
USENIX Association

Proceedings of
FAST ’03:

2nd USENIX Conference on
File and Storage Technologies

San Francisco, CA, USA
March 31–April 2, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 231

Storage over IP: When Does Hardware Support help?

Prasenjit Sarkar, Sandeep Uttamchandani, Kaladhar Voruganti
IBM Almaden Research Center

San Jose, California, USA
{prsarkar, sandeepu, kaladhar}@us.ibm.com

Abstract

This paper explores the effect of the current generation of hardware support for IP storage area networks on applica-
tion performance. In this regard, this paper presents a comprehensive analysis of three competing approaches to
build an IP storage area network that differ in their level of hardware support: software, TOE (TCP Offload Engine)
and HBA (Host Bus Adapter). The software approach is based on the unmodified TCP/IP stacks that are part of a
standard operating system distribution. For the two hardware-based approaches (TOE, HBA), we experimented with
a range of adapters and chose a representative adapter for the current generation of each of the hardware approaches.

The micro-benchmark analysis reveals that while hardware support does reduce the CPU utilization for large block
sizes, the hardware support can itself be a performance bottleneck that hurts throughput and latency with small block
sizes. Furthermore, the macro-benchmark analysis demonstrates that while the current generation of the hardware
approaches may have the potential to provide performance improvements in CPU-intensive applications, overall the
analysis does not demonstrate any performance benefits in database, scientific and email benchmarks. The analysis in
this paper points out that a disparity in the processing power between the host and the adapter is the primary cause of
the performance bottleneck in the current generation of the hardware approaches. The paper aims to guide the de-
signers of the next generation of hardware-assisted adapters to better leverage the increasing processing power in the
host. In particular, future adapters should be capable of handling small operations at wire speed.

1. Introduction

In the past, a typical server-class installation assumed
the presence of storage attached to every host system.
This type of host system-attached storage relied primar-
ily on the block-based SCSI protocol. The preferred
transport for the SCSI protocol in this model was Paral-
lel SCSI where the storage devices were connected to
the host system via a cable-based parallel bus. However,
as the need for storage grew, the limitations of this
technology became obvious. The physical characteris-
tics of the cable limited the number of storage devices
as well as the distance of the storage devices from the
host system. Also, storage had to be managed on a per-
host system basis.

The lack of scalability and manageability of the host
system-attached storage model led to the evolution of
the concept of a storage area network. In this new
model, storage devices are independent entities that
provide block storage service via a network to a multi-
tude of host systems. The advent of gigabit networking
coupled with the development of high-speed transport
protocols further facilitates the service of storage over
networks. Most storage area networks use Fibre Chan-
nel [Benner96]; other storage area network technologies

are Infiniband [Shankley02], VaxClusters [Kronen-
berg86], HIPPI [Ansi90] and IP [Satran02, Rajago-
pal02]. A comparison of the principal storage area net-
working technologies can be found in [Voruganti01].

This paper focuses on storage area networks based on
IP networking technology. The advantages of using IP
networks are many. First, using the same IP technology
for both regular (non-storage) networks as well as stor-
age networks removes the need to have two different
types of networks in any infrastructure. Also, the use of
a single popular networking infrastructure can leverage
widely available network management skills. Second,
the presence of well tested and established protocols
allow IP networks both wide-area connectivity, scalable
routing as well as proven bandwidth sharing capabili-
ties. Third, the emergence of Gigabit Ethernet seems to
indicate that the bandwidth requirements of serving
storage over a network should not be an issue. Finally,
the availability of commodity IP networking infrastruc-
ture indicates the cost of building a storage area net-
work will not be prohibitive.

The aim of this paper is to explore the effect of the cur-
rent generation of hardware support for IP storage area
networks on application performance. The paper begins

2nd USENIX Conference on File and Storage Technologies USENIX Association232

by describing the various approaches possible in IP
storage area networks, and focuses on the three preva-
lent approaches that differ in the level of hardware sup-
port. In the software approach, all TCP/IP and storage
transport protocol processing is done on the host sys-
tem. In addition, the software approach relies on un-
modified TCP/IP stacks that are part of the standard
operating system distribution. In the TOE (TCP Offload
Engine) approach, the TCP/IP protocol processing is
offloaded to the network adapter while the storage
transport protocol processing is done in the host system.
Finally, in the HBA (Host Bus Adapter) approach, the
entire storage transport protocol processing is offloaded
to the network adapter along with TCP/IP protocol
processing.

The key contribution of this paper is to compare these
three approaches for IP storage area networks with the
help of micro-benchmarks and macro-benchmarks. In
the micro-benchmark analysis, the three approaches
were compared with respect to latency and throughput
by measuring their sensitivity to block sizes as well as
CPU, I/O bus and memory speeds. The micro-
benchmark analysis was projected onto the real world
by running database, scientific and email macro-
benchmarks on each of the three approaches. To obtain
a representative adapter for each of the hardware ap-
proaches, we experimented with a range of adapters and
then chose the one with the best performance profile for
the micro-benchmark and macro-benchmark analysis.

The results show that contrary to intuition, the represen-
tative adapters of the current generation of the hardware
approaches are not inherently superior in terms of per-
formance, which is surprising given the cost of hard-
ware offload. The results indicate that while the hard-
ware support decreases the CPU utilization-to-
throughput ratio for large block sizes, the hardware
support can itself be a performance bottleneck that hurts
the rate of I/O operations in comparison to the software
approach for small block sizes. This performance bot-
tleneck can be isolated to the disparity in computing
power between the host and the current generation of
the hardware-assisted adapters. Consequently, the cur-
rent generation of the hardware approaches is not supe-
rior in terms of latency and throughput. This phenome-
non is also observed in database, email and scientific
benchmarks. This calls for the need for intelligent
hardware support that can take advantage of the in-
creased computing power of general-purpose proces-
sors.

