
The following paper was originally published in the
Proceedings of the 3rd USENIX Workshop on Electronic Commerce

Boston, Massachusetts, August 31–September 3, 1998

For more information about USENIX Association contact:

1. Phone: 1 510 528-8649
2. FAX: 1 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Secure WWW Transactions Using Standard HTTP and Java Applets

F. Bergadano, B. Crispo, and M. Eccettuato
Universitá di Torino, Italy

Secure WWW Transactions Using

Standard HTTP and Java Applets

F. Bergadano

Dipartimento di Informatica, Universit�a di Torino, Italy

bergadan@di.unito.it

B. Crispo

Dipartimento di Informatica, Universit�a di Torino, Italy

Cambridge University Computer Laboratory, England

bc201@cl.cam.ac.uk

M. Eccettuato

Dipartimento di Informatica, Universit�a di Torino, Italy

Abstract

Can users access information on the
Web securely with their unchanged, normal
broswers, and yet without relying on the
cryptographic software contained in those
browsers? In this paper we show that this is
possible, with a communication architecture
based on Java applets. This is important, be-
cause cryptographic functions need be sepa-
rated from both the user interface and the
communications routines. It must be possi-
ble to acquire the source code for the rele-
vant modules and alternative software ven-
dors must be available, in order to avoid hid-
den trapdoors and undetected implementa-
tion problems. Our approach is alternative
to solutions at the protocol level (e.g., SSL),
because the unchanged HTTP/TCP/IP stack
is maintained. Moreover, it does not require

the installation of proxies.

1 Introduction

The explosive growth in information that
becomes available through the Web has led to
the development of new applications. Some
of those applications, such as electronic com-
merce or teleworking, are particularly critical
because they require secure communications
between clients and servers. For those appli-

cations, WWW transactions must o�er secu-
rity services such as authentication, secrecy,
data integrity and non repudiation. Some
browser vendors and standardisation groups
have already proposed some solutions to this
problem, in a way that we consider still un-
satisfactory from users' point of view.
Standardisation groups have proposed to se-
cure HTTP transactions at the protocol level.
Even if these solutions enhance the secu-
rity of the communications between WWW
clients and servers, they are hidden below
the application level, where users are often
unable to access data and system compo-
nents. Moreover, new protocols require new
client and server software, that may not be-
come as widespread as standard HTTP-based
implementations. Browser vendors, some-
times, provide solutions at the application
level. However, for commercial reasons they
may not provide the source code of their so-
lutions. The choice of cryptographic modules
may also be limited by local regulations.
We believe that new approaches are needed.

In this paper we describe a framework
based on Java applications and Java applets
[3] to secure HTTP transactions. We have
implemented a system that allows users to
perform all the encryption and authentication
work outside the browser, by using applets
and other locally installed software.

Software is also installed on the WWW
server and performs corresponding encryp-

tion and authentication procedures. All the
software we use can be easily studied and
analysed. Moreover users can eventually inte-
grate their own modules to perform the cryp-
tographic operations without a�ecting the va-
lidity of our approach. Our solution enforces
strong security without requiring modi�ca-
tions in the existing HTTP protocol [7, 12]
or in the available commercial browsers. Any
browser supporting Java may be used.

2 Related Work

There are already several di�erent ap-
proaches used to secure HTTP transactions.
They can be classi�ed as follows:

1. Application protocol solutions. The
HTTP protocol is changed so that the
header includes key management fea-
tures and encryption/signature becomes
possible. A well known example of this
kind is the SHTTP protocol [11]. An-
other modi�cation of HTTP that sup-
ports server group authentication is de-
scribed in [17].

2. Session layer solutions. HTTP com-
munication is implemented on top of a
modi�ed transport API, that guarantees
end-to-end privacy and authentication.
A well known example following these
principles is SSL [13, 10].

