
100	 ; LO G I N : VO L . 3 4, N O. 5

into his title theme, but quickly took off in several intrigu-
ing directions.

Brin explained that the horns depicted on Moses’ head in
Renaissance paintings weren’t really horns but “lamps on
his brow.” These lamps are, in turn, a metaphor for the
frontal lobes of the human brain that allow us to plan for
the future and “discover the troubles in front of you before
you stumble into the pit.” As a futurist, I have no doubt that
Brin uses his horns a lot.

Brin, like other futurists, is very interested in the singu-
larity, the point when humans have computer-enhanced
intelligence, or strong AI exists. Brin believes that the singu-
larity is approaching within the current generation, due to
the acceleration in technological and social advances that
started in the 15th century with the development of print-
ing presses and glass lenses. Printing presses democratized
knowledge, while glass lenses made it possible to study the
solar system—incidentally uncovering the fact that Earth is
not the center of the universe.

The 18th century brought with it mass literacy, printed
illustrations, and science, or Brin’s memory, vision, and
attention. The 19th-century version of these three themes
were mass education and public libraries, photography and
cinema, and global communication. In the 20th century, we
got computers and databases, television and mass media,
and abstraction and immersion. By sometime in the 21st, we
will have a knowledge mesh, omniveillance (stick-on cam-
eras with IPv6 and one-year batteries) and super immersion.
The acceleration of technology, including Moore’s Law, will
bring about the merger and/or replacement of humans with
post-humans and/or AI.

Brin told us that Internet millionaires, like his distant
cousin Sergey Brin (Google), believe in positive sum games.
The world of the future should not rely on scarcity for worth
but be a world where everyone gains.

Brin spoke on many other topics, one of the strongest being
a plea for CERTs: Community Emergency Response Teams.
Brin pointed out that the many of the most effective re-
sponders during 911 were members of the local community,
and that we need to support training for CERT members as
well as develop P2P communication that will stand up dur-
ing emergencies such as Katrina.

Eventually, Brin slowed down and opened the floor to ques-
tions. Matt Blaze strode to the mike and picked out just one
of the many controversial points Brin had made, that no
online argument has ever been settled. Matt said that he can
count “zillions of times I’ve been personally informed by an
online discussion that I never participated in that prevented
me from spreading wrong information.” Hey, me too, Matt.
Brin feinted by suggesting that we should turn portions of
the Internet into arenas for ideas with rankings by reputa-
tion for the posters. Blaze countered by suggesting that the
Internet may have evolved a generation with better bullshit

detectors. Brin agreed, saying that he still wanted better
tools for discourse.

Stephan Neuhaus disagreed with Brin’s point that gradu-
ate school has forced many people into very narrow and
focused interests and that this was actually harmful. Neu-
haus contended that poor countries really needed to build a
professional class. Brin said that he thinks the Third World
will quickly pass through their own over-professionalization
curve.

You can learn more about David Brin and his thoughts on
his Web site: http://davidbrin.com/.

Workshop on Hot Topics in Cloud Computing
(HotCloud ’09)

San Diego, CA
June 15, 2009

Summarized by Alva Couch (couch@eecs.tufts.edu) and Kiran-
Kumar Muniswamy-Reddy (kiran@eecs.harvard.edu)

Cloud computing remains a “cloudy concept” for many
people. The first USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’09) brought together academic and
industry researchers to discuss late-breaking results and
current trends in cloud computing. As in other “hot topics”
conferences, HotCloud papers defined a problem and dis-
cussed a possible solution and preliminary results. Results
ranged from performance of specific management strategies
to designs for new components of cloud infrastructures. Full
papers discussed upcoming research plans in detail, while
short papers described an interesting idea worthy of further
study. HotCloud ’09 included 13 full papers and eight short
papers, resulting in a day packed with new ideas and future
challenges.

The workshop discussed several distinct kinds of clouds
that are distinguished by the kinds of services that they
provide to clients:

Software as a Service (SaaS): clients gain access to specific ■■

software functions (e.g., gmail, Google Maps).
Platform as a Service (PaaS): clients gain access to indi-■■

vidual virtual machines: (e.g., Amazon Web Services,
Eucalyptus).
Infrastructure as a Service (IaaS): clients gain access to ■■

networks of (perhaps physical) machines (e.g., virtual data
centers).

The kind of cloud determines the boundaries between a cli-
ent’s responsibility and the cloud provider’s responsibility.
In SaaS the client uses the application as an exterior entity.
In PaaS the client must load an operating system instance
into a virtual machine, while in IaaS the client might have
to choose, deploy, and manage provisioning software that in
PaaS is part of the service.

