
The following paper was originally published in the
Proceedings of the 3rd USENIX Workshop on Electronic Commerce

Boston, Massachusetts, August 31–September 3, 1998

For more information about USENIX Association contact:

1. Phone: 1 510 528-8649
2. FAX: 1 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

General-purpose Digital Ticket Framework

Ko Fujimura and Yoshiaki Nakajima
NTT Information and Communication Systems Labs

General-purpose Digital Ticket Framework

Ko Fujimura and Yoshiaki Nakajima
NTT Information and Communication Systems Labs

{fujimura, yoshiaki}@isl.ntt.co.jp

Abstract

A digital ticket is a certificate that guarantees certain
rights of the ticket owner. There are many applications
for digital tickets but the ticket properties vary de-
pending on the application. This variety makes the
digital ticket processing system expensive, especially if
dedicated systems must be developed for each applica-
tion. This paper thus addresses issues on developing a
common data schema and processing architecture for
various types of digital tickets. This paper clarifies
requirements for a general-purpose digital ticket and
shows four features in contrast to digital cash: 1)
parameterization of ticket properties on anonymity,
transferability, and divisibility; 2) machine-
understandability of ticket contents; 3) state-
transitionality of ticket status; and 4) composability of
multiple tickets. To achieve parameterization of ticket
properties and machine-understandability, we propose
a Resource Description Framework (RDF)-based ticket
description method. Its metadata facility enables vari-
ous ticket properties to be defined using multi-layered
schemata. To achieve state-transitionality and compos-
ability, we propose describing a ticket using a set of
signed descriptions linked with restriction-specified
incomplete/complete links. Finally, this paper proposes
a set of common ticket processing components.

1. Introduction

A number of electronic payment schemes [1] such as
encrypted credit cards [17], digital cash [8], and mi-
cropayments [5] [16] have been designed and estab-
lished for Internet commerce. However, in the opposite
flow of the payment, i.e., goods or products to the con-
sumer, we depend on a physical delivery system except
for a few types of digital contents, e.g., images, sounds,
and computer software. Any goods that can be encoded
as digital information, however, can inherently be de-
livered electronically.

Any business that offer services, e.g., transportation,
accommodations, theaters, and restaurants, also make
up a large industry and their services can be sold as
tickets. A ticket is a certificate, which guarantees that
the ticket owner has the right to claim the services
written on the ticket. A ticket can be implemented as a

digital certificate (or digital ticket) and can be deliv-
ered electronically. Although they are not common
now, the business scope of electronic commerce will
expand rapidly if digital tickets, which enable us to
trade over the Internet, become easy to use and manage.

The number of any one particular type of digital ticket
that is issued, however, would be far less compared to
digital cash, because there is such a wide variety of
tickets. It makes the implementation cost of the infra-
structure for processing digital tickets, such as ticket-
ing systems, ticket wallet systems, and ticket examina-
tion systems, expensive, if a system must be developed
for each individual application. This paper thus ad-
dresses a ticket description method and processing
architecture of general-purpose digital tickets that en-
able the issuing, trading, and spending of various types
of digital tickets using a set of common ticket process-
ing components.

Some digital tickets, e.g., E-Stamp [12] or e-gold [13],
have already been developed. Transaction Net [19]
surveys several digital values including commodity-
backed money or scrip. These technologies, however,
were developed for individual tickets or applications.
No digital ticket framework that covers a wide range of
digital tickets has been proposed yet.

This paper clarifies the requirements of general-
purpose digital tickets and its four features which are
not required for digital cash: 1) parameterization of
ticket properties on anonymity, transferability, and
divisibility; 2) machine-understandability of ticket
contents; 3) state-transitionality of ticket status; and 4)
composability of multiple tickets.

To establish parameters for properties and machine-
understandability, this paper defines layered schemata
of digital tickets using Resource Description Frame-
work (RDF) [10]. Its metadata facility enables various
ticket properties to be defined and enables the use of
various ticket schemata according to the ticket type
such as theater tickets or accommodation tickets. To
achieve state-transitionality and composability, we
propose describing a ticket using a set of signed de-
scriptions linked with restriction-specified links. The
state-transition of a ticket, e.g., payment status or re-

servation status, is expressed by attaching to the origi-
nal ticket a description of how the status was changed.
Using the restriction-specified links, flexible require-
ments on the description to be attached can be specified.