2. IP Storage

The emerging field of IP storage area networks has the
necessary technical infrastructure that makes it possible
to transport block storage traffic:

A high-bandwidth scalable network interconnect. A
storage area network must provide high network band-
widths for storage to be delivered as a scalable service
to applications residing in host systems. In the context
of IP networks, Gigabit Ethernet can provide the neces-
sary infrastructure for a high-bandwidth storage area
network.

Reliable delivery. A storage area network needs a reli-
able transport protocol to exchange control and data
between the host systems and the storage devices. For-
tunately, the IP networking community has invested a
lot of research into building a widely-deployed, reliable
and in-order transport protocol called TCP. With this in
mind, the architects for IP storage area networks chose
TCP as the primary transport protocol rather than pur-
sue the time-consuming approach of inventing, deploy-
ing and fine-tuning a specialized protocol for storage
transport.

Security and management. The IP networking infra-
structure has support for security and management pro-
tocols that address the needs of a storage area network.
SSL, Kerberos and IPSec are some of the available se-
curity mechanisms. In terms of management, DNS al-
lows for unique worldwide naming, SLP for discovery
of resources on an IP network, and SNMP and SMI for
monitoring and diagnosis of IP network nodes.

It should be noted here that IP storage area networks
focus on block service in contrast to network file sys-
tems that provide remote file access over IP networks.

2.1. Approaches to IP Storage Area Net-
works

There are three main approaches to building an IP stor-
age area network, each with its distinct performance
characteristics.

2.1.1. Software

The software approach envisages using a software
TCP/IP stack for storage transport. Proponents of this
approach claim that performance should scale with
ever-increasing CPU speeds, obviating the need for any
hardware assistance. However, preliminary results
[Sarkar02] using this approach indicate that the main

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 233

performance bottleneck is the high CPU utilization in-
volved in large block transfers. The two major compo-
nents of this high CPU utilization are:

Interrupt overhead due to the high rate of
Ethernet frame-sized transfers from the adapter
to the host.

The TCP copy-and-checksum overhead for
large block transfers.

P C I

P C I

(a) S O F T W A R E
A P P R O A C H

I N I T I A T O RT A R G E T

C
O

P
Y

C
O

P
Y

S C S I / iS C S I

S C S I B u f f e r

S C S I / iS C S I

S C S I B u f f e r

D
M

A

E t h e r n e t

D
M

A

N I CN I C

P C I P C I

T C P / I P S t a c k

T C P / I P B u f f e r

T C P / I P B u f f e r

T C P / I P S t a c k

(b) T O E A P P R O A C H

E t h e r n e t

D
M

A

T A R G E T

D
M

A

I N I T I A T O R

S C S I / iS C S I

S C S I B u f f e r

P C I

T C P / I P
N I C

T C P / I P
N I C

T C P / I P
B u f f e r

C
O

P
Y

S C S I / iS C S I

S C S I B u f f e r

(c) H B A A P P R O A C H

E t h e r n e t

D
M

A

T A R G E T

D
M

A

I N I T I A T O R

i S C S I
T C P / I P

N I C

iS C S I
T C P / I P

N I C

S C S I / iS C S I

S C S I B u f f e r

S C S I / iS C S I

S C S I B u f f e r

P C I

Figure 1. This figure shows the flow of a read response in each of the three approaches to IP storage for both the initiator and target (assuming

that a read request has been made earlier). The storage transport protocol in this figure is assumed to be iSCSI. The software approach is shown

in part (a) where the SCSI/iSCSI stack in the target copies the requested SCSI buffer into a TCP/IP buffer for transmission by the TCP/IP stack.

The TCP/IP buffer is then DMA-ed onto the network adapter card where it is transmitted over the network. The receiving NIC then DMA-s this

buffer into a TCP/IP buffer on the host for TCP/IP stack processing, after which the buffer is copied into the destination SCSI buffer for

SCSI/iSCSI stack processing. The TOE approach is shown in part (b) where the SCSI/iSCSI stack in the target DMA-s the requested SCSI buffer

directly onto a TCP/IP-capable NIC, where it is transmitted after the requisite TCP/IP protocol processing. On receiving the buffer, the TCP/IP-

capable NIC on the receiving side DMA-s the buffer onto an anonymous TCP/IP buffer on the target. This anonymous buffer is then copied into

the destination SCSI buffer for SCSI/iSCSI stack processing. The HBA approach is shown in part (c) where the SCSI stack in the target DMA’s

the requested buffer into the iSCSI-capable NIC for iSCSI/TCP/IP processing and transmission over the network. On receiving the buffer, the

iSCSI-capable NIC in the receiving side performs iSCSI/TCP/IP protocol processing to learn the identity of the destination buffer and directly

DMA-s to this destination buffer for SCSI protocol processing.

2nd USENIX Conference on File and Storage Technologies USENIX Association234

The jumbo frame approach is a variant of the software
approach and improves on the software approach by
using 9KB Jumbo Ethernet frames to reduce the per-
packet overhead. However, Jumbo Ethernet frames are
controversial as detractors claim that large frame sizes
are detrimental to efficient routing and quality of serv-
ice. Due to a lack of consensus, Jumbo Ethernet frames
are not standardized and may not be present in the fu-
ture. Consequently, this approach is not examined fur-
ther in the paper.

Yet another variant of the software approach is the zero-
copy approach which uses modified TCP/IP stacks with
zero-copy transmit capability. This approach reduces
the TCP copy-and-checksum overhead as the responsi-
bility of generating the checksum is offloaded to the
network adapter. However, zero-copy receives are typi-
cally not possible on such stacks because the network
adapters are unaware of the final destination of any
frame. Re-mapping the network buffer onto an applica-
tion buffer can remove the copy on the receive path.
However, issues with page-alignment and virtual mem-
ory costs (particularly in SMP environments) have hin-
dered adoption in production operating systems. Since
the primary overheads on storage area networks occur
on the receive path [Sarkar02], this approach is also not
examined further in the paper because of the lack of
stable support for zero-copy receives.