Clouds and cloud applications can exhibit (or lack) elasticity,
the ability to dynamically adapt to changing use patterns
by provisioning and decommissioning resources and virtual

; LO G I N : O c to b e r 20 0 9	 con fe re n ce re p o rt s	 101

instances of servers. In SaaS elasticity is completely invis-
ible to the client; in PaaS the client must enable elasticity by
providing images of virtual instances suitable for replica-
tion; in IaaS the client may be responsible for ensuring
elasticity by choosing, deploying, and managing an elastic-
ity application.

One motivation for “pushing an application into a cloud”
is to reallocate responsibilities and risks from client to pro-
vider. Clouds can be characterized by the kinds of risks the
provider assumes:

Compute clouds■■ provide computational power on de-
mand. The provider assumes responsibility for availability
and reliability of compute servers.
Data clouds■■ provide data persistence and preservation,
where data can include file systems or databases. The pro-
vider assumes responsibility for data availability, integrity,
and persistence.
Service clouds ■■ provide and ensure function of a specific
service. The provider assumes all responsibility for provid-
ing the service.

Of course, many cloud infrastructures provide all of the
above.

Ensuring security and privacy for cloud data is more dif-
ficult than ensuring security and privacy in non-cloud in-
frastructure. Several security and privacy threats repeatedly
arose at HotCloud, including:

Malicious use of privilege: ■■ The maintainers of the cloud
have administrative privilege and thus clandestine access
to client data that they do not own.
Exploitation of co-location:■■ Malicious client applications
can discover confidential information about other clients
whose cloud functions happen to be co-located on the
same physical devices, by employing back-channels, in-
cluding shared use of memory, I/O, cache, or even address
translation buffer behavior.
Limits of legal protection:■■ The Stored Communications
Act (SCA) provides less legal protection against subpoena
for cloud data than for data stored on self-owned hard-
ware.

Thus, cloud clients may assume implicitly that providers are
mitigating risks that may be beyond the providers’ capa-
bilities to mitigate. Many presenters assumed that all data
in a cloud is public, sidestepping these difficulties, while
others specifically considered the difficulties of keeping data
private.

Finally, there was much discussion and controversy over
eventual versus strong consistency in data clouds. In
distributed database theory, a database exhibits strong
consistency if changes to the data store are reflected immedi-
ately in subsequent queries, and eventual consistency if it is
possible that changes will not be reflected in queries until
a later time. Data clouds can likewise exhibit either strong
or eventual consistency. While financial transactions such
as purchases usually require strong consistency (so that

the customer sees a purchase record immediately after a
purchase), eventual consistency is usually acceptable for the
results of a crawler or Web search. But this is a controversial
issue: eventual consistency is “fun for computer scientists,”
but difficult to handle in practice, and leads to bugs in ap-
plications.

cloud pl atforms and architectures

Full Papers
Open Cirrus™ Cloud Computing Testbed: Federated Data ■■

Centers for Open Source Systems and Services Research
Roy Campbell, Indranil Gupta, Michael Heath, and Steven Y. Ko,
University of Illinois at Urbana-Champaign; Michael Kozuch,
Intel Research; Marcel Kunze, KIT, Germany; Thomas Kwan,
Yahoo!; Kevin Lai, HP Labs; Hing Yan Lee, IDA, Singapore;
Martha Lyons and Dejan Milojicic, HP Labs; David O’Hallaron,
Intel Research; Yeng Chai Soh, IDA, Singapore

Open Cirrus is a cloud computing testbed with 11,000
cores, global services, and an open source stack, with nine
sites and a planned size of 20 sites. Objectives of Open
Cirrus include providing a vendor-neutral testbed for cloud
technologies, collecting realistic traces of workload, and
exposing the research community to realistic enterprise
requirements. Infrastructure for Open Cirrus includes
Tashi-provisioning software from Intel, as well as Hadoop
for programming. Open Cirrus is intended to serve as a tes-
tbed for metrics of success for cloud computing and thus to
inform the decision of whether to lease or own cloud infra-
structure. As Open Cirrus is an international infrastructure,
challenges include issues of privacy and legality. Users of
Open Cirrus must develop separate service agreements with
each of the nine international sites. Data privacy is difficult
to guarantee when private data is hosted at foreign sites.