3. Transport layer solutions. HTTP
communications can also be secured at
the transport level, securing the under-
lying TCP connections using tunnelling
protocols such as PPTP [15] or SSH [21]
[20], or at the network level using, e.g.,
IPv6 [9]. The Point-to-Point Tunnelling
Protocol was designed to provide au-
thentication and encryption over a pub-
lic TCP/IP network using the common
Point-to-Point Protocol (PPP), thus cre-
ating a Virtual Private Network (VPN).
PPTP works by encapsulating the vir-
tual network packets inside of PPP pack-
ets, which are in turn encapsulated in
Generic Routing Encapsulation packets

sent over IP from the client to the gate-
way PPTP server and back again. PPTP
does not specify particular algorithms
for authentication and encryption. In-
stead, it provides a framework for nego-
tiating particular algorithms. In prac-
tice most commercial products use the
Microsoft Windows NT version of the
protocol because it is already a part of
the operating system. Even if PPTP is
secure in theory, a recent
ow discov-
ered in its Microsoft implementation [20]
suggests to evaluate this solution care-
fully. The SSH protocol can be used as a
generic transport layer encryption mech-
anism, providing both host authentica-
tion and user authentication, together
with privacy and integrity protection.
SSH uses a packet-based binary proto-
col that works on top of any transport
that will pass a stream of binary data,
e.g. TCP/IP. It was originally designed
to provide secure remote login but the
current version also supports secure for-
warding of arbitrary TCP/IP connec-
tions. The SSH server can listen for a
socket on the desired port, dedicated for
this purpose, automatically forwards the
request and data over the secure chan-
nel, and makes the connection to the
speci�ed target port from the other side.
If the target port is the port dedicated
to the HTTP server, SSH can be used
to secure HTTP connections. IPv6 de-
�nes two headers (Authentication and
Encapsulation Security Payload) to sup-
port authentication and encryption at
network level.

4. Architectural solutions. On the
HTTP client side, the browser is con�g-
ured to use an HTTP proxy. User re-
quests will then be forced through the
proxy, where encryption and signature
services are available. On the HTTP
server side, two solutions are possible:
(1) a proxy is installed that handles en-
cryption and signatures, and exchanges
data with the actual server, or (2) the
HTTP server is modi�ed so as to guaran-
tee secure communication with the client
side.

5. Application layer solutions. Our
proposal, uses no proxies, does not

change HTTP or socket APIs at the TCP
level. Instead, HTTP communications
are forced through a separate TCP con-
nection with the help of applets within
the normal browser environment. The
most similar approach in the existing lit-
erature is found in [19], where CGI [14]
programs are used instead of applets and
secure communication is achieved with
PGP [22].

Each approach has drawbacks and advan-
tages, that may make it appropriate for dif-
ferent applications and di�erent commercial
contexts. Approaches number 1 and 2 are
natural and technically correct. However,
they typically require the implementation of
a browser that supports the proposed tech-
niques. As a consequence, strong encryption
may be prevented due to regulatory consid-
erations by the browser vendor. Moreover,
there is no public access to most browsers'
source code. This requires the user's trust in
the cryptographic functions implemented in
the browser. If, and when, the source code is
delivered, the situation will obviously be im-
proved. However, compatibility and exten-
sion software regulation will need to be ad-
dressed with care.

Solutions cited at number 3, a part for the
problems of the speci�c solution, all present
the limit to address the problem of end-to-end
authentication at the transport level. In an
environment where the same workstation can
be shared among di�erent users the same au-
thenticated connection can be easily shared
by a malicious user. A solution capable to
provide end-to-end authentication at the ap-
plication level guarantees better security.

Our approach (number 5) and approach
number 4 may use commercial browsers and
HTTP servers as they are available now.
Therefore, they do not su�er from the above
problems. However, they introduce more
overhead in the communication structure.
Our approach, though, is only active when
needed, i.e. web pages that do not require pri-
vacy or authentication are retrieved normally.
Proxies, on the other hand, seem to be hard
to enable on a case by case basis. Moreover, if
proxies are implemented on a separate com-

puter, the WWW transaction's security may
be at risk on the path from the browser to
the proxy.