Finally, this paper proposes a set of common ticket
processing components that can issue, trade, and spend
various types of digital tickets.

2. Digital Ticket

In this paper, a digital ticket (simply called "ticket"
hereafter) is defined as follows:

Definition

Let I be a ticket issuer, O be a ticket owner, and P
be a promise to the ticket owner. A ticket is defined
as SignedI (I, P, O), where the phrase "SignedI"
means that the entire block is signed by the issuer's
digital signature.

Examples of promise P are as follows:

• A flight between Boston and Tokyo can be re-
served with this ticket.

• This ticket can be exchanged for 1g of gold.
• One image file in a particular server can be

downloaded with this ticket.
• After June 1998, this ticket can be exchanged for

my car.
• The bearer of this ticket has unlimited telephone

use for one month.

In this paper, we assume the issuance, transference,
and consumption of a ticket are as follows:

Ticket Issuance

A ticket can be freely issued bearing the ticket issuer's
intention, e.g., service to be provided or commodity to
be delivered. It represents a promise by the ticket issuer
to complete some task or render some service. If the
task described on the ticket cannot be accomplished, it
will detract from the ticket issuer's credibility.

Ticket Transference

Depending on the type of ticket, as described in Section
3, a ticket can be transferred to a third person. Typi-
cally, transferring a ticket can be accomplished using a
special software component described in Section 4.4.
Note that payment is usually also made for the trans-
ference of the ticket, but this payment is outside the

scope of this paper. We make no assumption on the
payment method.

Ticket Consumption

A ticket is consumed typically by the issuer fulfilling
the service or task represented by the ticket and the
ticket being returned to or voided by the issuer or
service provider. More concretely, the mechanism of
this process can be represented by placing a ticket in a
ticket examination machine when a service is rendered.
Another example is pasting a ticket icon in an input
field of a form received from some service provider
(downloading an image file, etc.) to receive a service.
In this process, it is assumed that the consumer agreed
to void the ticket. A certificate of the consumption
signed by the consumer is given to the issuer or service
provider.

3. Related Work

Digital tickets have many similarities to digital cash.
Therefore, some basic technologies for implementing
digital tickets have already been developed in the re-
search area of digital cash [8]. This section thus com-
pares and contrasts the digital ticket to digital cash as
we know it today. The following ten key features [6][7]
of digital cash have been proposed.

(1) Secure (unable to alter or counterfeit)
(2) Anonymous (untraceable)
(3) Portable (physical independence)
(4) Transferable
(5) Off-line capable
(6) Divisible [7]
(7) Infinite duration (persistent)
(8) Wide acceptability (trust)
(9) User-friendly (easy-to-use)
(10) Monetary freedom (non-political) [6]

As a result of our investigation on many physical tick-
ets, we found that required levels on (2) anonymity, (4)
transferability, (6) divisibility, and (7) persistency are
different according to the ticket type as shown in Table
I and II. It is important for a general-purpose digital
ticket architecture to process any type of ticket regard-
less of the required property level. Thus establishing
parameters for these properties is required to cover a
wide range of tickets.

In addition, we found that the three following require-
ments are important for digital tickets, which are not
required in digital cash.

(11) Machine-understandable

Before any transaction can be conducted, the terms and
description of the service or task must be objectively
understood by both the service provider and consumer
or owner, otherwise, the value of the ticket can not be
determined. Moreover, as described in Section 4.4, this
is a key property to register or search for a ticket in a
marketplace when the ticket is resold.

(12) State manageable

Some tickets have a payment status, i.e., paid or unpaid,
and/or reservation status, e.g., waiting list, reserved, or
canceled. The status may be changed dynamically.
Additionally, the ticket owner's identification that is
recorded on the ticket can be rewritten when the ticket
is transferred. However, it is difficult to allow these
change while still guaranteeing security.

(13) Composable

Combining two or more tickets is sometimes required
to obtain a service or one ticket may comprise several
parts. For example, a travel ticket can comprise an
accommodation ticket and a plane ticket. Also, a plane
ticket can comprise a flight reservation ticket and an
open ticket.