Nebulas: Using Distributed Voluntary Resources to Build ■■

Clouds
Abhishek Chandra and Jon Weissman, University of Minnesota

Nebulas are a form of cloud computing based on volun-
tary cooperation and inspired by the success of edge-node
computing infrastructures such as SETI@home. Voluntary,
loosely coupled clouds based on an edge-node comput-
ing model seem to have several advantages, including an
estimated two orders of magnitude cost difference between
SETI@home and Amazon Elastic Compute Cloud (EC2).
Nebulas, unlike clouds, implement elasticity through use
of excess resources on volunteered distributed hosts. This
leads to low cost, at the price of lower potential perfor-
mance and higher volatility due to dynamic variation in
resource availability. Challenges include coping with het-
erogeneity during deployment, fragility and churn, and data
privacy. Threats to privacy arise both from privileged users
on the volunteered hosts and from back-channels through
co-location of Nebula services.

102	 ; LO G I N : VO L . 3 4, N O. 5

Towards Trusted Cloud Computing■■

Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues,
MPI-SWS

Trusted cloud computing refers to a situation in which
data in the cloud—both computed and stored—remains
private and protected from data leaks. One threat to data
privacy is that cloud administrators have privileged access
to virtual machine instances but do not own data contained
in the instances. The cloud provider must be trusted to
provide physical security and to limit physical access to
cloud infrastructure. Software support for trust—which is
effective only in the presence of physical security for cloud
hardware—includes secure booting and remote attestation
of state (i.e., some proof that privacy is being maintained).
Challenges for trusted cloud computing include building
trusted virtual machine monitors (VMMs) based on key
infrastructure provided by trusted platform modules (“TPM
chips”), and providing facilities for secure service migration
without potential exposure of private data.

The Case for Enterprise-Ready Virtual Private Clouds■■

Timothy Wood and Prashant Shenoy, University of Massachu-
setts Amherst; Alexandre Gerber, K.K. Ramakrishnan, and
Jacobus Van der Merwe, AT&T Labs—Research

A virtual private cloud is an “Infrastructure as a Service”
(IaaS) cloud mechanism whereby enterprises can augment
in-house computing resources by renting remote computa-
tion and storage infrastructure transparently, securely, and
flexibly. For IaaS to be practical, legacy applications have to
be able to execute in the cloud without being specifically
aware of where they are executing. Current cloud mecha-
nisms for IaaS are difficult to secure if applications are not
aware that they are running in a cloud, including firewall
configuration. A virtual private cloud (VPC) establishes
secure connections between owned and cloud infrastructure
using dynamically configured layer-2 or layer-3 multi-proto-
col label-switching (MPLS) virtual private networks (VPNs).
Advantages of VPCs include no requirement for end-node
configuration and ability to transparently migrate existing
applications to the cloud. Challenges for VPCs include the
need for virtualized routing infrastructure and for a mecha-
nism to make traditionally static VPN allocation dynamic,
perhaps through Border Gateway Protocol (BGP) signal-
ing. The audience expressed concern that the enterprise is
giving the cloud provider’s administrators privileged access
to their owned infrastructure via VPC connections, thus
increasing the risk of data leaks.

Short Papers
Private Virtual Infrastructure for Cloud Computing■■

F. John Krautheim, University of Maryland, Baltimore County

One way to improve data privacy in a cloud is to utilize
public-key cryptography to secure private information
within virtual machine instances. A locator bot (lobot) is
a virtual cloud appliance that stores an instance’s private
keys and manages the instance that utilizes those keys,

thus allowing applications inside the instance to access
encrypted resources. Lobots are created by a Private Virtual
Infrastructure Factory (PVI factory). Challenges of creating
lobots include how to measure and validate the security of
the fabric in which the lobots execute, as well as protect-
ing against object reuse during object shutdown. Private
data leakage due to co-location of malicious clients might
remain a problem due to persistence of in-memory copies of
decrypted data.

Refactoring Human Roles Solves Systems Problems■■

Jeremy Elson and Jon Howell, Microsoft Research

The success of cloud computing depends on decompos-
ing the task of cloud deployment into human roles with
clearly defined and minimal interfaces. In the same way
that the software industry decoupled the user from the
software developer, new roles in cloud implementation have
the potential to decouple parts of the cloud implementa-
tion process with positive results. The “hardware wrangler”
builds the hardware infrastructure for a cloud, while the
“software integrator” chooses the software and versions
to execute on that hardware. Inappropriate (or perhaps a
better term is “over-specified”) interaction between cloud
client and integrator leads to “DLL hell” in which desired
configurations are impossible to deploy, while inappropriate
interaction between application developer and integrator can
lead to vertical “stovepipe” architecture with minimal reuse.
Challenges include limiting interactions between roles so
that system administration of the result remains practical.

el astic clouds and resource m anagement

Invited Short Presentation
GENI and Cloud Computing■■

Harry Mussman, BBN Technologies

The Global Environment for Network Innovation (GENI) is
an NSF project in support of experiments in network de-
sign. While GENI is not itself a cloud infrastructure, GENI
encourages cloud researchers to build clouds on top of the
GENI infrastructure, which is deeply programmable at a
network level to support networking protocols other than
the Internet. GENI is being developed by 29 teams, both
academic and industrial, and an initial version will be avail-
able for initial experiments in 2009 and fully operational by
2010. GENI asks the cloud community to become involved
by communicating specific needs for cloud research to the
GENI developers.

