
The following paper was originally published in the
Proceedings of the 3rd USENIX Workshop on Electronic Commerce

Boston, Massachusetts, August 31–September 3, 1998

For more information about USENIX Association contact:

1. Phone: 1 510 528-8649
2. FAX: 1 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Detecting Hit Shaving in Click-Through Payment Schemes

Michael K. Reiter
AT&T Labs Research

Vinod Anupam and Alain Mayer
Bell Labs, Lucent Technologies

Detecting Hit Shaving in Click-Through Payment Schemes

Michael K. Reiter

AT&T Labs Research

Florham Park, NJ, USA

reiter@research.att.com

Vinod Anupam Alain Mayer

Bell Labs, Lucent Technologies

Murray Hill, NJ, USA

fanupam,alaing@research.bell-labs.com

Abstract

A web user \clicks through" one web site, the refer-
rer, to another web site, the target, if the user fol-
lows a hypertext link to the target's site contained
in a web page served from the referrer's site. Nu-
merous click-through payment programs have been
established on the web, by which (the webmaster
of) a target site pays a referrer site for each click
through that referrer to the target. However, typ-
ically the referrer has no ability to verify that it is
paid for every click-through to the target for which it
is responsible. Thus, targets can undetectably omit
to pay referrers for some number of click-throughs, a
practice called hit shaving. In this paper, we explore
simple and immediately useful approaches to enable
referrers to monitor the number of click-throughs for
which they should be paid.

1 Introduction

Though the emergence of full-scale electronic com-
merce on the World-Wide-Web is proceeding slowly,
the web has been quickly and aggressively realized
as an e�ective advertising medium. Indeed, adver-
tising itself has become an important commodity
on the web. The latest evidence of this fact is the
growth of click-through payments, in which the web-
master of one web site B pays the webmaster of
another site A for every referral that B's pages re-
ceive from A's. In other words, if a web user, when
viewing one of A's pages, clicks on a link in that
page to one of B's pages (in this sense, the user has
\clicked through" A to reach B), then A is entitled
to payment fromB. B runs a click-through payment
program to motivate others to prominently display
links to site B and thus to increase the tra�c that
B receives.

Due to the structure of the HTTP protocol, click-
through payment schemes as implemented on the
web today hold many opportunities for fraud. The
referrer A is given no way to verify that it is paid
for every referral its pages give B. This allows B
to undetectably \forget" some referrals that it re-
ceives from A, a practice called hit shaving. More-
over, even if A were able to detect that its referrals
were shaved by B, it has no evidence to present
to a third party to argue this fact. The attention
paid to hit shaving in discussions of web advertis-
ing (e.g., [Kle98]), often in advertisements for the
click-through programs themselves, suggests that
hit shaving is a recognized and prominent prob-
lem in the click-through industry today. Moreover,
the stakes suggest that fraud is likely: some click-
through programs advertise surprisingly large pay-
ments (e.g., up to $6 per click-through) and prizes
based on click-throughs (e.g., one web site adver-
tised a click-through contest in which �rst prize was
a 1998 Corvette).

The purpose of this paper is to bring the problem
of hit shaving to the attention of the technical com-
munity and to explore remedies to the problem. We
�rst focus on solutions that can be immediately use-
ful on the web today: we o�er web constructions
(i.e., ways to construct web pages and CGI scripts)
that enable a webmaster to monitor how often users
click through her pages to others, and to which
pages they click. Moreover, these techniques require
no cooperation or awareness by the sites to which
the referrals are made, making them very e�ective.
Though only heuristic in nature and not foolproof,
these techniques can immediately o�er webmasters
greater ability to detect hit shaving by click-through
payment programs. We then explore more ambi-
tious approaches that, with the cooperation of click-
through program providers, enables webmasters to
monitormore precisely the number of click-throughs
for which they should be paid, and to even obtain
nonrepudiable evidence of these click-throughs from

the target site. Even though this second set of ap-
proaches requires cooperation by the webmasters of
the click-through payment programs, these webmas-
ters need not be trusted, in the sense that their fail-
ure to cooperate is quickly detectable. All of the
techniques that we propose are largely invisible to
the web user, in that the user experiences nothing
out of the ordinary as a consequence of these tech-
niques. Moreover, these techniques work with o�-
the-shelf browsers today.

1.1 The problem

We begin with a brief overview of how click-through
payment programs work today, focusing on their
susceptibilities to fraud and the various concerns
that shape our solutions. We draw this description
from several prominent examples of click-through
programs on the web. In the rest of this paper, we
often speak of a web site and its webmaster (i.e.,
the person that controls the content it serves) syn-
onymously.