As mentioned above, digital tickets have some similar
properties to digital cash but these properties vary with
the ticket, and there are some new requirements not
required for digital cash. A summary of this is shown
in Table I.

Among the technologies to achieve the above ten prop-
erties, (1) through (10) are outside the scope of this
paper since a number of methods [1][8] have already
been proposed and developed. Instead, this paper pro-
poses a ticket description method that enables the defi-
nition of various ticket properties and first establishes
(11) a machine understandable ticket. Second, this
paper proposes a ticket model that achieves (12) state
manageable and (13) composable tickets. Finally, this
paper briefly explains the prototype system of common
ticket processing components that we developed.

4. Approach

4.1 Ticket description

Basic properties of a ticket comprise issuer I, promise
P, and owner O as described in Section 2.

Properties Digital
Cash

Digital Ticket

(1) Secure Yes Yes
(2) Anonymous

(Untraceable)
Yes (2-1) Untraceable

(2-2) Traceable
(3) Portable (Physical

independence)
Yes Yes

(4) Transferable Yes (4-1) Transferable
(4-2) Not transferable

(5) Off-line capable Yes Yes
(6) Divisible

(Number of times to
be consumed)

Yes (6-1) Specified times
(6-2) Only once
(6-3) Infinite times

(7) Persistent
(Valid period)

Yes (7-1) Specified period
(7-2) Persistent

(8) Wide acceptability Yes Yes
(9) User-friendly Yes Yes
(10) Monetary freedom Yes No

(11) Machine-
understandable

No Yes

(12) State manageable No Yes
(13) Composable No Yes

Table I. Digital Ticket Properties

Examples Anonym-
ity1

Transfer-
ability1

Number
of times

Event ticket Yes Yes Only once
Plane ticket No No Only once
Lottery ticket Yes No Only once
Stamp Yes Yes Only once
Telephone card Yes Yes Specified
Cash Yes Yes Specified
Software license No Yes Infinite
Transportation pass Yes No Infinite
Gate card No No Infinite
Driver's license No No Infinite

1It depends on the specific ticket. This table only shows
the tendency for the ticket types.

Table II. Properties of Specific Ticket Types

Transferability, anonymity, number of times to be con-
sumed, and valid period shown in Table I are also im-
portant properties that vary depending on the ticket
and determine how the ticket should be processed. Re-
garding the anonymity property, however, it can de-
pend on how owner O is specified. For example,
anonymity can be achieved by using a pseudonym
[3][4] to specify the owner and keeping the real name
secret except to the pseudonym issuer. We therefore
assume that the anonymity property is subsumed by the
owner property. To display or print the ticket, a view
property is also needed. All of these properties can be
and must be specified regardless of the ticket type.

There are properties determined by each ticket type,
e.g., event ticket, plane ticket, accommodation ticket,
and software license. Examples of these properties are

flight number or departure date, etc. These properties
are defined by each industry.

In addition, there are properties that are defined by
each issuing company or individual. An example of
these properties is mileage points. Ticket properties are
thus classified into the following three schema layers.

Layer 1
Common ticket properties that do not depend on the
ticket type:

• Issuer
• Promise (Details are defined in upper layers)
• Owner (incl. pseudonym)
• Transferability
• Number of times to be consumed
• Valid period
• View
• Issuer's signature on above

Layer 2
Common ticket properties defined by each industry

Layer 3
Any ticket property defined by each issuing company
or individual

We examined existing data describing technologies to
see if they can be used to describe various ticket prop-
erties and if they can use multi-layered schemata. We
found that Resource Description Framework (RDF)
[10] developed by W3C fulfills the requirements above.
RDF is a foundation for exchanging machine-
understandable information on the Web and no appli-
cation-specific assumption is made. We therefore de-
fined ticket-specific schema layers based on RDF.

Figure 1 shows an example of describing a concert
ticket in the RDF syntax. Note that the RDF specifica-
tion is a draft specification and may be updated or re-
placed.

