed to the 
same disk block address to take advantage of caching at 
the iSCSI target server. The reason for using cached 
read requests was to make sure that the results were 
focused on measuring storage transport efficiency and 
would not be contaminated by RAID and disk perform-
ance issues. 

3.2. Performance Analysis 

The metrics used to compare the three approaches to IP 
storage were throughput and latency. The throughput 
was measured using 16 worker threads in Iometer. A 
larger number of worker threads were not used because 
the aggregate throughput did not increase beyond this 
number. Each thread in the measurement application 
issued 100,000 sequential read commands to the same 
disk block address and the aggregate throughput was 
measured on completion of the reads by all threads.  

The latency measurements were performed using 1 
worker thread in the Iometer measurement application 
(Section 3.1). The worker thread in Iometer issued 
100,000 sequential read commands to the same disk 
block address and the latency was measured by dividing 
the elapsed time by the total number of commands. The 
CPU utilization at the initiator workstation and target 
server was also measured.  

3.2.1. Block Size Sensitivity 

The first experiment in the micro-benchmark perform-
ance analysis pertains to the sensitivity of throughput to 
variations in the block size used by the Iometer meas-
urement tool. The block size was varied from 0.5 KB to 
64 KB and the resultant throughput is shown in Figure 
2. The corresponding initiator workstation CPU utiliza-
tion is shown on the right-hand side in the same figure. 
The target CPU was not saturated in any experiment. 

The results show that the software approach achieves 
the best numbers in terms of throughput, though the 
initiator CPU is completely saturated for the lower 
block sizes of 0.5 KB to 8 KB. The question of whether 
a faster CPU can aid the performance is investigated in 
Section 3.2.2. In the larger block sizes of 16 KB to 64 
KB, the performance of the software approach is limited 
by a resource threshold which can be attributed to either 
the PCI bus or the memory as the Intel adapter is capa-
ble of higher throughput. This resource threshold is 
investigated by using the I/O bus and memory speed 
sensitivity experiments in Sections 3.2.3 and 3.2.4.  

The initiator workstation CPU utilization-to-throughput 
ratio is of particular importance to applications that are 
sensitive to CPU cycle availability. These applications 
benefit only when the throughput is high and the CPU 
utilization-to-throughput ratio is low. Both hardware 
approaches show lower ratios of initiator workstation 
CPU utilization-to-throughput, particularly when the 
block sizes are large. For example, at the 64 KB block 
size, the ratio for the TOE approach is just 52% of that 
of the software approach, though at the 4 KB and 0.5 
KB block sizes, the ratio for the TOE approach is 77% 
and 96% of that of the software approach respectively. 
Similarly, the ratio of the HBA approach for the 64 KB, 
4 KB and 0.5 KB block sizes is 17%, 73% and 113% of 
that of the software approach respectively. When the 
block size is large, the per-byte costs of the software 
approach due to TCP/IP copy-and-checksum and inter-
rupt overhead (Section 2.1) increase the CPU utiliza-
tion-to-throughput ratio. However, when the block size 
is small, the per-byte costs of the software approach are 
competitive with that of the hardware approaches result-
ing in comparable CPU utilization-to-throughput ratios.  
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Figure 2. The figure shows the sensitivity of the throughput in each 
of the three approaches in relation to block size. The resultant initia-
tor workstation CPU utilization is shown on the right. 
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The throughput of the hardware approaches does not 
match that of the software approach for any block size. 
It was observed that neither the initiator workstation 
CPU nor the target server CPU is completely utilized. 
Moreover, as the performance differential is also pres-
ent when the block size is small (0.5 KB) and the 
throughput is not very high (~10 MBps), the PCI bus 
and memory speeds can be ruled out as a cause for the 
inferior performance of the hardware approaches. Con-
sequently, the performance bottleneck can be pin-
pointed to the hardware offload in the TOE and HBA 
approaches.  

The latency analysis shown in Table 1 reconfirms the 
performance bottleneck in the hardware offload for the 
TOE and HBA approaches. As was discussed in Section 
2.1, the software approach has a high per-byte cost 
compared to the hardware approaches due to the 
TCP/IP copy-and-checksum and the interrupt overhead 
in the receive path. In the smaller block sizes where the 
per-operation costs dominate per-byte costs, the soft-
ware approach is clearly superior in terms of latency. 
When the block size is large, the per-byte costs domi-
nate the per-operation costs and the superiority of the 
software approach is narrowed. The latency in the HBA 
approach is particularly high because of the involve-
ment of the slow StrongARM CPU. However this is not 
considered inherent to the HBA approach as alternative 
HBA designs have merged iSCSI and TOE functions 
into a single ASIC. 