A click-through agreement is set up when (the web-
master of) one site A, the referrer, applies for an
account at the target site B that is running a click-
through payment program. This typically takes
place by A �lling out a form for B in which A pro-
vides, for example, its address to which payment
checks should be mailed. After establishing the ac-
count, A is given advertising material in the form of
Hypertext Markup Language (HTML) commands
to include in its web pages, possibly along with ac-
companying images (\banners") to display on its
web pages. These HTML commands include a hy-
pertext link to the target site B; i.e., when a user
views A's page and clicks on this link, then the user's
browser retrieves the referred-to page from B. In
this sense, the user has \clicked through" A to get
to B. Typically B maintains an account statement
for A, so that A can periodically visit site B to see
how many referrals A's pages have made to B (and
thus the amount of money to which A is entitled).

To understand the risks for fraud in this mech-
anism, we need to review the actual Hypertext
Transfer Protocol (HTTP) messages exchanged dur-
ing a click-through. This exchange is shown in
Figure 1. The exchange begins when the user's
browser retrieves a web page from site A, say
http://siteA.com/pageA.html. This page con-
tains a hypertext link to a page served by B, say

U

A B

3
2

(pageB.html)(pageA.html)
1

Figure 1: A click-through: User U retrieves
pageA.html from A (message 1) and clicks on a link
in it, causing pageB.html on site B to be requested
(message 2) and loaded (message 3).

http://siteB.com/pageB.html. A included this
link in pageA.html when it registered to partici-
pate in B's click-through payment program. When
the user clicks on that link, her browser retrieves
pageB.html from B. B can use a header of the
HTTP protocol, the Referrer header, to determine
the URL of the page that referred the user to site
B. In this case, the Referrer �eld will indicate the
URL of pageA.html, and so A will be credited with
the referral.

The possibilities for abuse in this system should be
evident. Since there is no communication to A after
the user clicks on the link to pageB.html, there is
no way for A to know how many referrals its pages
give B. So, B can just ignore the Referrer �eld
of requests and thus fail to give proper credit to A;
as described earlier, this is called hit shaving in the
click-through payment industry. B is also subject
to abuses by A, e.g., if A generates false requests
to B with Referrer �elds naming pageA.html. In
this way, A can unfairly in
ate the payment that it
receives fromB, and we will henceforth refer to such
practices by A as hit in
ation. Like shaving, hit in-

ation is a recognized problem in the click-through
payment industry. Many providers of click-through
payment programs threaten cancellation of a refer-
rer's account if hit in
ation by an account holder is
detected, but for obvious reasons providers do not
typically reveal their methods for detecting hit in-

ation. It is likely that these methods are at least
partially based on monitoring user IP addresses, and
in particular detecting multiple requests from the
same IP address or domain. Indeed, many click-
through programs agree to pay only for \unique"

referrals, i.e., referred requests from users at di�er-
ent addresses.

In this paper we treat only the problem of hit shav-
ing. Nevertheless, the threat of hit in
ation shapes
the class of solutions that we are willing to consider.
For example, one approach to detect hit shaving
would be for A to craft pageA.html so that its link
purportedly to pageB.html is actually a link to a
URL on site A; then, when the user clicks on that
link, A retrieves pageB.html from B and serves it
to the user. This enables A to precisely know how
many referrals it gives to B. However, this exacer-
bates the problem of detecting hit in
ation, because
it establishes a norm in which A directly issues to
B all requests for which it should be credited. This
hampers B's ability to detect hit in
ation based on
user IP addresses. For this reason, we require that
our solutions do not change the fact that the user's
browser requests B's pages directly from B.

1.2 Goals and assumptions

In the remainder of this paper, our goal is to en-
able site A to monitor how many legitimate referrals
it gives to site B, or more speci�cally, how many
times B receives an HTTP request from a user's
browser for pageB.html with a Referrer header
naming some URL on site A (i.e., message 2 in Fig-
ure 1); we take this as the number of click-throughs
for which A should be paid. Note that this number
includes any such request received by B, regardless
of how B responded to it (with pageB.html or with
an error message), but it does not include requests
that B did not receive, e.g., because B was down.1

However, because A cannot monitor exactly which
messages B receives, we must settle for solutions
that enable A to approximate this number. For rea-
sons discussed in Section 1.1, it is di�cult to mon-
itor this number given the way that click-throughs
presently work. Thus, our solutions modify how the
click-through happens, but we allow them to do so
only in a way as to impact tra�c patterns, server
load, and users' experiences as little as possible.

In forming our solutions, we assume that the user's
browser is a frame-enabled and JavaScript-enabled
o�-the-shelf browser. We view the user's browser

1Other de�nitions are possible; e.g., the number of click-
throughs for which A should be paid might not include those
in which B responded with an error message. Nevertheless,

in most cases the claims we make for our schemes continue
to hold even under other reasonable de�nitions.

as a trusted-but-oblivious third party: we assume
that it faithfully interprets the web pages (includ-
ing JavaScript commands, when necessary) fed to
it, but we do not assume that it has been mod-
i�ed in any way to support our approaches. In
the JavaScript code segments included in this pa-
per, we have allowed ourselves the full expressive-
ness of JavaScript 1.2, but versions for JavaScript
1.1, and in some cases JavaScript 1.0, can be formu-
lated. The e�ectiveness of our JavaScript code seg-
ments has been veri�ed using both Netscape Com-
municator 4.03 and Internet Explorer 4.0 over Win-
dows 95 as the user's browser (subsequently ab-
breviated \NC4" and \IE4", respectively) and two
Apache web servers on di�erent hosts in di�erent
domains as sites A and B.