In RDF, the meaning and restrictions of the properties
used in an RDF description must be defined in the
RDF schema, which are defined somewhere in the
network. The RDF schema is defined in an RDF sche-
ma specification [11]. See details in the specification.

Using XML [9] namespace facility, which may be
contained in the RDF document's prolog, Universal
Resource Identifiers (URIs) for layered ticket schemata
can be referred to as described in this example. In this

example, it is assumed that each schema is distributed
and their URIs are defined as follows:

Layer 1
<?xml:namespace

name="http://tickets.org/schemas/ticket#"
as="DTK"?>

Layer 2
<?xml:namespace

name="http://events.org/schemas/event-
ticket#" as="EVT"?>

Layer 3
<?xml:namespace

name="http://mycorp.com/schemas/my-ticket#"
as="MTK"?>

This facility makes it easy to specify and maintain the
schemata defined by different organizations. This ap-
proach, thus, not only achieves (11) the machine-
understandability feature described in Section 3, but
also has the advantage that many organizations can
easily define their own ticket schema.

As shown in Figure 1, the <DTK:Issuer> , <DTK: Prom-

ise> , <DTK:Owner> , <DTK:Transferability> , <DTK:

NumberOfTimes> , <DTK:ValidPeriod> , <DTK:View> ,
and <DTK:Signature> tags are used to define the layer
1 properties.

The Conditions property in Figure 1 describes detailed
contract conditions. Such information is not always
necessary but the size is not negligible for circulating a
ticket, especially when the ticket is recorded on a smart
card. In this case, the description can be located on a
certain server on the network and referred to by the
link if necessary. It also reduces communication cost.
The View property, which defines the image data of
the ticket, is also defined using a link as shown in Fig-
ure 1.

In RDF, the Description element itself creates a resour-
ce and it can be referred to by the bagID. Using the
bagID, the scope of the definition that the signature is
applied to can be specified. See details in the specifi-
cation [10].

4.2 Restriction-specified incomplete link

In this section, we propose an approach to implement
the (12) state-manageable ticket features. State-
manageability enables the status of the ticket, e.g.,
owner identifier, payment status, or reservation status,
to change dynamically.

<?xml:namespace name="http://mycorp.com/schemas/my-ticket#" as="MTK"?>
<?xml:namespace name="http://events.org/schemas/event-ticket#" as="EVT"?>
<?xml:namespace name="http://tickets.org/schemas/ticket#" as="DTK"?>
<?xml:namespace name="http://www.w3.org/TR/WD-rdf-syntax#" as="RDF"?>

<RDF:RDF>
 <RDF:Description ID="ticket_001" bagID="ticket_bag_001">
 <DTK:Issuer>issuer@mycorp.com</DTK:Issuer>
 <DTK:Promise>
 <RDF:Description>
 <EVT:Reference>R02-345</EVT:Reference>
 <EVT:Name>FooBar Concert</EVT:Name>
 <EVT:Type>Adult</EVT:Type>
 <EVT:Place>New York City Hall</EVT:Place>
 <MTK:Points>20</MTK:Points>
 <MTK:Conditions href="http://mycorp.com/conditions"/>
 </RDF:Description>
 </DTK:Promise>
 <DTK:Owner>u1@host1.com</DTK:Owner>
 <DTK:Transferability>ANYBODY</DTK:Transferability>
 <DTK:NumberOfTimes>ONCE</DTK:NumberOfTimes>
 <DTK:ValidPeriod>1998-2-20</DTK:ValidPeriod>
 <DTK:View href="http://mycorp.com/my-ticket.gif"/>
 </RDF:Description>

 <RDF:Description href="#ticket_bag_001">
 <DTK:Signature>05b8cfc04d05a8cfc03d2549cfc03d36</DTK:Signature>
 </RDF:Description>
</RDF:RDF>

Figure 1. A concert ticket example in RDF

However, it is not easy to implement because the ticket
is signed by the issuer, and nobody except the issuer
can alter the contents of the ticket. However, it is often
required to change the contents of the ticket with the
approval of the original ticket issuer or a Trusted
Third Party (TTP), etc.