3 Our Proposal

WWW transactions are usually performed
by two parties: WWW browsers (clients) and
httpd processes (servers). Information
ows
initially from a client to a server. Users click
on a URL, or they �ll a form and submit the
data, and a request is sent to the correspon-
dent server. Then the server processes the
request and sends back to the client the infor-
mation requested, usually as an HTML page,
which can embed several di�erent document
formats (e.g. postscript, jpeg, mpeg, text,
etc).

Our solution splits these two communica-
tions in several steps, in such a way that addi-
tional security services can be implemented.
The user interface is unchanged, any Java-
enabled browser will be acceptable. It is also
worth to remark the di�erences between ap-
plets and applications in our solution. While
applets have to be implemented using Java,
the applications could be coded using any
programming language. We have chosen to
use Java also for the applications only to have
an homogeneous developing environment.

In the paper we assume that we can rely
upon an already existing authentication
infrastructure. Thus we will not describe
details related to public key distribution and
management. We suppose as well that users
can easily and securely get the server's public
keys. We also assume that users can perform
encryption/decryption operations as well as
signing/veri�cation of data.

Each step in the secure communication
procedure is explained below.

� User request (Figure 1). Access to the
remote information will be obtained by
the user with the browser in the usual
way: by clicking on the relevant hyper-

Regular
 page

Server Host

"g
et
 S
pe
ci
al
 U
RL
"

Special

 URL

Intercept client’s IP number
 and requested URL

Remote Application

HTTP

Server

Browser

Client Host

Figure 1:

link or by opening the URL directly1.
The client's IP address, as well as the
requested URL will also be intercepted,
on the server side, by a running process
that will later perform the actual com-
munication, and which we shall call the
remote application.

� Retrieving a remote applet (Figure 2).

The selected URL will not correspond to
the actual information on the server. In-
stead, it will reference a simple applet
that the browser will run to initialise the
subsequent communication environment.
This will be called the remote applet.

Such applets are programmed in Java
and are run by the browser on the client
side. In general, there has been concern
regarding the security of local execution
of mobile code, such as the applets. Most
browsers have very strong restrictions on
the execution of applets. In particular,
remote applets cannot read or write local
�les, they cannot execute other programs
in the local environment and they can
only communicate with the computer
they originate from. In our proposed ar-

1At that point, the user will expect some kind of

response from the server, e.g. some HTML page, and

we shall call this the base information. At the level of

the browser's interface, the user will obtain the base

information in a transparent way, as if the informa-

tion was actually stored under the selected URL. The

base information will be displayed normally in the

browser window when the whole procedure is com-

pleted.

chitecture, the remote applet could be
screened for security problems with even
more care. The remote applet, in fact,
is an extremely simple and short piece of
software (see the Appendix). Moreover,
the applet's code is known and is always
the same, for our proposed architecture.
The browser could then check whether
the remote applet corresponds to a pre-
de�ned pattern, and proceed to execu-
tion only if that is the case. In other
words, even with very strict security poli-
cies, and in environments where running
general remote applets is disallowed, the
browser could agree to receive and run a
prede�ned and limited set of speci�c ap-
plets. Our remote applet (received as de-
scribed in Fig. 2) would be among those.
At the implementation level, the browser
needs to store a hash value for the al-
lowed applets. When a remote applet is
retrieved, it is run locally only if its hash
value is among those previously autho-
rised.

This whole procedure, and also the re-
trieval of the remote applet, is needed
only if privacy and/or authentication of
HTTP transactions are required. Oth-
erwise, the base information can be im-
mediately transmitted to the browser on
the client side, and displayed to the user.
The WWW server administrators will
then decide whether security services are
required for each of the available pages.

 page

HTTP

Server Host

Server

Browser

 Empty

Remote

 applet

Empty page with
remote applet

Client Host

Figure 2:

If not, a page is stored under its address
as advertised on the Web. Otherwise,
the standard remote applet is stored in
a page under that address, and the ac-
tual information is obtained by the user
through the procedure explained below.