2.1.2. TOE

The TOE approach involves network adapters with
TCP/IP offload engines where the entire TCP/IP stack
is offloaded onto the network adapter. This also reduces
the TCP copy-and-checksum overhead. The interrupt
overhead is also reduced because of the adapter gener-
ates at most one interrupt for every large block transfer.
However, zero-copy receives are usually not possible
on such stacks because the TCP/IP stack is also typi-
cally unaware of the final destination of any TCP/IP
packet, though the discussion of re-mapping the net-
work buffer in Section 2.1.1 is also relevant here. An-
other complication for zero-copy receives is the pres-
ence of higher-level protocol headers in the data stream
that complicates buffer alignment.

2.1.3. HBA

The HBA approach envisages the use of network adapt-
ers that have a specific storage transport interface (such
as iSCSI) and is aware of the storage protocol seman-
tics. This approach will also reduce the interrupt over-
head, as the network adapter will ensure at most one
interrupt per data transfer. More importantly, the proto-

col-specific direct data placement support in the adapter
ensures that there are no copies on the receive path. As
with the TOE approach, offloading the protocol proc-
essing to the adapter will eliminate the TCP/IP copy-
and-checksum overhead.

The HBA approach can be envisaged as a specialized
version of the RDMA approach [Bailey02, Compaq97],
which provides zero-copy receive support via direct
data placement to any transport protocol. However, in
terms of performance analysis, the HBA and RDMA
approaches both provide zero-copy receives and
TCP/IP offload and are functionally similar.

The software, TOE and HBA approaches are also cur-
rently the mainstream in IP storage area networks. Fig-
ure 1 shows the data flow of a read response in the
software, TOE, and HBA approaches to better exem-
plify the differences between the approaches.

The rest of this paper compares the software, TOE and
HBA approaches in terms of both micro-benchmarks
and macro-benchmarks. The goal is to identify whether
the incremental hardware support necessarily improves
performance. The micro-benchmarks do a sensitivity
analysis of each of these approaches with respect to
block sizes, CPU, memory and I/O bus speeds so as to
identify potential performance bottlenecks. The macro-
benchmarks project the various performance character-
istics of each of these approaches onto real-world appli-
cations.

3. Micro-benchmarks

3.1. Experimental Setup

To evaluate the performance of IP storage, the protocol
of choice was iSCSI [Satran02]. The iSCSI protocol is
an IETF proposed standard for transporting SCSI over
TCP/IP. There are sufficient iSCSI products available
from many industry vendors to do an experimental
analysis of all three approaches. For the micro-
benchmark analysis, the experimental setup consisted of
an iSCSI initiator workstation connected through an
Alteon 180 Gigabit Ethernet switch to an iSCSI target
server.

3.1.1. Initiator Workstation Setup

The iSCSI initiator workstation was powered by an
AMD Athlon MP 1900 CPU (1.6 GHz CPU clock
speed) with 4 GB of PC2100 DDR memory, and sup-
ported both 64-bit 66 MHz and 32-bit 33 MHz PCI
slots. The Athlon 1900 CPU was in the 48-th percentile

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 235

of all the available CPUs in terms of SpecInt perform-
ance at the time of testing. The motherboard in the ini-
tiator workstation allowed the CPU front-side bus
(FSB) speed to be varied from 90 MHz to 141 MHz
with a fixed CPU clock multiplier; this enabled CPU
speed variations from 1.1 GHz to 1.7 GHz. The operat-
ing system running on the iSCSI initiator workstation
was Windows 2000 SP3. There were no modifications
made to the TCP/IP stack or any other kernel compo-
nent.

The initiator workstation was configured with all the
three approaches: software, TOE, and HBA.

The network adapter for each approach was chosen
after evaluating five HBA and TOE cards from different
manufacturer. All of these products were released on
2002 and represent the state of the art. We performed
read-cache hit benchmarks with the block sizes of 512
bytes and 64 KB from the initiator workstation to the
target server to get an initial performance profile of
each adapter. We used this benchmarks to select the
best adapter for each of the hardware approaches. The
percentage difference between the best performing
adapter and the worst performing adapter on the 512
byte and 64 KB read-cache hit test was 12% and 15%
respectively.

In the software approach, the initiator workstation ran
the IBM Windows initiator v1.2.2 kernel-mode driver
that implemented draft version 8 of the iSCSI standard.
The kernel-mode driver did not have support for zero-
copy receives because of buffer alignment issues. An
Intel Pro/1000F Server NIC provided the connectivity.
The checksum offloading feature of the NIC card was
not utilized.

In the TOE approach, the selected TOE adapter re-
placed the Intel NIC card. This TOE card provided
ASIC support to offload the fast-path TCP/IP function-
ality from the Windows TCP/IP stack. With the TOE
card, the iSCSI software used was still the IBM Win-
dows initiator v1.2.2 except that the fast-path TCP func-
tionality was taken over by a third-generation ASIC in
the TOE card.

In the HBA approach, the selected iSCSI HBA card
replaced the TOE card. The TOE engine on the HBA
card has an ASIC chip that provides TOE functionality.
Firmware running on a CPU on-board the HBA card
provides an implementation of the draft version 8 of the
iSCSI standard, though data transfers between the host
system and the HBA do not involve the CPU.

Unless otherwise mentioned, the adapter cards for the
three approaches were placed in a 64-bit 66 MHz PCI
slot. In addition, the default CPU speed was always 1.6
GHz (133 MHz FSB speed). The maximum number of
outstanding I/Os in the iSCSI protocol was set to 60 in
each of the three approaches. Since jumbo frames were
not universally supported, we used the default Ethernet
frame size of 1.5K.

3.1.2. Target Server Setup

The iSCSI target server was powered by a dual-800
MHz Pentium III CPU configuration with 1 GB of
PC133 SDRAM memory, and supported both 64-bit 66
MHz and 32-bit 33 MHz PCI slots. The target server
was equipped with an IBM ServeRAID 4H SCSI PCI
RAID controller card with 48 36-GB 10,000-RPM
SCSI disks. An Intel Pro/1000F NIC provided the Gi-
gabit Ethernet connectivity. Both cards were placed in
64-bit 66 MHz PCI slots in different PCI buses to avoid
I/O bus contention. The operating system running on
the target server was Linux 2.4.2-2 with no modification
to the TCP/IP stack or any other kernel component.