To express the state-transition of ticket properties
without changing the original ticket definition, we
propose defining a ticket using a linked set of signed
descriptions, i.e., the state-transition of a ticket prop-
erty is defined by attaching a state-transition descrip-
tion linked from the property definition in the original
description:

Original Description:

<RDF:RDF>
 <RDF:Description ID="ticket_001"
 bagID="ticket_bag_001">
 ...
 <Prop1/>
 <RDF:Description>
 <DTK:Value>current-value</DTK:Value>
 <DTK:NewValue href="#prop1_001"/>
 </RDF:Description>
 </Prop1>
 ...
 </RDF:Description>
 <RDF:Description href="#ticket_bag_001">
 <DTK:Signature>...</DTK:Signature>
 </RDF:Description>
</RDF:RDF>

Assume that the value of property Prop1 is changed
from "current-value" to "new-value," then the follow-
ing description is attached to the above:

Attached Description:

<RDF:RDF>
 <RDF:Description ID="prop1_001"
 bagID="prop1_bag_002">
 <DTK:Value>new-value</DTK:Value>
 </RDF:Description>
 <RDF:Description href="#prop1_bag_002">
 <DTK:Signature>...</DTK:Signature>
 </RDF:Description>
</RDF:RDF>

In the above examples, link ID "prop1_001" must be
defined and signed before the referred description is
defined. We call such a link an incomplete link.

The link ID must be universally unique, since the at-
tached signed description could be used for malicious
purposes. An URI can be used for that purpose. Note
that short IDs are used in this paper for readability.

The incomplete link shown in the above example, al-
lows any description to be located as the destination of
the link without restriction. It is inconvenient espe-
cially when the referred description must be signed (or
issued) by the original issuer or others who have been
delegated the right to define the value. To fulfill this
requirement, this paper proposes a new concept called

restriction-specified incomplete link that restricts only
the valid description so that it can be located on the
destination of the incomplete link. If an invalid de-
scription is located, it will be detected by the validation
check system.

An example of a restriction-specified incomplete link
is as follows:

Original Description:

<RDF:RDF>
 <RDF:Description ID="ticket_001"
 bagID="ticket_bag_001">
 ...
 <Prop1>
 <RDF:Description>
 <DTK:Value>current-value</DTK:Value>
 <DTK:NewValue href="#prop1_001"/>
 <DTK:Restriction>
 <RDF:Description>
 <DTK:Issuer>u2@host.com</DTK:Issuer>
 </RDF:Description>
 </DTK:Restriction>
 </RDF:Description>
 </Prop1>
 ...
 </RDF:Description>
 <RDF:Description href="#ticket_bag_001">
 <DTK:Signature>...</DTK:Signature>
 </RDF:Description>
</RDF:RDF>

This example restricts the description of prop1_001 to
be attached to the description of issuer u2@host.com.
An example of the valid description is as follows:

Attached Description:

<RDF:RDF>
 <RDF:Description ID="prop1_001"
 bagID="prop1_bag_002">
 <DTK:Issuer>u2@host.com</DTK:Issuer>
 <DTK:Value>new-value</DTK:Value>
 </RDF:Description>
 <RDF:Description href="#prop1_bag_002">
 <DTK:Signature>...</DTK:Signature>
 </RDF:Description>
</RDF:RDF>

As we described in the above examples, a restriction-
specified incomplete/complete link is defined as fol-
lows:

Definition

Let D0 be a signed description, P be a property in
D0, V be the current value for P, D1 be a signed de-
scription to be attached, L be a link to D1, and R be
a restriction for D1. A restriction-specified incom-
plete/complete link is defined as a tupple of (P, V,
L, and R) .

The value of P is interpreted as D1 if D1 is instanti-
ated and D1 satisfies restriction R, otherwise the

value of P is interpreted as V, where we call D1 in-
stantiated if D1 is located on destination L.

As shown in the above examples, the <Prop1> ,
<DTK:Value> , <DTK:NewValue> , and <DTK:Re-
striction> tags are used to define P, V, L, and R
respectively.

Restriction R can be any restriction, but the following
three types of restrictions would be enough to describe
most tickets based on our investigation.

Schema restriction: The schema (or format) of the
attached description. It defines properties to be
defined and its necessity property, i.e., mandatory
or optional.