� Opening a local applet. The remote ap-
plet basically only does one thing: it
forces the browser to open a �xed-name
local URL. For instance, this URL could
be
\�le:/security/applets/local.html". The
remote applet can do this through a stan-
dard Java method called Showdocument.
After this, it terminates. The remote ap-
plet is then only needed to open a local
page. However, it cannot be eliminated
from the architecture. First, the user will
reference the base information by click-
ing on a remote URL, as found in hyper-
links and search index results. There-
fore, the local URL, that is needed later,
cannot be opened by the user in a natural
way, and this must be done by the remote
applet. Second, by requesting the remote
URL, the browser will allow the server to
record on its �les the client's IP address
and the URL that was referenced. This
information is needed later on the server
side. At this point, the remote applet
has completed its life cycle and control is
passed to the local URL. The local URL
will reference a more substantial applet,
that will control the following interaction
with the user. This will be called the lo-
cal applet. The local applet is considered
trusted within this study. In fact, it is

not loaded from the network at this time.
It could be obtained separately, through
a channel that allows for authentication.

� Connection establishment (Figure 3).
On the HTTP client side, a local appli-

cation will also be running and will com-
municate both with the local applet and
with a remote application, running on
the server machine. Such applications
are actually general processes that run
on the client and on the server machine.
In our prototype implementation, such
processes are being written as Java ap-
plications. For both of these communi-
cations, the local application will act as
a server (although it runs on the HTTP
client side). As a consequence, it will
not need to know the IP address of the
HTTP server machine. This is impor-
tant as, e.g. in Netscape Communica-
tor it is impossible to obtain this IP ad-
dress without direct user input, because
remote applets are very limited in their
interaction with the computer they run
on. In particular, current con�gurations
would not allow the remote and local ap-
plet to communicate. This is a correct
design choice in general, but we need
a way around the problem of passing
the HTTP server's IP address to the lo-
cal application. This is accomplished by
making the remote application start the
TCP connection to the local application.

On the HTTP server side, the remote ap-
plication will be running and it will have
obtained the IP address of the HTTP
client machine as it was saved on the

Server HostClient Host

Browser

Local
 page

Wait for

Local

 applet

Local

Application

application

the remote
local applet and

from both the

connections Upon interception of

the client’s request,
connect to the local

application

Application
Remote

Figure 3:

server �les as indicated in Fig. 1. Then,
this application can behave as a client,
and open a socket to the local appli-
cation. This socket will be used for
the most important part of the over-
all communication, including transmis-
sion of encrypted and authenticated user
input and base information. As a �rst
operation, the local and remote applica-
tions will handshake and exchange public
key certi�cates. Protocols such as X.509
[16] or its variations [6, 8, 18, 2, 4] may
be used for this purpose.

� Secure server-to-client communication

(Figure 4). The remote application,
then, will have available the URL ini-
tially referenced by the user on the client
side browser, because it was stored on
the server �les (Fig. 1). This URL is
used by the remote application to �nd
the desired base information on the �les
of the HTTP server computer. Access
control is performed based on user name,
public key, and possibly other informa-
tion obtained from the local application.
In fact, the local application had pre-
viously obtained user information from
the local environment, where user data
and keys can be stored. At the operat-
ing system level, the user who is interact-
ing with the browser could also undergo
more sophisticated authentication pro-
cedures, that may be performed by the
local applet based on passwords and/or
biometric identi�cation techniques. The
local applet would then inform the lo-

cal application of the veri�ed user iden-
tity, and user data are communicated to
the remote application. If the user has
appropriate access rights, the base infor-
mation is then encrypted and signed on
the HTTP server side, and is sent to the
local application.

� Displaying the base information to the

user (Figure 4). On the HTTP client
side, the local application will decrypt
and authenticate the base information,
and pass it to the local applet for dis-
playing in the browser's window. The
user will now see the base information,
as if it were retrieved directly after click-
ing on the relevant link. The only di�er-
ence is that the user will see a local URL
with a �xed name in the browser's URL
box, instead of the selected remote URL.
This is against a desideratum of perfect
transparency, but is actually a major ad-
vantage from a security point of view. In
fact, the user can tell whether the infor-
mation is local, and hence processed and
received in a secure way.