The target server was only configured with the software
approach while the approaches were varied in the initia-
tor workstation to better identify the performance varia-
tion in the three approaches. Furthermore, the results of
the performance analysis in Sections 3 and 4 also vali-
date the fairness in the choice of the software approach
in the target server. The target server ran an iSCSI
server kernel daemon (IBM target v1.2.2) that imple-
mented draft version 8 of the iSCSI standard. The ker-
nel daemon also provided read caching functionality
that allowed repeated read requests for blocks to be
satisfied from the host memory of the iSCSI target
server rather than from the RAID controller. The target
server also provided support for write-back caching.

3.1.3. Measurement Tool

In the micro-benchmark experiments, the Iometer
measurement application [Intel02] on the initiator work-
station issued read() calls via the unbuffered block in-
terface (ASPI) to the SCSI layer. At this layer, the
read() call got translated to the corresponding SCSI
commands and was sent to the low-level iSCSI driver.
The use of the unbuffered block interface inhibits the
use of caching in the Initiator workstation memory. This
allows us to better measure the cost of transporting
SCSI over TCP/IP without being polluted by cache ef-
fects in the initiator workstation. Experiments were also
performed using write() calls but as the results did not
reveal anything beyond the available conclusions.

2nd USENIX Conference on File and Storage Technologies USENIX Association236

In addition, all the read requests were directed to the
same disk block address to take advantage of caching at
the iSCSI target server. The reason for using cached
read requests was to make sure that the results were
focused on measuring storage transport efficiency and
would not be contaminated by RAID and disk perform-
ance issues.

3.2. Performance Analysis

The metrics used to compare the three approaches to IP
storage were throughput and latency. The throughput
was measured using 16 worker threads in Iometer. A
larger number of worker threads were not used because
the aggregate throughput did not increase beyond this
number. Each thread in the measurement application
issued 100,000 sequential read commands to the same
disk block address and the aggregate throughput was
measured on completion of the reads by all threads.

The latency measurements were performed using 1
worker thread in the Iometer measurement application
(Section 3.1). The worker thread in Iometer issued
100,000 sequential read commands to the same disk
block address and the latency was measured by dividing
the elapsed time by the total number of commands. The
CPU utilization at the initiator workstation and target
server was also measured.

3.2.1. Block Size Sensitivity

The first experiment in the micro-benchmark perform-
ance analysis pertains to the sensitivity of throughput to
variations in the block size used by the Iometer meas-
urement tool. The block size was varied from 0.5 KB to
64 KB and the resultant throughput is shown in Figure
2. The corresponding initiator workstation CPU utiliza-
tion is shown on the right-hand side in the same figure.
The target CPU was not saturated in any experiment.

The results show that the software approach achieves
the best numbers in terms of throughput, though the
initiator CPU is completely saturated for the lower
block sizes of 0.5 KB to 8 KB. The question of whether
a faster CPU can aid the performance is investigated in
Section 3.2.2. In the larger block sizes of 16 KB to 64
KB, the performance of the software approach is limited
by a resource threshold which can be attributed to either
the PCI bus or the memory as the Intel adapter is capa-
ble of higher throughput. This resource threshold is
investigated by using the I/O bus and memory speed
sensitivity experiments in Sections 3.2.3 and 3.2.4.

The initiator workstation CPU utilization-to-throughput
ratio is of particular importance to applications that are
sensitive to CPU cycle availability. These applications
benefit only when the throughput is high and the CPU
utilization-to-throughput ratio is low. Both hardware
approaches show lower ratios of initiator workstation
CPU utilization-to-throughput, particularly when the
block sizes are large. For example, at the 64 KB block
size, the ratio for the TOE approach is just 52% of that
of the software approach, though at the 4 KB and 0.5
KB block sizes, the ratio for the TOE approach is 77%
and 96% of that of the software approach respectively.
Similarly, the ratio of the HBA approach for the 64 KB,
4 KB and 0.5 KB block sizes is 17%, 73% and 113% of
that of the software approach respectively. When the
block size is large, the per-byte costs of the software
approach due to TCP/IP copy-and-checksum and inter-
rupt overhead (Section 2.1) increase the CPU utiliza-
tion-to-throughput ratio. However, when the block size
is small, the per-byte costs of the software approach are
competitive with that of the hardware approaches result-
ing in comparable CPU utilization-to-throughput ratios.

0

20

40

60

80

100

0.5 1 2 4 8 16 32 64

Block Size (KB)

T
h

ro
u

g
h

p
u

t
(M

B
p

s)

SW TOE HBA

0

20

40

60

80

100

0.5 1 2 4 8 16 32 64

Block Size (KB)

In
it

ia
to

r
C

P
U

 u
ti

l.
(%

)

SW TOE HBA

Figure 2. The figure shows the sensitivity of the throughput in each
of the three approaches in relation to block size. The resultant initia-
tor workstation CPU utilization is shown on the right.

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 237

The throughput of the hardware approaches does not
match that of the software approach for any block size.
It was observed that neither the initiator workstation
CPU nor the target server CPU is completely utilized.
Moreover, as the performance differential is also pres-
ent when the block size is small (0.5 KB) and the
throughput is not very high (~10 MBps), the PCI bus
and memory speeds can be ruled out as a cause for the
inferior performance of the hardware approaches. Con-
sequently, the performance bottleneck can be pin-
pointed to the hardware offload in the TOE and HBA
approaches.

The latency analysis shown in Table 1 reconfirms the
performance bottleneck in the hardware offload for the
TOE and HBA approaches. As was discussed in Section
2.1, the software approach has a high per-byte cost
compared to the hardware approaches due to the
TCP/IP copy-and-checksum and the interrupt overhead
in the receive path. In the smaller block sizes where the
per-operation costs dominate per-byte costs, the soft-
ware approach is clearly superior in terms of latency.
When the block size is large, the per-byte costs domi-
nate the per-operation costs and the superiority of the
software approach is narrowed. The latency in the HBA
approach is particularly high because of the involve-
ment of the slow StrongARM CPU. However this is not
considered inherent to the HBA approach as alternative
HBA designs have merged iSCSI and TOE functions
into a single ASIC.