2 Upper bounds on referrals

A �rst approach to detect hit shaving is to mod-
ify the click-through sequence to elicit a noti�ca-
tion from the user's browser to the referring site
A when the user clicks the link to pageB.html in
pageA.html. In this way, A can monitor how many
times users have clicked through pageA.html to
pageB.html by monitoring how many such noti�-
cations it receives. In this section we show two
approaches for achieving this, or more speci�cally
for turning the exchange of Figure 1 into one that
looks like Figure 2. As Figure 2 shows, once the
user clicks on the link to pageB.html, a noti�cation
is sent back to A (message 2) and then pageB.html

is retrieved (messages 3,4). Neither of the methods
we propose requires cooperation from site B, and
both are invisible to the user.

Though e�ective, the methods of this section enable
site A only to record an upper bound on the num-
ber of referrals for which A should be credited, not
an exact count. The reason for this is that the no-
ti�cation sent to A (message 2 in Figure 2) is an
indication only that the user's browser will request
pageB.html, not that B has received this request.
To see the importance of this distinction, the web-
master of site B could plausibly claim that site B
was down or heavily overloaded for some signi�cant
period of time (causing requests to be dropped), and
thus no referrals were completed (or thus credited
to A's account) during that time. An approach that
enables A to additionally record a lower bound on
its number of referrals is the topic of Section 3.

U

A B

1 4
32

(pageB.html)(pageA.html)

Figure 2: Bounding referrals from above: User
U retrieves pageA.html from A (message 1). When
the user clicks on the link to pageB.html, the user's
browser sends a noti�cation to A (message 2) and
then retrieves pageB.html (messages 3,4).

2.1 Using HTTP redirection

The �rst approach we describe for achieving the in-
teraction of Figure 2 uses the \redirect" feature of
the HTTP protocol. When a browser requests a
URL from a web server, the server can return an
HTTP redirection status code in the range 300{399
(e.g., 301 Moved Permanently), which indicates to
the browser that it should look for the page at
another URL. This other URL is speci�ed in the
Location HTTP header. Upon receiving a re-
sponse with status code 301 Moved Permanently,
the browser �nds the Location header and imme-
diately issues a request for the URL speci�ed in that
�eld.

Given this mechanism, one way for site A to mon-
itor the number of clicks through pageA.html to
pageB.html is to craft pageA.html so that its link
purportedly to pageB.html is really a link to a
\dummy" URL on site A. If site A is con�g-
ured to redirect requests for this dummy URL to
pageB.html on site B, then A can easily moni-
tor clicks through pageA.html to pageB.html by
monitoring the number of requests for the dummy
URL. The resulting web transaction proceeds as
shown in Figure 2: after receiving pageA.html, the
user clicks on the link purportedly to pageB.html,
which causes the dummy URL on site A to be re-
quested (message 2). A returns an HTTP redirect
header with the Location �eld set to the URL of
pageB.html, which causes the browser to retrieve
pageB.html (messages 3,4). The number of requests

for the dummy URL is an indicator of the number
of clicks through pageA.html to pageB.html.

One practical obstacle to this approach as described
so far is that it employs a recon�guration of the web
server on site A, which may not be possible if the
participant in the click-through program does not
have the authority to recon�gure the web server
on site A. It is possible to e�ect this redirection
without recon�guring the web server by using CGI
programming. On many web servers, a CGI script
that returns a properly formatted Location header
will cause a redirection to the URL named in that
header. So, if the dummyURL on site A is the URL
for a CGI script that outputs a Location header set
to the URL of pageB.html, then this achieves the
exchange of Figure 2. This exchange can also be
achieved by using a no parse header (NPH) script,
which is a CGI script that is allowed to entirely con-
trol the HTTP headers in the response sent back to
the browser. An NPH script that explicitly returns
a redirection status code and Location header can
also be used to e�ect the desired redirection.

It is worth noting that some obvious HTML-only
approaches to e�ecting this redirection do not suf-
�ce because they cause the HTTP Referrer �eld to
be blanked in the request to B, thereby precluding
A from getting credit for the click-through. One
such approach is to craft pageA.html so that its
link purportedly to pageB.html is really a link to an
HTML page on site A that immediately \refreshes"
the user's browser to pageB.html using HTML's
<meta> tag (see [MK97, Section 14.2]). Using this
approach with NC4 and IE4, the Referrer �eld that
B received was empty.

2.2 Using JavaScript

In this section, we describe a second way of achiev-
ing the message exchange shown in Figure 2. The
main di�erence of this approach from that of the
previous section is that the message exchange is
achieved by embedding JavaScript commands in
pageA.html, rather than employing HTTP redirec-
tion. It is also instructive for introducing techniques
that will be useful in Section 3.