� Obtaining user input (Figure 5). Af-
ter displaying the base information, if
the case requires it, the local applet will
ask for user input, e.g., the user's name,
credit card number and the amount to be
payed. This input should then passed by
the applet to the local application. How-
ever, this is not trivial. If the base in-
formation is a form, the user input will
be collected by the browser, and then it
will be sent to the HTTP server that is

Server HostClient Host

Browser

Local

 applet

Local

establish a secure channel

Application Application
Remote

Data

Local Application,
Handshake with the

corresponding to the

and send the data

requested URL

Data

Pass the data
to the local

applet so that
they may be

displayed

Data

Figure 4:

Server HostClient Host

Browser
Local

Application Application

(interpret/store the user data)

Remote

applet")

"form-like

containing a

Data

(a page
application, after

Pass the user

data to the remote

encryption and

signature

User Data

User Data

Decrypt and authenticate data

then pass it to the program

that can process this

(a kind of CGI)

Gateway program

Figure 5:

indicated in the form, in an insecure way.
The local application will be cut out from
this communication. We have considered
two solutions to this problem: (1) in-
stalling a local HTTP server where user
input could be redirected, and a general
purpose CGI that transfers all data to
the local application for further process-
ing and transmission, and (2) requiring
the HTTP server not to use forms, but
a special parameterised Java applet that
we provide and behaves like forms - when
running in the browser, this applet will
collect user data and immediately trans-
fer it to the local application. Solution
(2) was chosen in the implementation,
because requiring an HTTP server on the
original client host may be in many cases
an excessive overhead. Solution (2) is
cleaner and easier to install on general
platforms, but requires Web sites to use
our special syntax for forms.

� Secure client to server communication

(Figure 5). The local application will
now have received (1) user input ob-
tained from our \form-like" applet and
(2) the server's certi�ed public key sent
during connection establishment. The
user input is then encrypted, signed, and
sent to the remote application. There
the plaintext information is saved in the
appropriate �les or passed to the needed
end application, i.e. to something like a
CGI script. We assume the end applica-
tion does not need to send back results
to the browser immediately - this can be
done, but it makes the overall picture
more complicated, and has not been in-
cluded in the implementation. The user
will then continue interacting with the
browser normally, e.g. by going back
to previous pages, or by clicking on new
links that were displayed by means of the
local applet.

One should observe that there are two dis-
tinct phases in the proposed protocol: �rst,
an HTTP request is sent by the client and
a corresponding small remote applet is re-
ceived and executed, second, a local appli-
cation and a remote application exchange
the actual data, that may be transmitted in
an authenticated and private way. The two
phases are not bound in a single session, and
therefore there is a spoo�ng opportunity here.
The client may connect to one server for the
�rst phase (no cryptography here), and the
attacker could plug in her remote application
for the second phase. Although this is cer-
tainly possible, we assume the client's local
application will have authentication mecha-
nisms (e.g. based on public keys and certi�-
cates) that will allow it to verify the actual
identity of the remote application's owner. If
the bogus application does not have the pri-
vate key associated to the Web server of the
�rst phase, as listed in the initial HTTP re-
quest, the data transfer fails. In summary,
the �rst phase is only a trigger for the second
phase, where the whole authentication proce-
dure is performed.

4 Conclusion

One of the main problems that needs to
be solved, before electronic commerce can be-
come widespread and an every day habit, is
to build trust among users in the safety of us-
ing the Internet. One little step in this direc-
tion is represented by securing WWW trans-
actions. The World Wide Web is one of the
most used network applications. Browsers
represent user interfaces that can be used for
a great variety of services.

In this paper we have presented an alterna-
tive approach to secure HTTP transactions.
We believe that solutions that claim to solve
security weaknesses through the use of un-
scrutinable and proprietary software are un-
satisfactory. Many times they simply shift
the line where the weaknesses can be found,
from the Internet to those speci�c solutions
[5, 1]; they often add security holes to com-
patibility problems. On the other hand solu-
tions that aim to change widely used stan-

dards such as the HTTP protocol are, we
think, too optimistic.