 Latency (ms)
Block Size
(KB)

0.5 4 8 64

Software 0.12 0.17 0.22 0.97
TOE 0.17 0.26 0.28 1.01
HBA 0.41 0.47 0.51 1.52
Table 1. The table shows the sensitivity of the latency in each of the
three approaches in relation to block size

The performance bottleneck in the hardware approaches
could be either in the software drivers or in the off-
loaded protocol processing engines. To further analyze
the bottleneck, we measured the per-operation cost in
the host systems for each of these approaches. We con-
ducted an experiment on the default setup with a block
size of 512 bytes to reduce the per-byte costs to a mini-
mum. We then measured the CPU utilization and the
rate of operations for reads on the target server for this
particular block size. The number of threads in this read
experiment was limited to one so as to remove the effect
of interrupt coalescing and get a clearer picture of per-
operation costs.

Table 2 shows that the initiator workstation CPU over-
head of a single operation for the hardware approaches
is less than that of the software approaches. This indi-
cates that the software driver overhead does not con-
tribute to the performance bottleneck in the hardware
approaches. Consequently, the high per-operation costs
in the hardware approaches can be attributed to a mis-
match in processing speeds between the host system and
the hardware offload.

 Ops per
second

Initiator
CPU util.
(%)

Initiator
CPU util.
per op
(%)

Software 8267 38 0.0046

TOE 5959 22 0.0036

HBA 2580 7 0.0027

Table 2. The table shows the sensitivity of the rate of operations, the
initiator workstation CPU utilization and the per-operation initiator
workstation CPU utilization for a single-threaded 0.5 KB read test for
each of the three approaches to IP storage.

3.2.2. CPU speed sensitivity

The second experiment in the micro-benchmark per-
formance analysis measured the sensitivity of through-
put to the CPU speed in the initiator workstation. In this
experiment, the CPU FSB speed was varied from 92
MHz to 141 MHz with a fixed clock multiplier, result-
ing in an effective CPU speed variation from 1.1 GHz
to 1.7 GHz. The throughput was measured with the
block sizes of 0.5 KB, 4 KB, 8 KB and 64 KB for each
of the three approaches.

The results show that performance of the software ap-
proach scales with increasing CPU speeds, particularly
for the smaller block sizes. However, when the block
size is 64 KB, the resource bottleneck (investigated in
the following sub-sections) prevents any scaling of
throughput with respect to CPU speeds. The perform-
ance of the TOE approach is marginally sensitive to
increasing CPU speeds while that of the HBA approach
shows no sensitivity at all. This is to be expected due to
the offload of protocol processing onto the adapter
cards in the hardware approaches.

A similar effect was also observed in the sensitivity of
the latency of the three approaches to increasing CPU
speeds.

2nd USENIX Conference on File and Storage Technologies USENIX Association238

(a) 0.5 KB

0

5

10

15

20

1.1 1.2 1.3 1.4 1.5 1.6 1.7

CPU Freq (GHz)

T
h

ro
u

g
h

p
u

t
(M

B
p

s)

SW TOE HBA

(b) 4 KB

0

20

40

60

80

1.1 1.2 1.3 1.4 1.5 1.6 1.7

CPU Freq (GHz)

T
h

ro
u

g
h

p
u

t
(M

B
p

s)

SW TOE HBA

(c) 8 KB

0

20

40

60

80

1.1 1.2 1.3 1.4 1.5 1.6 1.7

CPU Freq (GHz)

T
h

ro
u

g
h

p
u

t
(M

B
p

s)

SW TOE HBA

(d) 64 KB

0

20

40

60

80

100

1.1 1.2 1.3 1.4 1.5 1.6 1.7

CPU Freq (GHz)

T
h

ro
u

g
h

p
u

t
(M

B
p

s)

SW TOE HBA

Figure 3. This figure shows the sensitivity of the throughput in rela-
tion to CPU speeds (denoted in terms of CPU frequency) in each of
the three approaches for the block sizes of (a) 0.5 KB, (b) 4 KB, (c) 8
KB, and (d) 64 KB.

 3.2.3. I/O bus speed sensitivity

The third experiment in the micro-benchmark perform-
ance analysis measured the sensitivity of throughput to
the PCI bus speed in the initiator workstation. The rele-
vant adapter in each of the three approaches was placed
alternately in a 32-bit 33 MHz PCI bus and a 64-bit 66
MHz PCI bus. The throughput was measured with the
block sizes of 0.5 KB, 4 KB, 8 KB and 64 KB to ob-
serve the PCI bus effect.

The results are shown in Figure 4 and indicate that all
the approaches are sensitive to the PCI bus speed of the
slot holding the adapter, particularly at the 64 KB block
size. However, the software approach is the most sensi-
tive to the PCI bus speed as the throughput drops 28%
for the 64 KB block size when the PCI bus speed is
lowered from 64-bit 66 MHz to 32-bit 33 MHz. The
corresponding numbers for the TOE and HBA approach
are 18% and 10% respectively. This is due to the fact
that the PCI overhead is amortized over 64 KB transfers
in the hardware approaches, while the software ap-
proach incurs the same overhead over Ethernet frame-
sized transfers (1.5 KB). The impact of the difference in
overhead is more visible in 32-bit 33 MHz PCI because
of the slower PCI bus speed.

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 239

2nd USENIX Conference on File and Storage Technologies USENIX Association240

proaches even for this CPU-intensive benchmark. Even
though the software approach has a higher CPU utiliza-
tion-to-throughput ratio for the page-sized transfers
used in the benchmark, the software approach is able to
compensate for this by a higher rate of I/O operations at
this block size as seen in Section 3.2.1. The effective
bandwidth of the three approaches is directly propor-
tional to the transaction rate in the benchmark (tpmC).