Suppose that when signing up for B's click-through
payment program, A is instructed by B to place the
following link to B in its page:

Click here for site B.

In this approach, the webmaster of A constructs
its pageA.html as follows. First, she makes a
�le pageAcontents.html that contains the (HTML
commands to generate the) actual contents that
she wants to display to the user, including the link
to site B. This �le looks as shown in Figure 3.
The important aspect of pageAcontents.html is
the onClick attribute added to the link to B. When
the user clicks this link, the browser �rst executes
the JavaScript code in the onClick attribute before
retrieving pageB.html. In this case, the onClick

attribute invokes a function called notify, de�ned
in pageA.html as shown in Figure 4.

The page pageA.html consists of a header con-
taining a JavaScript function notify, and a body
consisting of two frames: one named visible and
displaying pageAcontents.html (the �le in Fig-
ure 3), and the other named invisible and ini-
tially blank. As their names suggest, the visible

frame consumes 100% of the browser window (see
the <frameset> tag); the invisible frame is truly
invisible to the user. When the user clicks the link to
pageB.html in pageAcontents.html, this invokes
the notify function of pageA.html with the URL
of pageB.html. The notify function requests a
URL on site A. This URL serves the same pur-
pose as the dummy URL of Section 2.1, i.e., moni-
toring requests for this URL is the means by which
A keeps track of the clicks through pageA.html to
pageB.html. For example, here this URL is the
URL of a CGI script on site A (record.cgi), which
is provided the URL of pageB.html as input (fol-
lowing the ?) for recording. Because JavaScript
does not support general networking but does sup-
port fetching URLs, the notify function invokes
record.cgi in a roundabout way, namely by fetch-
ing the output of the CGI script and \displaying" it
to the user in the invisible frame. It does this by
assigning the location property of the invisible

frame to be the URL of the CGI script. When in-
voked, record.cgi simply records the referral to
pageB.html and returns.

Using this simple trick, the click-through sequence
has been transformed from that in Figure 1 to that
in Figure 2. The browser invokes record.cgi on
site A (message 2) before retrieving pageB.html

from site B (messages 3,4). By using logs kept by

record.cgi, site A can monitor an upper bound on
how many referrals its pages have made to B.

The main risk to the claim that A maintains an up-
per bound on its referrals to B with this scheme is
that the browser's connection back to A (message 2)
might be preempted by the retrieval of pageB.html.
This is conceivable if (i) the setup of the connection
back to A is delayed, e.g., due to network conges-
tion, and (ii) pageB.html is a page that overtakes
the top-level browser window (as opposed to dis-
playing in the visible frame only), thereby over-
writing pageA.html. If this is deemed a signi�cant
risk, then pageB.html can be displayed in a sep-
arate browser window (so that pageA.html is not
overwritten) by including a target attribute in the
link to pageB.html in pageAcontents.html.

3 A lower bound on referrals

In this section we describe a somewhat di�erent ap-
proach to recording the number of referrals that A
gives to B. The method of this section addresses
one limitation of those in Section 2, namely that
the referral count recorded by A is only an upper
bound on the number of referrals it gives B. The
solution in this section enables A to infer a lower

bound, i.e., a number of referrals for which A has
con�dence that B actually received the referred re-
quest. To achieve this, we modify our strategy so
that A is noti�ed by the user's browser only if B

responds to the browser's request for pageB.html.
That is, our goal is a protocol like that shown in Fig-
ure 5, where the browser �rst retrieves pageB.html
(messages 2,3) and then informsA of this afterwards
(message 4).

Achieving the interaction of Figure 5 is more com-
plicated than the simple tricks of Section 2. The
general strategy that we take is as follows. When
the link to pageB.html in pageA.html is clicked by
the user, pageA.html opens a new browser window,
named nextpage, and directs pageB.html to be dis-
played there. This enables JavaScript embedded in
pageA.html to continue to run in the original win-
dow while pageB.html is being loaded. The goal
then is for the pageA.html script to detect when
the nextpage window has received a response from
site B (i.e., message 3 in Figure 5), indicating thatB
has received the HTTP request for pageB.html in-
cluding the Referrer �eld crediting A for the refer-

<html>

<!-- File: pageAcontents.html -->

...

<a href="http://siteB.com/pageB.html"

onClick="parent.notify('http://siteB.com/pageB.html')">

Click here for site B.

...

</html>

Figure 3: File pageAcontents.html for scheme of Section 2.2

<html>

<!-- File: pageA.html -->

<head>

<script language="JavaScript">

function notify(url) {

invisible.location="http://siteA.com/cgi-bin/record.cgi?refer=" + url;

}

</script>

</head>

<frameset rows="100%,*">

<frame src="pageAcontents.html" name="visible">

<frame src="about:blank" name="invisible">

</frameset>

</html>

Figure 4: File pageA.html for scheme of Section 2.2

U

A B

1 3
24

(pageB.html)(pageA.html)

Figure 5: Bounding referrals from below: User
U retrieves pageA.html (message 1) and clicks on
a link in it, causing pageB.html to be requested
(message 2). Only if B responds (message 3), the
browser noti�es A of the referral (message 4).

ral. When it detects this, the script in pageA.html

causes a URL on site A to be requested, thereby
notifying A of the referral (message 4 in Figure 5).