Property value restriction: The value for the specific
property of the attached description. Note that
property value restriction can also be defined
within the schema of the property if the schema is
not assumed to be shared.

Hash value restriction: The hash value of the de-
scription. Note that this restriction can only be ap-
plied when the attached description has been in-
stantiated when this restriction is specified.

4.3 Composable ticket model

In this section, we propose an approach to implement
the (13) composable ticket features. Composability
enables the definition of a complex ticket using multi-
ple sub-tickets.

There are many cases when a sub-ticket must be issued
separately with the original ticket typically because the
tickets are issued by different organizations or issued
at different times.

The restriction-specified incomplete/complete link can
also be applied to composable tickets. The signed de-
scription to be attached can be a ticket.

For example, suppose that a plane ticket can comprise
an open ticket and a flight reservation ticket, which
are used for a certain air route and reserved for a cer-
tain flight on the reserved date, respectively. The re-
servation ticket can be considered as a sub-ticket of the
open ticket and attached to the reservation status prop-
erty of the open plane ticket.

<RDF:RDF>
 <RDF:Description ID="ticket_001" bagID="ticket_bag_001">
 <DTK:Issuer>issuer@airline1.com</DTK:Issuer>
 <DTK:Promise>
 <RDF:Description>
 <MTK:Departure>London</MTK:Departure>
 <MTK:Destination>Boston</MTK:Destination>
 <MTK:Reservation>
 <RDF:Description>
 <DTK:Ticket href="#ticket_002"/>
 <DTK:Restriction>
 <RDF:Description>
 <RDF:InstanceOf href="http://airline1.com/schema#RsvTicket"/>
 <DTK:Issuer>issuer@airline1.com</DTK:Issuer>
 </RDF:Description>
 </DTK:Restriction>
 </RDF:Description>
 </MTK:Reservation>
 <MTK:Conditions>
 <RDF:Description>
 <DTK:Value href="http://airline1.com/conditions"/>
 <DTK:Restriction>
 <RDF:Description>
 <DTK:Digest>476169572bb3680708cd4204907735ac</DTK:Digest>
 </RDF:Description>
 </DTK:Restriction>
 </RDF:Description>
 </MTK:Conditions>
 </RDF:Description>
 </DTK:Promise>
 <DTK:Owner>u1@host1.com</DTK:Owner>
 <DTK:Transferability>NO</DTK:Transferability>
 <DTK:NumberOfTimes>ONCE</DTK:NumberOfTimes>
 <DTK:ValidPeriod>INFINITE</DTK:ValidPeriod>
 <DTK:View href="http://airline1.com/plane_ticket.gif"/>
 </RDF:Description>

 <RDF:Description href="#ticket_bag_001">
 <DTK:Signature>9572bb3680708476735ac16cd4204907</DTK:Signature>
 </RDF:Description>
</RDF:RDF>

Figure 2. Open plane ticket example

Figure 2 shows an example of describing an open
plane ticket in the RDF syntax. In this example, the
two restrictions of a sub-ticket to be attached are de-
fined.

• The ticket must be an instance of the reservation
ticket. This is an example of schema restriction.

• The ticket must be issued by issuer@airline1.com.
This is an example of a property value restriction.

The Conditions property in Figure 2 also includes the
hash value restriction described in Section 4.2.

The <RDF:InstanceOf > and <DTK:Digest> tags
are used to define schema restrictions and hash value
restrictions respectively. To define a property value
restriction, the tag for the property, i.e., the
<DTK:Issuer> tag in this example, is used in the
description of <DTK:Restriction> .

There are many applications of composable tickets as
shown in Table III. It is possible to change the owner

property of a transferable ticket by attaching a transfer
(ticket) if a restriction-specified link is defined in the
owner property. In this case, the restriction is that
issuer of the transfer is the transferor.

It is also possible to control anonymity of a ticket by
attaching different types of public key (PK) certificates
to the owner property of the ticket. That is, if a ticket
must be traceable, a PK certificate with user identifier
is attached, and if a ticket must be untraceable, a PK
certificate without user identifier is attached.

Other examples are a composition of a deferred pay-
ment ticket and a check, or an authorized document
and the approval stamp as shown in Table III.