The system we have described, and that
is now under testing and freely avail-
able, provides a solution without these
shortcomings. The software is available
at http://maga.di.unito.it/fb/SWWWT. A
prerequisite to use our solution is for users to
have a Java virtual machine running in their
environment. The drawbacks of our infras-
tructure are: - a little degradation in perfor-
mance (only when a secure channel is neces-
sary), and - with the current version of the
software, users have to agree to use a form-
like applet, instead of a normal HTML form,
to submit their data to the server. Servers
must also adapt to this special kind of forms.

We are working to implement an alterna-
tive to this solution, using an additional, lo-
cal HTTP server as mentioned in Section 3, in
such a way that users can choose the solution
they wish.

5 Acknowledgement

The authors would like to thank Ross An-
derson for providing helpful comments on a
draft version of this paper. The authors also
thank CosimoAnglano for helpful discussions
on the implementation.

References

[1] Bugs in Microsoft Internet Information

Server v 1.0 . http://www.ntsecurity.com/

News/bugs/iis-bug1.html.

[2] IETF - PKIX Working Group - Internet

Public Key Infrastructure. http://www.

ietf.org/html.charters/pkix-charter.html.

[3] Java Documentation and Distribution.
http://www.javasoft.com/.

[4] NIST - Public Key Infrastructure Pro-

gram. http://csrc.nist.gov/pki/.

[5] R.J. Anderson, B. Crispo, J.H. Lee,
C. Manifavas, F.A.P. Petitcolas, and
V. Matyas Jr. Global Trust Register

1998. Nortghate Consulting Ltd., 10
Water End, Wrestlingworth, Bedford-
shire SG19 2HA, England., 1998.

[6] F. Bergadano, B. Crispo, and M.T. Lo-
mas. Strong Authentication and Pri-

vacy with Standard Browsers. Journal

of Computer Security, 1997. Special is-
sue on World Wide Web security - vol. 5
n. 3 pp. 191-212.

[7] T. Berners-Lee, R. Fielding, and
H. Frystyk. Hypertext Transfer Protocol
{ HTTP/1.0, May 1996. RFC 1945.

[8] B. Crispo and M. Lomas. A Certi�cation

Scheme for Electronic Commerce. In Se-

curity Protocol Workshop, volume LNCS
series vol. 1189. Springer-Verlag, 1997.

[9] S. Deering and R. Hinden. Internet

Protocol, Version 6 (IPv6) Speci�cation.
Technical report, December 1995. RFC
1883.

[10] T. Dierks and C. Allen. The TLS Pro-

tocol, version 1.0, November 1997. In-
ternet Engineering Task Force Internet
Draft.

[11] A. Schi�man E. Rescorla. The Secure

HyperText Transfer Protocol, May 1996.
Internet-Draft.

[12] R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, and T. Berners-Lee. Hyper-

text Transfer Protocol { HTTP/1.1, Jan-
uary 1997. RFC 2068.

[13] A. Freier, P. Karlton, and P. Kocher.
The SSL Protocol Version 3, December
1995.

[14] S. Gundavaram. CGI Programming on
the World Wide Web (Nutshell Hand-
book). O'Really & Associates, 1996.

[15] K. Hamzeh, G.S. Pall, W. Ver-
thein, J. Taarud, and W.A.
Little. Point-to-Point Tunnel-

ing Protocol. Technical report,
http://www.ietf.org/internet-drafts/

draft-ietf-pppext-pptp-02.txt, July 1997.
Internet Draft.

[16] Information Technology - Open Systems
Interconnection, Geneva. Recommenda-

tion X.509 , June 1995. The Directory:
Authentication Framework.

[17] M. Kaiserswerth, A. Hutchison, and
P. Trommler. Secure World Wide Web

Access to Server Groups. In Proceedings

of the IFIP TC6/TC11 International

Conference on Communication and Mul-

timedia Security. Chapman and Hall,
September 1996.