Figure 5(b) shows that the software approach has a
higher average CPU utilization during the benchmark.
The average CPU utilization of all the approaches in
this particular benchmark does not saturate the initiator
CPU because of a limit on the maximum concurrency in
the iSCSI protocol (60). Since there was no means to
increase the limit, it was not possible to measure the
relative performance with a saturated initiator CPU.

(a) Transaction Rate

0

2000

4000

6000

8000

200 400 800

Database Scale (warehouses)

tp
m

C
 A

vg
.

Software TOE HBA

(b) CPU utilization

0
20

40
60

80
100

200 400 800

Database Scale (warehouses)

In
it

ia
to

r
C

P
U

 u
ti

l.
(%

)

Software TOE HBA

Figure 5. (a) This figure shows the average transactions completed
per minute for the three approaches: Software, TOE and HBA when
running the TPC-C benchmark for a database scale that spans 200 to
800 warehouses. (b) This figure shows the average CPU utilization in
the initiator workstation for the experiments described in (a).

4.2.2 PostMark

The PostMark benchmark [Katcher97] simulates work-
loads that capture the storage behavior of electronic
mail, news and web commerce applications. The
benchmark consists of creating files, performing read
and write operations (called transactions), and then de-
leting the files. The benchmark allows for the specifica-
tion of the number of files to be created, file size, read
and write probability, number of transactions, and unit
of data transfer between the client and the server. How-
ever as the benchmark does not have any application
processing, it cannot be considered a true email, news
or web commerce application. In contrast to the previ-
ous benchmark, this benchmark is single-threaded.

The PostMark benchmark was run with the default pa-
rameters except that the number of files was reduced to
150 so as to remove the effect of file system lookup
efficiency from storage transport protocol analysis. As
the file sizes were varied, there was not much difference
between the performances of the three approaches for
the small file sizes (<= 64 KB). This was not unex-
pected as the overhead of setting up a PostMark trans-
action was comparable to the actual PostMark transac-
tion cost. However, for larger file sizes (> 64 KB), the
software approach starts showing superiority in terms of
time to run the benchmark by as much as 40% over the
hardware approaches (shown in Figure 6) because of
the superior latency in the block sizes used by the
benchmark.

0

100

200

300

400

500

600

700

64 112 160 208

File Size (KB)

B
en

ch
m

ar
k

T
im

e
(s

)

Software TOE HBA

Figure 6. This figure shows the time to complete the PostMark
benchmark for the three approaches: Software, TOE and HBA when
the size for 150 files is varied from 64 KB to 208 KB in increments
of 48 KB. The remaining PostMark parameters are the default.

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 241

4.2.3 TPIE-Merge

The TPIE benchmark [Vengroff96] combines raw
sequential read/write I/O operations with application
processing. The objective behind using this benchmark
is to assess the I/O performance of the different ap-
proaches when the application processing has high CPU
utilization. This benchmark will penalize any approach
that has a high CPU utilization-to-throughput ratio and
favors efficient storage transport protocols.

The TPIE toolkit provides scan, merge and sort routines
that can be used to generate I/O and application proc-
essing scenarios. In this experiment, unsorted files were
read, merged and a single sorted output file was gener-
ated. The underlying file system was NTFS. In the
setup, we used 16 threads, each with 16 input files.
There were 500,000 (four byte) records per input file.

0

5

10

15

20

25

30

16

Number of input files

B
en

ch
m

ar
k

T
im

e
(m

in
)

Software TOE HBA

Figure 7. This figure shows the time to complete the TPIE-Merge
benchmark for the three approaches: Software, TOE and HBA when
the number of input merge files (each with 500,000 records) is varied
from 8 to 16.

The results in Figure 7 show a small degradation (7%)
in performance of the software approach with respect to
the hardware approaches. The average initiator CPU
utilization was close to 100% during the benchmark for
all of the approaches. This particular benchmark uses
the NTFS block size of 4 KB. Though the difference in
the CPU utilization-to-throughput ratio for this particu-
lar block size for the hardware approaches is 33% better
than that of the software approach, this difference ap-
plies to the non-application processing time. The meas-
urements from the Perfmon tool indicate that the non-
application processing time is 10-15% of the total CPU
utilization and thus minimizes the impact of the reduced
CPU utilization-to-throughput. The throughput re-
quirements of this benchmark (< 10 MBps) did not ap-

proach the networking bandwidth available or the
adapter processing limits. This shows that scientific
applications that run on typical file systems with smaller
block sizes may not get the expected performance im-
provements with the hardware approaches. However, a
recent study of the Direct Access File System presents
results from this TPIE merge benchmark that shows
hardware support can improve performance by as much
as a factor of two when the communication overhead is
a large component of overall processing [Magoutis02].

5. Discussion

This section summarizes the performance characteris-
tics of the software and hardware approaches based on
the results obtained in Sections 3 and 4.

5.1. Software Approach

The software approach achieves the best numbers in
terms of throughput and latency compared to the hard-
ware approaches. The software approach has the disad-
vantage of high CPU utilization-to-throughput ratio for
large block sizes as a result of high per-byte overheads.
At the same time, the performance of the software ap-
proach scales with CPU speed and current CPU speeds
are high enough to absorb the overheads for Gigabit
Ethernet networks. In summary, the software approach
is very competitive with the current generation of hard-
ware approaches in the block sizes typically used by
database and email applications and does not suffer
from hardware performance bottlenecks. Consequently,
the software approach shows superiority in such appli-
cation benchmarks.

5.2. Hardware Approaches

The designers of the hardware approaches do achieve
lower CPU utilization-to-throughput ratios for large
block sizes (64 KB), but the benefit of this reduction
reduces significantly when the block size is not high
(0.5 KB to 4 KB). Moreover, the latency and through-
put analysis points to a hardware bottleneck in protocol
processing primarily because of the disparity in the
processing speeds of the host system and the hardware
offload. Also, the hardware approaches are not sensitive
to increases in CPU speeds, because the critical
processing has been offloaded to the adapter.