4.4 Common processing components

This section explains the prototype system of common
ticket processing components that we developed.

Original ticket Attached ticket / description
Type Property Schema restriction Value restriction

Any transferable ticket Owner Transfer (certificate) Issuer is the trans-
feror

Any traceable ticket or
transfer attached

Owner PK certificate with
user identifier

Issuer is an CA

Any untraceable ticket
or transfer attached

Owner PK certificate without
user identifier

Issuer is an CA

Any deferred payment
ticket

Payment
status

Check or draft Issuer is a bank

Any documents to be
authorized

Approval Approved stamp Issuer is the specified
issuer

Any ticket de-
tails/conditions are
described

Condi-
tions

None Digest value is
specified (See Figure
2)

Table III. App lication of Composable Tickets

 (1) Ticket Editor

The ticket editor is a component that generates a ticket
skeleton by interacting with the ticket issuer and using
pre-defined ticket schemata (layer 1, 2, and 3). A ticket
skeleton is similar to a ticket except that it may leave
some properties blank, e.g., reference number, required
tickets, or the signature of the issuer. This is because
these property values are usually given dynamically.
The GUI of the ticket editor is shown in Figure 3. This
component is typically used by ticket designers. Note
that defining the ticket schemata is out of scope of this
paper.

(2) Ticket Generator

The ticket generator is a component that generates
ticket instances from a ticket skeleton by interacting
with users or customers to whom the ticket is issued.
The ticket generator fills in the blank properties by
generating or prompting input from the users and signs
the ticket. This component is typically used in a Web
server application. Figure 4 shows the flow of how the
ticket is generated using the ticket editor and generator.

 (3) Ticket Reader

The ticket reader is a component that checks the
validity of the ticket and voids the ticket when a service
is rendered. The voiding method depends on the type
of the ticket. For example, it can be done by auditing a
record in which the ticket owner acknowledges the
ticket consumption and signs it. This tool is typically
used in ticket examination machines

Figure 3. Ticket editor

 (4) Ticket Transferor

The ticket transferor is a component that changes the
ticket owner identity to a new person. Ticket transfers
can be done by adding a transfer ticket that specifies
the new ticket owner as described in Sections 4.2 and
4.3. This tool is typically used in the transferor's (or
ticket owner's) ticket wallet or server.

Figure 4. Generating a ticket

(5) Ticket Viewer

The ticket viewer is a component that displays the
contents (or meaning) of the ticket and checks the
validity of the ticket. This component is typically used
in the purchaser's ticket wallet and used to confirm the
contents of the ticket before conducting a transaction.
This reduces the number of problems encountered
while trading because ticket purchasers can confirm
the contents of the ticket before making a transaction.

Details regarding the processing scheme of these com-
ponents are out of the scope of this paper. The imple-
mentation details will be presented in another paper.

Our current implementation uses an online checking
scheme to prevent duplicate redemption. However,
more sophisticated protocols [2][7] and/or smart card
protocols [14][15] invented for electronic cash can be
used if more complete anonymity, transferability, di-
visibility, and off-line capabilities are required. This
paper does not conflict with these protocols, instead
one of our goals is independence from the infrastruc-
ture for preventing duplicate redemption. It is impor-
tant to have numerous types of tickets but common
components or systems for ticket processing can be
shared by establishing parameters for the layer 1 prop-
erties as described in this paper.

Additionally, a seller (or reseller) of a ticket can
transmit the ticket information to a marketplace
without typing it in. The process can be completed by
click- or drag & drop-based GUIs. Also, the contents
described in the ticket can be read mechanically, thus

Figure 5. Ticket marketplace

making the purchaser's search for tickets in the mar-
ketplace very efficient. This can be expected to pro-
mote resale or recycling over the Internet. Figure 5
shows the outline of a ticket marketplace.

5. Conclusions

This paper classified various types of digital tickets and
clarified common properties of digital tickets.

A ticket description method was proposed that enables
various ticket properties to be defined. The tickets de-
scribed by the proposed method are machine under-
standable, state-manageable, and composable. To
achieve machine understandability, a ticket using RDF
with three-layer ticket schemata was described in Sec-
tion 4.1. To achieve state-manageability, a new ticket
description method that uses restriction-specified in-
complete link was proposed in Section 4.2. To achieve
composability, a composable ticket model that ex-
presses a composite ticket using a set of required sub-
tickets was proposed in Section 4.3.