[18] R.L. Rivest and B. Lampson. SDSI - A
Simple Distributed Security Infrastruc-

ture. http://theory.lcs.mit.edu/~cis/sdsi.
html, April 1996.

[19] B. Sanderson, J.D. Weeks, and A. Cain.
CCI-based Web Security: A Design Us-

ing PGP. In Proceedings of the 4th Inter-
national World Wide Web Conference,
December 1995.

[20] B. Schneier and P. Mudge. Cryptanalysis
of Microsoft's Point-to-Point Tunnelling

Protocol (PPTP). In Proceedings of the

5th ACM Conference on Computer and

Communication Security, 1998.

[21] T. Ylonen, T. Kivinen, and M. Saari-
nen. SSH Connection Protocol, Novem-
ber 1997. Internet Draft.

[22] P.R. Zimmermann. The O�cial PGP
User's Guide. Boston: MIT Press, 1995.

6 Appendix

Here is the source code of the remote ap-
plet that is downloaded by the client. This
version is for Unix, but our implementation
also supports Windows 95. The comments
present in the actual code are omitted here.
The complete code distribution, also includ-
ing a demo, is available from
http://maga.di.unito.it/fb/SWWWT

RemoteApplet.java

package SecureWWW.Server;

import java.applet.Applet;

import java.applet.AppletContext;

import java.io.File;

import java.io.FileInputStream;

import java.io.IOException;

import java.net.MalformedURLException;

import java.net.URL;

/** This applet is downloaded when the

* user clicks on a reserved URL. It begins

* the whole transaction, forcing the browser

* to show the document containing the local

* applet. */

public final class RemoteApplet

extends Applet implements SecureInterface {

private final static String

defUNIXlocalloaderURLname =

"file:/usr/local/Localloader.html";

private static URL localloaderURL = null;

private static boolean debug = false;

public void init() {

debug = getParameter("debug") != null ?

getParameter("debug").equals("true") :

false;

boolean noDefault =

getParameter

("Localloader.NoDefault") != null ?

getParameter

("Localloader.NoDefault").equals("true")

: false;

if ((localloaderURLName =

getParameter

("Localloader.UNIX")) != null)

try {

localloaderURL =

new URL(localloaderURLName);

}

catch (MalformedURLException except) {

if (debug) {

System.err.println

("[RemoteApplet <" + this + ">]"

+ warnSpace + "Incorrect "

+ "URL name <"

+ localloaderURLName + ">"

+ warnSpace + "for "

+ "Localloader in parameter"

+ (noDefault ? "." :": trying "

+ "default."));

showStatus

("[RemoteApplet] Incorrect parameter.");

}

}

if (localloaderURL == null && !noDefault)

localloaderURLName =

defUNIXlocalloaderURLname;

}

if (localloaderURL == null)

if (!noDefault)

try {

localloaderURL =

new URL(localloaderURLName);

}

catch (MalformedURLException except) {

}

else {

System.err.println

("[RemoteApplet <" + this + ">]"

+ "Incorrect "

+ "parameter or no parameter,

and no default allowed"

+ errSpace

+ "for Localloader: halting.");

showStatus("[RemoteApplet] No valid

URL name for Localloader.");

}

if (localloaderURL != null)

if (debug) {

System.out.println

("[RemoteApplet <"

+ this + ">]"

+ okSpace + "Local file URL <"

+ localloaderURL + "> created.");

showStatus("[RemoteApplet]

Localloader URL created.");

}

}

public void start() {

if (localloaderURL != null) {

getAppletContext().showDocument

(localloaderURL);

if (debug) {

System.out.println

("[RemoteApplet <" + this + ">]"

+ okSpace + "Local file URL <"

+ localTloaderURL + "> shown.");

showStatus

("[RemoteApplet]

Localloader URL shown.");

}

}

}

public String[][]

getParameterInfo() {

String[][] info = {

{"debug", "boolean",

"Controls debugging

informations generation."},

{"Localloader.NoDefault", "boolean",

"To impose an exclusive value."},

{"Localloader.UNIX","local (file) URL",

"For Solaris, Linux..."},

return info;

}

}