The above phenomenon has two implications. First, all
improvements in the performance of the hardware ap-
proaches must come from increasing the processing
speeds of the hardware offload through superior ASIC
technology. Second, the increase in processing speed of

2nd USENIX Conference on File and Storage Technologies USENIX Association242

the hardware offload must keep up with the correspond-
ing increases in general-purpose processors so as to be
competitive with the software approach. However, cost,
heating, power and area constraints make this challenge
harder than that in general purpose CPUs. Thus, it may
be possible to decrease the parity between the proces-
sors on the host and the adapter by using superior tech-
nology, but then the resultant product may not have the
right cost-performance ratio in a highly competitive
storage market.

However, the hardware approaches may be well suited
for high-end environments. Proponents of the hardware
approaches argue that the hardware acceleration is more
effective at 10 Gbps networks. The impact of communi-
cation overhead is so pronounced at such speeds that
current CPUs will not be able to take advantage of the
capacity of the network in the software approach. An-
other advantage for the hardware approaches is in high-
end storage subsystems that have to support large num-
bers of initiators (32-1024). In the multi-initiator sce-
nario, any reduction in the CPU utilization-to-
throughput ratio can allow the storage subsystem to
support a larger number of initiators. Furthermore, these
high-end storage subsystems also have multiple adapt-
ers (32-64) that allow the adapters to have processing
power comparable to that of the host subsystem.

The hardware approaches are also well suited for those
applications where the communication overhead is a
significant component of total CPU utilization. In such
cases, using hardware approaches with their better CPU
utilization-to-throughput ratio can significantly reduce
the overhead. The benchmarks in Section 4 do not cover
this category of applications.

Even so, this study is useful in designing the next gen-
eration of hardware adapters. An alternative to the cur-
rent trend in the hardware approaches would be to ex-
amine the division of protocol processing between
software and hardware so as to better take advantage of
the superior processing power in general-purpose com-
puting.

6. Related Work

Rod Van Meter et al [Hotz98, VanMeter98] was one of
the early proponents of the concept of storage over IP.
The VISA (Virtual Internet SCSI Adapter) infrastruc-
ture implemented a SCSI transport layer and aimed to
demonstrate that Internet protocols could serve as a
communication base for SCSI devices. The initial per-
formance analysis identified CPU overhead as well as
protocol de-multiplexing as potential bottlenecks.

Around the same time, Garth Gibson et al [Gibson97]
proposed two innovative architectures for exposing
storage devices to the network for scalability and per-
formance. The NetSCSI architecture envisaged expos-
ing SCSI devices to the generic network while the
NASD architecture involved exporting secure object
storage services over the network.

Numerous performance studies have been conducted in
the past examining TCP/IP stack overheads for gigabit
networks. Keng et al [Keng96] and Chase et al
[Chase01] evaluated TCP/IP at near-Gigabit speeds to
provide a breakdown of the various TCP/IP costs.
Their studies point out that lack of zero-copy and
checksum offloading impact TCP/IP performance at
high speeds because these operations increase the host
CPU utilization. The implementation used in these pa-
pers uses page re-mapping techniques to implement
zero-copy functionality. However, page re-mapping has
alignment issues and incurs virtual memory mapping
overheads, particularly in SMP environments. Also,
page re-mapping does not generalize to upper-layer
protocols like iSCSI.

The effect of large frame sizes on TCP/IP performance
has been also well studied before by Chase et al
[Chase01]. The authors show that a large frame size
reduces the number of interrupts and per-packet over-
heads to improve TCP/IP performance. As has been
pointed out in Section 2.1, large frame sizes are cur-
rently not a viable alternative in Ethernet environments
due to lack of standardization. Many network adapters
provide interrupt suppression features to reduce inter-
rupt overhead even for standard Ethernet frames. In
particular, the TOE approach allows for interrupt coa-
lescing even for standard Ethernet frames by offloading
the TCP/IP stack.

Magoutis et al [Magoutis02] performed a thorough
analysis of the key architectural elements of DAFS
[DeBergalis02]. The study reported results comparing
the DAFS and NFS-nocopy protocols that utilize differ-
ent zero-copy receive mechanisms. The analysis shows
that while both DAFS and NFS-nocopy can achieve
high throughput, the direct data placement architecture
of DAFS results in lower CPU utilization. In contrast,
the performance analysis in this paper complements the
DAFS study by focusing on block storage protocols and
incrementally examining the effect of TCP/IP offload
and zero-copy support on the same protocol using the
TOE and HBA approaches. The incremental analysis is
useful because of the emergence of TOE adapters that
do not have support for zero-copy receives for iSCSI.

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 243

Wee Teck Ng et al [Ng02] performed an exhaustive
performance analysis of iSCSI over a wide-area net-
work. This analysis proposes techniques for reducing
data access times to combat the high latency in such
long-haul networks. The focus of our paper is on the
high-bandwidth low-latency local area network envi-
ronment, and we assess the impact of the various ap-
proaches to IP storage to maximize throughput and
minimize latency. Thus, the results of the wide-area
network analysis are also complementary to our study.

Boon Ang et al [Ang01] did a performance investiga-
tion on the impact of TCP/IP offload. Their study indi-
cates that if the TCP/IP offload technology uses inex-
pensive network processors instead of ASICs, then the
resulting performance may not be able to reach wire
speeds.

There is also interest in low-overhead IP storage net-
working for network file systems as well [Magoutis02].
This approach uses network adapters following the
RDMA approach specified in Section 2.1. This study is
based on a single-vendor interconnect technology
whereas the conclusions in this study are applicable to
network file systems using RDMA over IP networks
[DeBergalis03].

7. Conclusions

This paper presents an analysis of the software, TOE
and HBA approaches to build an IP storage area net-
work. The software approach is based on the unmodi-
fied TCP/IP stacks that are part of a standard operating
system distribution. For the two hardware-based ap-
proaches (TOE, HBA), we experimented with a range
of adapters and chose a representative adapter for the
current generation of each of the hardware approaches.
The goal of the analysis is to answer the question
whether current generation of hardware support neces-
sarily helps performance.