The complexity in this approach is in the means by
which the pageA.html script detects that site B has
responded. A �rst attempt might be for the script
to set the onload event handler for the nextpage

window when that window is created. The onload
event handler is invoked when pageB.html �nishes
loading into the nextpage window (see [Fla98]).
Thus, if pageA.html sets the onload event handler
to be a function that noti�es site A of the refer-
ral, this would achieve the exchange of Figure 5.
While this works with NC4, it does not work with
IE4: presumably for security reasons, IE4 clears
the nextpagewindow's onload event handler before
loading pageB.html, and so A is not noti�ed when
pageB.html has loaded. Moreover, NC4's failure to
clear the onload event handler is arguably a weak-
ness in its security model that should disappear in
future versions of the browser (see [AM98]).

Fortunately, security mechanisms similar to those
that cause this approach to fail for IE4 can be ex-
ploited in both browsers to achieve the e�ect we
desire. The approach we take is for the script in
pageA.html to periodically probe the JavaScript
namespace of the nextpage window. Before B

has responded, these probes will be allowed by the
browser. After B has responded, however, these
probes will be disallowed by the browser's security
mechanisms (see [Fla98, Chapter 21]), causing a
JavaScript error. By specifying an appropriate er-

ror handler for this error, the script in pageA.html

can notify site A of the referral. In the remainder of
this section, we present an implementation of these
ideas. For simplicity, our implementation here is
not fully general; in particular, it su�ces only for
the case in which pageA.html o�ers a link to only
one target site B. However, it can be generalized so
that pageA.html can o�er multiple target sites.

As in Section 2.2, our solution here is structured
using a �le pageAcontents.html to hold the actual
contents of the page that A wants to display to the
user (including the link to B's page), which is served
to the user within pageA.html in a frameset. The
�le pageAcontents.html now looks as shown in
Figure 6. The two di�erences from the previous
pageAcontents.html (Figure 3) are the addition of
a target attribute in the link and the invocation
of setup (vs. notify) in the onClick event han-
dler. Due to the latter, when the link is clicked,
now the setup function is invoked, which is de�ned
in pageA.html as shown in Figure 7.

When invoked, the setup function opens a new
browser window named nextpage (as speci�ed in
the second argument of the window.open method
call). This name is the value of the target attribute
of the link to pageB.html in pageAcontents.html

(see Figure 6), which means that pageB.html will
be displayed in this new window when it is even-
tually retrieved. To ensure that the script in
pageA.html is allowed to probe the namespace of
nextpage until B has responded, setup initially
writes a simple HTML page into nextpage, using
the document.open, write, and close methods.

The probes into the namespace of the nextpage

window are performed by the probe function. The
probe function attempts to read a portion of the
namespace of the nextpage window (in this case,
its location.href property) that will cause an er-
ror after B has responded but will be allowed be-
forehand. If its read is allowed, then the probe

function sets a timer so that it is invoked again 100
milliseconds later. Otherwise the error handler for
the window in which this script is running, i.e., the
window displaying pageA.html, is invoked. This er-
ror handler schedules an invocation of the notify

function (see the line before the </script> tag in
Figure 7).2 As in Section 2.2, this function invokes
the record.cgi CGI script on site A with the URL

2The scheduled delay (in Figure 7, of one second) before

invoking notify avoids various race conditions in IE4, yield-
ing a more robust implementation for this platform.

<html>

<!-- File: pageAcontents.html -->

...

<a target="nextpage"

href="http://siteB.com/pageB.html"

onClick="parent.setup('http://siteB.com/pageB.html')">

Click here for site B.

...

</html>

Figure 6: File pageAcontents.html for scheme of Section 3

of pageB.html, which was stored in the retrieved
variable during the execution of setup. Again, the
trick of assigning to the location property of an
invisible frame is used to invoke record.cgi.

To summarize, this achieves the mechanism shown
in Figure 5: when the link to pageB.html in
pageAcontents.html is clicked by the user, (i) the
setup function is invoked to open a new browser
window; (ii) pageB.html is retrieved and displayed
in that window (messages 2,3); (iii) an error is en-
countered in probe; (iv) the error handler is invoked
to schedule notify, which (v) invokes record.cgi
on site A with the URL of pageB.html (message 4).
Moreover, if B does not receive message 2, then nei-
ther message 3 nor message 4 will be sent. Like the
mechanisms of Section 2, this technique requires no
cooperation from B for A to track the referrals its
pages give to B. And again, this technique presents
nothing out of the ordinary to the user; spawning
new windows is not uncommonwhile following links
to other sites.