 Latency (ms) 
Block Size 
(KB) 

0.5  4  8  64  

Software 0.12 0.17 0.22 0.97 
TOE 0.17 0.26 0.28 1.01 
HBA 0.41 0.47 0.51 1.52 
Table 1. The table shows the sensitivity of the latency in each of the 
three approaches in relation to block size 

The performance bottleneck in the hardware approaches 
could be either in the software drivers or in the off-
loaded protocol processing engines. To further analyze 
the bottleneck, we measured the per-operation cost in 
the host systems for each of these approaches. We con-
ducted an experiment on the default setup with a block 
size of 512 bytes to reduce the per-byte costs to a mini-
mum. We then measured the CPU utilization and the 
rate of operations for reads on the target server for this 
particular block size. The number of threads in this read 
experiment was limited to one so as to remove the effect 
of interrupt coalescing and get a clearer picture of per-
operation costs.  

Table 2 shows that the initiator workstation CPU over-
head of a single operation for the hardware approaches 
is less than that of the software approaches. This indi-
cates that the software driver overhead does not con-
tribute to the performance bottleneck in the hardware 
approaches. Consequently, the high per-operation costs 
in the hardware approaches can be attributed to a mis-
match in processing speeds between the host system and 
the hardware offload.  

 Ops per 
second 

Initiator 
CPU util. 
(%) 

Initiator 
CPU util. 
per op 
(%) 

Software 8267 38 0.0046 

TOE 5959 22 0.0036 

HBA 2580 7 0.0027 

Table 2. The table shows the sensitivity of the rate of operations, the 
initiator workstation CPU utilization and the per-operation initiator 
workstation CPU utilization for a single-threaded 0.5 KB read test for 
each of the three approaches to IP storage. 

3.2.2. CPU speed sensitivity 

The second experiment in the micro-benchmark per-
formance analysis measured the sensitivity of through-
put to the CPU speed in the initiator workstation. In this 
experiment, the CPU FSB speed was varied from 92 
MHz to 141 MHz with a fixed clock multiplier, result-
ing in an effective CPU speed variation from 1.1 GHz 
to 1.7 GHz. The throughput was measured with the 
block sizes of 0.5 KB, 4 KB, 8 KB and 64 KB for each 
of the three approaches. 

The results show that performance of the software ap-
proach scales with increasing CPU speeds, particularly 
for the smaller block sizes. However, when the block 
size is 64 KB, the resource bottleneck (investigated in 
the following sub-sections) prevents any scaling of 
throughput with respect to CPU speeds. The perform-
ance of the TOE approach is marginally sensitive to 
increasing CPU speeds while that of the HBA approach 
shows no sensitivity at all. This is to be expected due to 
the offload of protocol processing onto the adapter 
cards in the hardware approaches. 

A similar effect was also observed in the sensitivity of 
the latency of the three approaches to increasing CPU 
speeds.  
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(c) 8 KB
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(d) 64 KB 
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Figure 3. This figure shows the sensitivity of the throughput in rela-
tion to CPU speeds (denoted in terms of CPU frequency) in each of 
the three approaches for the block sizes of (a) 0.5 KB, (b) 4 KB, (c) 8 
KB, and (d)  64 KB. 

 3.2.3. I/O bus speed sensitivity 

The third experiment in the micro-benchmark perform-
ance analysis measured the sensitivity of throughput to 
the PCI bus speed in the initiator workstation. The rele-
vant adapter in each of the three approaches was placed 
alternately in a 32-bit 33 MHz PCI bus and a 64-bit 66 
MHz PCI bus. The throughput was measured with the 
block sizes of 0.5 KB, 4 KB, 8 KB and 64 KB to ob-
serve the PCI bus effect. 

The results are shown in Figure 4 and indicate that all 
the approaches are sensitive to the PCI bus speed of the 
slot holding the adapter, particularly at the 64 KB block 
size. However, the software approach is the most sensi-
tive to the PCI bus speed as the throughput drops 28% 
for the 64 KB block size when the PCI bus speed is 
lowered from 64-bit 66 MHz to 32-bit 33 MHz. The 
corresponding numbers for the TOE and HBA approach 
are 18% and 10% respectively. This is due to the fact 
that the PCI overhead is amortized over 64 KB transfers 
in the hardware approaches, while the software ap-
proach incurs the same overhead over Ethernet frame-
sized transfers (1.5 KB). The impact of the difference in 
overhead is more visible in 32-bit 33 MHz PCI because 
of the slower PCI bus speed.  