The micro-benchmark analysis reveals that hardware
support reduces the CPU utilization-to-throughput ratio
for large block sizes. However, at the same time the
current generation of hardware support can itself be a
performance bottleneck that can hurt throughput and
latency. This result is also supported by the macro-
benchmark analysis that shows that the hardware ap-
proaches do not provide performance benefits in data-
base, scientific and email benchmarks compared to the
software approach, even though the hardware ap-
proaches have the potential to provide benefits in CPU-
intensive applications. The analysis in this paper points
out that a disparity in the processing power between the

host and the adapter is the primary cause of the per-
formance bottleneck in the current generation of the
hardware approaches. This points to the need for an
introspection of the current trend in hardware support so
as to take advantage of the increased computing power
in general-purpose processors.

Acknowledgments

We would like to thank our shepherd Jeff Chase as well
as the anonymous reviewers for their valuable feedback
regarding the quality of the draft submission. We would
also like to thank John Hufferd, Nirmala Venkatramani
and Matthew Lietzke for their invaluable assistance in
setting up the experimental framework. We would fi-
nally like to thank Moidin Mohiuddin and Honesty
Young for their active encouragement of our work.

References

[Ang01] Boon S. Ang, “An Evaluation of an Attempt at Offloading
TCP/IP Protocol Processing on to an i960RN-based
iNIC”, Hewlett-Packard Technical Report HPL-2001-8,
2001.

[Ansi90] HIPPI, ANSI Standard X3T9.3/90-043, 1990.
[Bailey02] S. Bailey, “The Architecture of Direct Data Placement

(DDP) and Remote Direct Memory Access (RDMA) On
Internet Protocols”, Internet Draft, IETF 2002, Work in
Progress.

[Benner96] A. Benner, "Fibre Channel: Gigabit Communications and
I/O For Computer Networks", McGraw-Hill, 1996.

[Chase01] J. Chase, A. Gallatin and K. Yocum, "End-System Op-
timizations for High-Speed TCP", IEEE Communications,
39:4, pp 68-74, 2001.

[Compaq97] Compaq, Intel, Microsoft, “Virtual Interface Architec-
ture Specification”, v1.0, December 1997.

[DeBergalis03] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D.
Noveck, T. Talpey, M. Wittle., “The Direct Access File
System”, FAST 2003.

[Gibson97] G. Gibson, D. Nagle, K. Amiri, J. Butler, F. Chang, E.
Feinberg, H. Gobyoff, C. Lee, B. Ozceri, E. Riedel, D.
Rochberg, J. Zelenka., “File Server Scaling with Network-
attached Secure Disks”, Proceedings of ACM Interna-
tional Conference on Measurement and Modeling of
Computer Systems, June 1997.

[Hotz98] S. Hotz, R. Van Meter, and G. Finn, "Internet Protocols for
Network Attached Peripherals", 6th IEEE/NASA Confer-
ence on Mass Storage Systems and Technologies, 1998.

[Intel02] Intel Corp., “Iometer Performance Analysis Tool”,
http://www.intel.com/design/servers/devtools/iometer

[Katcher97] J. Katcher, "PostMark: A New File System Benchmark",
Technical Report TR3022, Network Appliance Inc, 1997.

[Keng96] Hsiao Keng, and J. Chu, "Zero-copy TCP in Solaris",
USENIX 1996 Annual Technical Conference, pp 253-
264, 1996.

[Kent98] S. Kent and R. Atkinson, “Security Architecture for the
Internet Protocol”, RFC 2401, 1998.

[Kronenberg86] N. Kronenberg, H. Levy and W. Stecker. “Vax-
Clusters: A Loosely Coupled Distributed System”, ACM
Transactions on Computer Systems, 4:2, pp 130-146,
1986.

[Magoutis02] K. Magoutis, S. Addetia, A. Federova, M. Seltzer, J.
Chase, A. Gallatin, R. Kisley, R. Wickremsinghe, E. Gab-

2nd USENIX Conference on File and Storage Technologies USENIX Association244

ber, "Structure and Performance of the Direct Access File
System", USENIX Technical Conference, pp 1-14, 2002.

[Magoutis03] K. Magoutis, S. Addetia, A. Federova, M. Seltzer,
“Making the Most out of Direct-Access Network Attached
Storage”, FAST 2003.

[Ng02] Wee Teck Ng, H. Sun, B. Hillyer, E. Shriver, E. Gabber, B.
Ozden, "Obtaining High Performance for Storage
Outsourcing", FAST, pp 145-158, 2002.

[Rajagopal02] M. Rajagopal, E.Rodriquez, R. Weber., “Fibre Chan-
nel Over TCP/IP”, Internet Draft, IETF, 2002, Work in
Progress.

[Sarkar02] P. Sarkar and K. Voruganti, “IP Storage: The Challenge
Ahead”, 19th IEEE Symposium on Mass Storage Systems,
pp 35-42, 2002.

[Satran02] J. Satran, K. Meth, C. Mallikarjun, C. Sapuntzakis, E.
Zeidner, "iSCSI", Internet Draft, IETF, 2002, Work in
Progress.

[Shanley02] T. Shanley and J. Winkley, “Infiniband Network Archi-
tecture”, Addison-Wesley, 2002.

[TPC97] TPC Benchmark C Standard Revision 3.3.2, Transaction
Processing Performance Council. 1997.

[VanMeter98] R. Van Meter, G. Finn, and S. Hotz, "VISA: Netsta-
tion's Virtual Internet SCSI Adapter", ASPLOS 8, pp 71-
80, 1998.

[Vengroff96] D. E. Vengroff and J. S. Vitter, “I/O-Efficient Scientific
Computation using TPIE”, IEEE Conference on Mass
Storage Systems and Technologies, pp 553-570, 1996.

[Voruganti01] K. Voruganti and P. Sarkar, “An Analysis of Three
Gigabit Storage Networking Protocols”, pp 259-265,
IPCCC 2001.