Common components that can be used in the issuing,
trading, and spending of various types of digital tickets
were presented in Section 4.4. These components can
be shared among applications because ticket properties
of the first layer schema determine the processing pat-
terns regardless of application-specific ticket properties
of the second layer schemata defined by each industry.

A common processing platform for digital tickets
makes it easy for a small enterprise or individuals to
issue or trade their own tickets over the Internet, even
though the number of tickets that are issued is small.

There is possibility that all kinds of tickets, including
train tickets and admission tickets to amusement parks,
will be substituted with digital tickets, and that the
ticketing machines will be substituted with Web termi-
nals when smart cards [18] become more popular. To
make it practical, a standard ticket description method
and ticket processing infrastructure must be established
and we believe that our framework presented here is
the key.

Acknowledgements

We would like to thank Yuji Takehisa, Jun Sekine,
Yasunao Mizuno, Kazuo Matsuyama, Masayuki Te-
rada, Hiroshi Kuno, Ayumu Eto, and the referees for
their suggestions.

References

[1] N. Asokan, P. A. Janson, Michael Steiner, and M.
Waidner, "The State of the Art in Electronic
Payment Systems," IEEE Computer, Sep. 1997,
pp. 28-35.

[2] D. Chaum, "Privacy Protected Payments Uncon-
ditional Payer and/or Payee Untraceability," In
Smart Card 2000, North-Holland, Amsterdam,
1989, pp. 69-93.

[3] G. Davida, Y. Frankel, Y. Tsiounis, and M. Yung,
"Anonymity Control in E-Cash Systems," In Pro-
ceedings of Financial Cryptography '97, LNCS
1318, pp. 1-16.

[4] Eran Gabber, Phillip B. Gibbons, Yossi Matias,
and Alain Mayer, "How to Make Personalized
Web Browsing Simple, Secure, and Anonymous,"
In Proceedings of Financial Cryptography '97,
LNCS 1318, pp. 17-31.

[5] S. Glassman, M. Manasse, M. Abadi, P. Gauthier,
and P. Sobalvarro, "The Millicent Protocol for In-
expensive Electronic Commerce," In Proceedings
of WWW4, http://www.w3.org/Conferences/
WWW4/Papers/246/

[6] J. W. Matonis, "Monetary Freedom," In Pro-
ceedings of INET95, Internet Society, http://
info.isoc.org/HMP/PAPER/136/html/paper.html

[7] T. Okamoto and K. Ohta, "Universal Electronic
Cash," In Advances in Cryptology, Proceedings
of CRYPTO '91, J. Feigenbaum (Ed.), LNCS 576,
pp. 324-337.

[8] Peter Wayner, "Digital Cash," Academic Press
Ltd., 1997.

[9] Extensible Markup Language (XML) specifica-
tions, The World Wide Web Consortium, 1998,
http://www.w3.org/XML/

[10] Resource Description Framework (RDF) Model
and Syntax, The World Wide Web Consortium,
Working Draft, 1998, http://www.w3.org/TR
/1998/WD-rdf-syntax-19980216

[11] Resource Description Framework (RDF) Schemas,
The World Wide Web Consortium, Working
Draft, 1998, http://www.w3.org/TR/WD-rdf-
schema

[12] E-Stamp Corporation, "E-Stamp,"
http://www.e-stamp.com/

[13] Gold & Silver Reserve, Inc., "e-gold,"
http://www.e-gold.com/

[14] Java Card Forum, http://www.javacardforum.org/

[15] MONDEX International Ltd.,
http://www.mondex.com/

[16] The NetBill Electronic Commerce Project,
http://www.ini.cmu.edu/netbill

[17] Secure Electronic Transaction (SET) specifica-
tions, http://www.mastercard.com/set/

[18] Smart Card Forum, http://www.smartcrd.com/

[19] Transaction Net, "Complementary Currencies and
Exchange Networks,"
http://www.transaction.net/money/comp/