 



2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 239



2nd USENIX Conference on File and Storage Technologies USENIX Association240

proaches even for this CPU-intensive benchmark. Even 
though the software approach has a higher CPU utiliza-
tion-to-throughput ratio for the page-sized transfers 
used in the benchmark, the software approach is able to 
compensate for this by a higher rate of I/O operations at 
this block size as seen in Section 3.2.1. The effective 
bandwidth of the three approaches is directly propor-
tional to the transaction rate in the benchmark (tpmC).  

Figure 5(b) shows that the software approach has a 
higher average CPU utilization during the benchmark. 
The average CPU utilization of all the approaches in 
this particular benchmark does not saturate the initiator 
CPU because of a limit on the maximum concurrency in 
the iSCSI protocol (60). Since there was no means to 
increase the limit, it was not possible to measure the 
relative performance with a saturated initiator CPU. 
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Figure 5. (a) This figure shows the average transactions completed 
per minute for the three approaches: Software, TOE and HBA when 
running the TPC-C benchmark for a database scale that spans 200 to 
800 warehouses. (b) This figure shows the average CPU utilization in 
the initiator workstation for the experiments described in (a). 

 

4.2.2 PostMark 

The PostMark benchmark [Katcher97] simulates work-
loads that capture the storage behavior of electronic 
mail, news and web commerce applications. The 
benchmark consists of creating files, performing read 
and write operations (called transactions), and then de-
leting the files. The benchmark allows for the specifica-
tion of the number of files to be created, file size, read 
and write probability, number of transactions, and unit 
of data transfer between the client and the server. How-
ever as the benchmark does not have any application 
processing, it cannot be considered a true email, news 
or web commerce application. In contrast to the previ-
ous benchmark, this benchmark is single-threaded. 

The PostMark benchmark was run with the default pa-
rameters except that the number of files was reduced to 
150 so as to remove the effect of file system lookup 
efficiency from storage transport protocol analysis. As 
the file sizes were varied, there was not much difference 
between the performances of the three approaches for 
the small file sizes (<= 64 KB). This was not unex-
pected as the overhead of setting up a PostMark trans-
action was comparable to the actual PostMark transac-
tion cost. However, for larger file sizes (> 64 KB), the 
software approach starts showing superiority in terms of 
time to run the benchmark by as much as 40% over the 
hardware approaches (shown in Figure 6) because of 
the superior latency in the block sizes used by the 
benchmark.  
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Figure 6. This figure shows the time to complete the PostMark 
benchmark for the three approaches: Software, TOE and HBA when 
the size for 150 files is varied from 64 KB to 208 KB in increments 
of 48 KB. The remaining PostMark parameters are the default. 
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4.2.3 TPIE-Merge 

The TPIE benchmark [Vengroff96] combines raw 
sequential read/write I/O operations with application 
processing. The objective behind using this benchmark 
is to assess the I/O performance of the different ap-
proaches when the application processing has high CPU 
utilization. This benchmark will penalize any approach 
that has a high CPU utilization-to-throughput ratio and 
favors efficient storage transport protocols.   

The TPIE toolkit provides scan, merge and sort routines 
that can be used to generate I/O and application proc-
essing scenarios. In this experiment, unsorted files were 
read, merged and a single sorted output file was gener-
ated.  The underlying file system was NTFS. In the 
setup, we used 16 threads, each with 16 input files. 
There were 500,000 (four byte) records per input file.  
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Figure 7. This figure shows the time to complete the TPIE-Merge 
benchmark for the three approaches: Software, TOE and HBA when 
the number of input merge files (each with 500,000 records) is varied 
from 8 to 16. 

The results in Figure 7 show a small degradation (7%) 
in performance of the software approach with respect to 
the hardware approaches. The average initiator CPU 
utilization was close to 100% during the benchmark for 
all of the approaches. This particular benchmark uses 
the NTFS block size of 4 KB. Though the difference in 
the CPU utilization-to-throughput ratio for this particu-
lar block size for the hardware approaches is 33% better 
than that of the software approach, this difference ap-
plies to the non-application processing time. The meas-
urements from the Perfmon tool indicate that the non-
application processing time is 10-15% of the total CPU 
utilization and thus minimizes the impact of the reduced 
CPU utilization-to-throughput. The throughput re-
quirements of this benchmark (< 10 MBps) did not ap-

proach the networking bandwidth available or the 
adapter processing limits. This shows that scientific 
applications that run on typical file systems with smaller 
block sizes may not get the expected performance im-
provements with the hardware approaches. However, a 
recent study of the Direct Access File System presents 
results from this TPIE merge benchmark that shows 
hardware support can improve performance by as much 
as a factor of two when the communication overhead is 
a large component of overall processing [Magoutis02]. 