The main factor limiting the accuracy of A's refer-
ral counting with this scheme appears to be the
risk that the user closes the window containing
pageA.html before notify is invoked. In this case,
the script in pageA.htmlwill be halted before site A
is noti�ed of the referral. Thus, at best we can claim
that this mechanism reports a lower bound on the
number of referrals that A gives to B. While there
are other potential sources of inaccuracy, we believe
that those of which we are aware can be discounted
or virtually eliminated. For example, there is a risk
that the user aborts the loading of pageB.html be-
fore receiving a response from site B and instead
loads a di�erent page in the nextpage window, in
which case the referral noti�cation to A would be er-

roneous. However, this risk is mitigated if the win-
dow is created with no location line or toolbar,3 as
is achieved by the third argument of the open call
in Figure 7. Another risk is that some party invokes
record.cgi arbitrarily, and in particular when no
referral has taken place. However, there seems to
be little practical motivation for such \attacks".

Because this scheme reports only a lower bound on
referrals, perhaps the most prudent use of it is in
combination with that of Section 2. Combined in
the obvious way, these mechanisms enable site A to
retain both an upper and lower bound on the num-
ber of referrals that it has given to B, and typically
these numbers should be very close to one another.
A large gap in these bounds indicates to the web-
master of site A that she should examine the avail-
ability of site B. Even without further evidence,
large discrepancies between these upper and lower
bounds may be good cause to no longer advertise
B's pages.

4 Cooperative approaches

Though the schemes of Sections 2 and 3 enable par-
ticipants in a click-through program to approximate
the number of click-throughs for which they should

3This does not completely prevent a user from loading a

di�erent page into the nextpage window before pageB.html

loads: e.g., the user may still use \drag and drop" features or
keyboard shortcuts to load a di�erent URL into the window.

However, we expect that the percentage of users employing
these mechanisms is small and thus that users loading di�er-
ent pages into the nextpage window will yield insigni�cant
error in the lower bound, especially since there is typically a

very limited time frame (i.e., before siteB responds) in which
the user would need to load the di�erent page.

<html>

<!-- File: pageA.html -->

<head>

<script language="JavaScript">

var retrieved = null;

var w = null;

function setup(url) {

retrieved = url;

w = window.open("", "nextpage", "scrollbars,resizable,status");

w.document.open("text/html");

w.document.write("<html></html>");

w.document.close();

probe();

}

function probe() {

if (w.closed) return;

var temp = w.location.href;

setTimeout("probe()", 100);

}

function notify() {

if (w.closed) return;

invisible.location="http://siteA.com/cgi-bin/record.cgi?refer=" + retrieved;

}

window.onerror = function() { setTimeout("notify()", 1000); return true; };

</script>

</head>

<frameset rows="100%,*">

<frame src="pageAcontents.html" name="visible">

<frame src="about:blank" name="invisible">

</frameset>

</html>

Figure 7: File pageA.html for scheme of Section 3

be paid, there is still some room for error in these ap-
proaches. In this section, we show that even greater
accuracy can be achieved if site B cooperates with
site A to enable A to more e�ectively monitor B's
behavior. While the schemes of this section require
cooperation by site B, this does not imply that A
must fully trust B. Rather, if B misbehaves, then
it risks detection by site A, with high probability
if A combines the approaches of this section with
those of Sections 2 and 3. Site B might be willing
to cooperate in these schemes to instill trust in its
referrers, in the hopes of obtaining more clients for
its click-through program.

4.1 Click-through acknowledgements

In the �rst approach that we propose, site B e�ec-
tively \acknowledges" each referral from A as the
click-through happens. B could send an acknowl-
edgement to A directly, i.e., by sending it in a mes-
sage to A, but this requires B to incur more costs
(e.g., connection setups) than is necessary. Rather,
here we review a simple way in which B can piggy-
back the acknowledgement on its reply to the user,
so that the user's browser will forward the acknowl-
edgement to A.

Transferring an acknowledgement from B to A

via the user's browser can be achieved easily
with the addition of a CGI script to site B

and some modi�cations to pageB.html. To be-
gin with, B sets up a CGI script that serves B's
web pages (possibly only for referrals from click-
through program participants). Let's call this script
siteB.com/cgi-bin/serve.cgi. This CGI script
accepts as input the name of a page to produce (e.g.,
pageB.html) and emits a version of pageB.html

that is slightly di�erent for each referred request.
Speci�cally, if B receives a request for pageB.html
referred by A, then the version of pageB.html

served by serve.cgi requests a dummy URL on
site A when it loads. Each retrieval of this dummy
URL is an implicit \acknowledgement" from B.