5. Discussion 

This section summarizes the performance characteris-
tics of the software and hardware approaches based on 
the results obtained in Sections 3 and 4. 

5.1. Software Approach 

The software approach achieves the best numbers in 
terms of throughput and latency compared to the hard-
ware approaches. The software approach has the disad-
vantage of high CPU utilization-to-throughput ratio for 
large block sizes as a result of high per-byte overheads. 
At the same time, the performance of the software ap-
proach scales with CPU speed and current CPU speeds 
are high enough to absorb the overheads for Gigabit 
Ethernet networks. In summary, the software approach 
is very competitive with the current generation of hard-
ware approaches in the block sizes typically used by 
database and email applications and does not suffer 
from hardware performance bottlenecks. Consequently, 
the software approach shows superiority in such appli-
cation benchmarks. 

5.2. Hardware Approaches 

The designers of the hardware approaches do achieve 
lower CPU utilization-to-throughput ratios for large 
block sizes (64 KB), but the benefit of this reduction 
reduces significantly when the block size is not high 
(0.5 KB to 4 KB).  Moreover, the latency and through-
put analysis points to a hardware bottleneck in protocol 
processing primarily because of the disparity in the 
processing speeds of the host system and the hardware 
offload. Also, the hardware approaches are not sensitive 
to increases in CPU speeds, because the critical 
processing has been offloaded to the adapter. 

The above phenomenon has two implications. First, all 
improvements in the performance of the hardware ap-
proaches must come from increasing the processing 
speeds of the hardware offload through superior ASIC 
technology. Second, the increase in processing speed of 
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the hardware offload must keep up with the correspond-
ing increases in general-purpose processors so as to be 
competitive with the software approach. However, cost, 
heating, power and area constraints make this challenge 
harder than that in general purpose CPUs. Thus, it may 
be possible to decrease the parity between the proces-
sors on the host and the adapter by using superior tech-
nology, but then the resultant product may not have the 
right cost-performance ratio in a highly competitive 
storage market. 

However, the hardware approaches may be well suited 
for high-end environments. Proponents of the hardware 
approaches argue that the hardware acceleration is more 
effective at 10 Gbps networks. The impact of communi-
cation overhead is so pronounced at such speeds that 
current CPUs will not be able to take advantage of the 
capacity of the network in the software approach. An-
other advantage for the hardware approaches is in high-
end storage subsystems that have to support large num-
bers of initiators (32-1024). In the multi-initiator sce-
nario, any reduction in the CPU utilization-to-
throughput ratio can allow the storage subsystem to 
support a larger number of initiators. Furthermore, these 
high-end storage subsystems also have multiple adapt-
ers (32-64) that allow the adapters to have processing 
power comparable to that of the host subsystem. 

The hardware approaches are also well suited for those 
applications where the communication overhead is a 
significant component of total CPU utilization. In such 
cases, using hardware approaches with their better CPU 
utilization-to-throughput ratio can significantly reduce 
the overhead. The benchmarks in Section 4 do not cover 
this category of applications. 

Even so, this study is useful in designing the next gen-
eration of hardware adapters. An alternative to the cur-
rent trend in the hardware approaches would be to ex-
amine the division of protocol processing between 
software and hardware so as to better take advantage of 
the superior processing power in general-purpose com-
puting.  

6. Related Work  

Rod Van Meter et al [Hotz98, VanMeter98] was one of 
the early proponents of the concept of storage over IP. 
The VISA (Virtual Internet SCSI Adapter) infrastruc-
ture implemented a SCSI transport layer and aimed to 
demonstrate that Internet protocols could serve as a 
communication base for SCSI devices.  The initial per-
formance analysis identified CPU overhead as well as 
protocol de-multiplexing as potential bottlenecks. 

Around the same time, Garth Gibson et al [Gibson97] 
proposed two innovative architectures for exposing 
storage devices to the network for scalability and per-
formance. The NetSCSI architecture envisaged expos-
ing SCSI devices to the generic network while the 
NASD architecture involved exporting secure object 
storage services over the network. 

Numerous performance studies have been conducted in 
the past examining TCP/IP stack overheads for gigabit 
networks. Keng et al [Keng96] and Chase et al 
[Chase01] evaluated TCP/IP at near-Gigabit speeds to 
provide a breakdown of the various TCP/IP costs.  
Their studies point out that lack of zero-copy and 
checksum offloading impact TCP/IP performance at 
high speeds because these operations increase the host 
CPU utilization. The implementation used in these pa-
pers uses page re-mapping techniques to implement 
zero-copy functionality. However, page re-mapping has 
alignment issues and incurs virtual memory mapping 
overheads, particularly in SMP environments. Also, 
page re-mapping does not generalize to upper-layer 
protocols like iSCSI. 

The effect of large frame sizes on TCP/IP performance 
has been also well studied before by Chase et al 
[Chase01]. The authors show that a large frame size 
reduces the number of interrupts and per-packet over-
heads to improve TCP/IP performance.  As has been 
pointed out in Section 2.1, large frame sizes are cur-
rently not a viable alternative in Ethernet environments 
due to lack of standardization. Many network adapters 
provide interrupt suppression features to reduce inter-
rupt overhead even for standard Ethernet frames. In 
particular, the TOE approach allows for interrupt coa-
lescing even for standard Ethernet frames by offloading 
the TCP/IP stack. 

Magoutis et al [Magoutis02] performed a thorough 
analysis of the key architectural elements of DAFS 
[DeBergalis02]. The study reported results comparing 
the DAFS and NFS-nocopy protocols that utilize differ-
ent zero-copy receive mechanisms. The analysis shows 
that while both DAFS and NFS-nocopy can achieve 
high throughput, the direct data placement architecture 
of DAFS results in lower CPU utilization.  In contrast, 
the performance analysis in this paper complements the 
DAFS study by focusing on block storage protocols and 
incrementally examining the effect of TCP/IP offload 
and zero-copy support on the same protocol using the 
TOE and HBA approaches. The incremental analysis is 
useful because of the emergence of TOE adapters that 
do not have support for zero-copy receives for iSCSI.    
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Wee Teck Ng et al [Ng02] performed an exhaustive 
performance analysis of iSCSI over a wide-area net-
work. This analysis proposes techniques for reducing 
data access times to combat the high latency in such 
long-haul networks. The focus of our paper is on the 
high-bandwidth low-latency local area network envi-
ronment, and we assess the impact of the various ap-
proaches to IP storage to maximize throughput and 
minimize latency. Thus, the results of the wide-area 
network analysis are also complementary to our study. 

Boon Ang et al [Ang01] did a performance investiga-
tion on the impact of TCP/IP offload. Their study indi-
cates that if the TCP/IP offload technology uses inex-
pensive network processors instead of ASICs, then the 
resulting performance may not be able to reach wire 
speeds.  

There is also interest in low-overhead IP storage net-
working for network file systems as well [Magoutis02]. 
This approach uses network adapters following the 
RDMA approach specified in Section 2.1. This study is 
based on a single-vendor interconnect technology 
whereas the conclusions in this study are applicable to 
network file systems using RDMA over IP networks 
[DeBergalis03]. 

7. Conclusions 

This paper presents an analysis of the software, TOE 
and HBA approaches to build an IP storage area net-
work. The software approach is based on the unmodi-
fied TCP/IP stacks that are part of a standard operating 
system distribution. For the two hardware-based ap-
proaches (TOE, HBA), we experimented with a range 
of adapters and chose a representative adapter for the 
current generation of each of the hardware approaches. 
The goal of the analysis is to answer the question 
whether current generation of hardware support neces-
sarily helps performance.  
 
The micro-benchmark analysis reveals that hardware 
support reduces the CPU utilization-to-throughput ratio 
for large block sizes. However, at the same time the 
current generation of hardware support can itself be a 
performance bottleneck that can hurt throughput and 
latency. This result is also supported by the macro-
benchmark analysis that shows that the hardware ap-
proaches do not provide performance benefits in data-
base, scientific and email benchmarks compared to the 
software approach, even though the hardware ap-
proaches have the potential to provide benefits in CPU-
intensive applications. The analysis in this paper points 
out that a disparity in the processing power between the 

host and the adapter is the primary cause of the per-
formance bottleneck in the current generation of the 
hardware approaches. This points to the need for an 
introspection of the current trend in hardware support so 
as to take advantage of the increased computing power 
in general-purpose processors. 
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