A more explicit acknowledgement can be achieved
if the dummy URL on site A is a CGI script that
pageB.html can invoke with B's site name and
the time of the referral. For example, pageB.html
emitted from serve.cgi might look as shown in
Figure 8. Notice that the visible contents of the
page, pageBcontents.html, are served within a
frameset with one visible frame and one invisi-

ble frame (analogous to how A served pageA.html

in Sections 2.2 and 3). As the frameset loads,
the browser invokes A's record.cgi with the ar-
guments provided by B. Again, the trick of invok-
ing record.cgi by writing its output to an invisible
frame is used, but this time it is done by pageB.html
(vs. pageA.html). Alternatively, record.cgi could
be invoked from an tag, for example. The
record.cgi CGI script on site A, upon being in-
voked, can verify that the arguments properly ac-
knowledge A's referral.

Because B could serve a pageB.html that does not
invoke A's record.cgi, it is advisable for A to con-
struct pageA.html as in Section 2, i.e., so that A
is informed whenever the user clicks on the link to
pageB.html. This will alert A if B routinely serves
a pageB.html that does not invoke the appropriate
callback to A's record.cgi. A could further em-
ploy the mechanism of Section 3, providing A with
the full detection capabilities o�ered by both ap-
proaches. In this light, the technique of this section
can be viewed as a way for B to help A improve its
click-through monitoring over what A can achieve
without B's help using the schemes of Section 2 and
Section 3. In particular, B's acknowledgement may
reach A even if the noti�cation from the scheme of
Section 3 does not (e.g., because the user prema-
turely closes the window containing pageA.html).
If A couples the detection techniques of Sections 2
and 3 with random inspections of pageB.html as
served by B on a referral, B stands a high proba-
bility of being caught if it fails to acknowledge A a
signi�cant portion of the time.

4.2 Click-through nonrepudiation

One drawback of all our previous schemes is that
while they enable a referrer to detect hit shaving,
they do not arm the referrer with any evidence to
present to a third party in the case of a dispute.
So, in the extreme, the webmaster of site B can
repudiate some or all referrals, including any ac-
knowledgements it sent, and refuse to pay certain
referrers. While these referrers are thus likely to
leave B's click-through program, there is nothing
that they can do to bring third-party leverage on
the dispute. In this section we extend the technique
in Section 4.1 to enable B to pass nonrepudiable
acknowledgements to the referrer. Again, any fail-
ure of B to cooperate is quickly detectable by the
referring site A (if combined with the techniques of

<html>

<!-- pageB.html, dynamically generated by serve.cgi -->

<frameset rows="100%,*">

<frame src="pageBcontents.html">

<frame src="http://siteA.com/cgi-bin/record.cgi?refer=siteB.com&when=Feb2_13:04_EST_1998">

</frameset>

</html>

Figure 8: File pageB.html in scheme of Section 4.1

Sections 2 and 3), and so the webmaster of A can
immediately take action to avert a dispute, rather
than wait until, say, the end of the month to �nd
out that B will not pay her.

4.2.1 Using digital signatures

If there is a well-known public key for authenticat-
ing site B via digital signatures (e.g., [RSA78]), then
one approach for B to provide nonrepudiable ac-
knowledgements to A is for B to pass a digital sig-
nature to A as part of the click-through protocol.
This signature could sign a tuple containing the IP
address of the user, the time and date of the refer-
ral, the page to which the referral was made, and
the referring page. A can then retain this signed
tuple for use in a dispute with B later, if necessary.
Like in Section 4.1, B can create this signature in
serve.cgi and include it within pageB.html, to be
passed as an argument to a CGI script on site A by
the user's browser when pageB.html loads.

A drawback of this approach is that it requires B
to compute a digital signature per referral, which
must be done on its critical path for servicing the
user's request. Because digital signatures, particu-
larly RSA signatures [RSA78], tend to be compu-
tationally intensive, the additional computational
load imposed by these signatures may be prohibitive
if B is a very busy server.

4.2.2 Using hash chains

In order to lessen the computational burden on B,
in this section we sketch an approach that requires
far less from B computationally but that still pro-
vides some degree of nonrepudiable evidence to A.

It employs the well-known idea of hash chaining,
which has been used in the past for e�cient user
authentication [Hal94] and micropayments [RS95],
among other things.

Again we assume that there is a well-known (i.e.,
authenticated) public key for B. When A signs up
for B's click-through payment program, B gener-
ates a large, unpredictable number s, applies a one-
way hash function (e.g., [SHA95]) f to it k times to
produce ` = fk(s), digitally signs the pair <k; `>,
and sends <k; `> and the signature to A. Note
that all of this takes place when A registers for the
click-through program, not on the critical path of
referrals. Once this is set up, rather than pass-
ing a digital signature back to A during a referral,
B simply passes back the pair <i; `0> to A, where
`0 = fk�i(s), for the i-th referral (1 � i � k) that
A gives it. B can pass the pair <i; `0> to A using
techniques like those of Section 4.1. A can verify the
correctness of this pair by verifying that ` = f i(`0).
In the event of a dispute, A need only present the
digitally signed pair <k; `> and a pair<i; `0> where
` = f i(`0) to convince a third party that B received
at least i referrals from A.

This scheme has some disadvantages in comparison
to that of Section 4.2.1. The main disadvantage is
that B can later repudiate the user's IP address in
this scheme. In payment programs that pay only
for \unique" referrals, A's inability to record the
user IP address in a way that prevents B from later
repudiating it could leave A at a disadvantage in
a dispute. An agreement that B returns a refer-
ral record (i.e., a new pair <i; fk�i(s)>) only for
unique referrals may restore the balance, but only if
A is prepared to verify, when B refuses to return a
referral record, that the referred user was a repeat
user. A second disadvantage of this scheme is that
it must periodically be \refreshed"; i.e., once k re-

ferrals from A to B have been made, then A must
obtain a new signed pair <k0; fk

0

(s0)> from B.

5 Discussion

As mentioned in Section 4.2.2, our use of hash-
chaining is similar to its use in certain micropay-
ment schemes, speci�cally the PayWord scheme due
to Rivest and Shamir [RS95]. This similarity is per-
haps not coincidental, in that the deployment of a
micropayment scheme, or more generally any digital
cash scheme, could be a useful tool to counter hit
shaving. In this case, the target of a referral could
be required to pass a digital coin back to the referrer
in the referral protocol, e.g., using the techniques of
Section 4. The referrer could thus collect immedi-
ate payment for referrals it gives, and detect when
payment is not being received.

Other potential developments that could expand
our options for countering hit shaving include the
adoption of a richer security model for JavaScript.
For example, Anupam and Mayer [AM98] propose
a JavaScript security model in which a script can
selectively allow other scripts to access portions of
its namespace by con�guring access control lists ac-
cordingly. If adopted, this could enable other co-
operative solutions in which pageB.html allows a
script in pageA.html to access some portion of its
namespace, so that the script in pageA.html can
con�rm when pageB.html has loaded and notify site
A. Such solutions have the advantage of allowing
pageB.html to be a static page (as opposed to one
dynamically generated by a CGI script on site B),
though they also place requirements on pageA.html

that the solutions of Section 4 do not.

Although the techniques proposed in this paper are
e�ective for detecting hit shaving, they do have the
adverse e�ect of eroding user privacy further than
the web already does today. That is, the web to-
day, via the Referrer HTTP header, often reveals
to a site the page that a user visited previously.
Our techniques further enable the referring site to
learn the page that the user visits next. Mecha-
nisms for anonymously sur�ng the web, such as the
Anonymizer, the Lucent Personalized Web Assis-
tant [GGMM97], and Crowds [RR98]4 are generally
incompatible with click-through payment programs

4See www.anonymizer.com, lpwa.com, and
www.research.att.com/projects/crowds, respectively.

on two counts: they strip out the Referrer �eld,
and they preclude monitoring of user IP addresses
for the purposes of detecting hit in
ation. The for-
mer can be remedied by con�guring these systems
to let the Referrer �eld remain; the latter obstacle
appears more di�cult to overcome.

This work leaves several open problems. In particu-
lar, we have not attempted to address the problem
of hit in
ation, but have only attempted to not ex-
acerbate it. More robust approaches for detecting
or preventing hit shaving should also be explored.

Acknowledgments We are grateful to Avi Ru-
bin of AT&T Labs and the anonymous referees for
providing encouragement and helpful comments.

References

[AM98] V. Anupam and A. Mayer. Security of web

browser scripting languages: Vulnerabilities, at-
tacks, and remedies. In Proceedings of the 7th

USENIX Security Symposium, January 1998.

[Fla98] D. Flanagan. JavaScript: The De�nitive Guide.
3rd edition, O'Reilly & Associates, 1998.

[GGMM97] E. Gabber, P. Gibbons, Y. Matias, and
A. Mayer. How to make personalizedweb brows-

ing simple, secure, and anonymous. In Proceed-

ings of Financial Cryptography '97, 1997.

[Hal94] N. M. Haller. The S/KeyTM one-time password
system. In Proceedings of the Internet Society

Symposium on Network and Distributed Sys-

tems, 1994.

[Kle98] D. Klein. Succumbing to the dark side of the

force: The Internet as seen from an adult web

site. Invited talk at the 1998 USENIX Annual
Technical Conference, June 17, 1998.

[MK97] C. Musciano and B. Kennedy. HTML: The

De�nitive Guide. 2nd Edition, O'Reilly & As-
sociates, 1997.

[RR98] M. K. Reiter and A. D. Rubin. Crowds: Anony-
mous web transactions. ACM Transactions on

Information and System Security 1(1), June
1998.

[RS95] R. Rivest and A. Shamir. PayWord and Mi-
croMint: Two simple micropayment schemes.

Manuscript, 1995.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A
method for obtaining digital signatures and
public-key cryptosystems. Communications of

the ACM 21(2):120{126, February 1978.

[SHA95] FIPS 180-1, Secure hash standard. Federal Infor-
mation Processing Standards Publication 180-

1, U.S. Department of Commerce/N.I.S.T., Na-
tional Technical Information Service, April 17,
1995.