Full Papers
ElasTraS: An Elastic Transactional Data Store in the Cloud■■

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi, University
of California, Santa Barbara

The Elastic Transactional Data Store (ElasTraS) is a data
storage mechanism that adds distributed transaction pro-
cessing capability to a key/value data storage mechanism.
Distributed transactional storage is implemented via a hier-

; LO G I N : O c to b e r 20 0 9	 con fe re n ce re p o rt s	 103

archy of transaction managers. “Owning transaction manag-
ers” own key/value mappings, while “high-level transaction
managers” communicate with the “owning managers,” serve
as points of contact, and enhance performance through
caching. Challenges include optimal (geographical) distri-
bution of “owning” and “high-level” transaction managers.

Reflective Control for an Elastic Cloud Application: An ■■

Automated Experiment Workbench
Azbayar Demberel, Jeff Chase, and Shivnath Babu, Duke
University

A reflective elastic application is a cloud program that can
manipulate its own resource requirements based on detailed
knowledge of resource availability. Reflective applications
can adapt to resource availability, e.g., by deferring com-
putation until resources are more available, and oppor-
tunistically exploit excess resources, e.g., by completing
deferred computations when resources are more available or
cheaper. To understand the needs of reflective applications,
the authors created an experimental workbench that can
measure effects of various resource allocations on behavior
and performance. The output of the workbench is a visual-
ization of the “response surface” that depicts the relation-
ship between input resources and resulting performance.
Response surfaces can be efficiently calculated via sampling
methods that interpolate response in areas where behavior
seems to vary predictably. The audience questioned whether
this approach is cost-effective, because of the relatively high
cost of experimentation in a production environment.

Toward Cloud-based Collaboration Services■■

David Banks, John S. Erickson, and Michael Rhodes, Hewlett-
Packard Labs

Fractal is an open source cloud-based collaboration platform
for public information. In Fractal, multiple “tenants” share
a common cloud and contribute information that Fractal
can coordinate. Fractal streamlines interaction between
cloud information spaces through “extensions” that execute
whenever data is modified and automatically relate data
from different sources. Extensions can create cross-referenc-
es between spaces, including citation, author, and location
lookup, as well as automatic metadata extraction from docu-
ments. Extensions are customized for each tenant. While
“privacy” is not considered, “content pollution” is a problem;
tenants should not be able to alter the behavior of other ten-
ants’ content. Challenges include defining the appropriate
notion of isolation for tenants, at the physical, virtual, and
data levels.

Short Papers
Colocation Games and Their Application to Distributed ■■

Resource Management
Jorge Londoño, Azer Bestavros, and Shang-Hua Teng, Boston
University

The financial feasibility of renting cloud infrastructures can
be improved if cloud clients collaborate (or perhaps collude)
to share resources. In a market where providers provide

fixed-size instances (in memory, storage, and computational
speed), co-location by collaboration between cloud clients
provides financial benefit. For example, two customers
might realize that their applications will “both fit” inside
the same virtual instance of some specific service provider.
Such co-location can be modeled as a strategic game. The
general case of this game has no guarantee of stability,
but considering processes (applications) alone leads to a
guaranteed (and stable) Nash equilibrium state in which no
player can improve personal financial benefit by relocating.
The authors propose that because this co-location game has
a stable result, this kind of co-location should be supported
by location services that help customers find partners, as
well as infrastructure to enable migration.

Virtual Putty: Reshaping the Physical Footprint of Virtual ■■

Machines
Jason Sonnek and Abhishek Chandra, University of Minnesota

Virtual putty refers to a scheme for optimizing the mapping
of virtual applications to physical resources. Each physical
machine is described in terms of resources and location.
Likewise, each virtual instance has a footprint that includes
its static resource needs, dynamic resource utilization pat-
terns, and conflicts with other instances. By matching these
footprints against one another, one can efficiently utilize
physical resources and lower the cost of operations. Chal-
lenges include determining parts of the application foot-
print that are difficult to observe, e.g., dynamic resource
utilization. Someone questioned whether the detail in the
footprint actually does better than a simple greedy mapping
algorithm and asked whether obtaining footprint data might
be too expensive to be cost-effective.

Statistical Machine Learning Makes Automatic Control ■■

Practical for Internet Datacenters
Peter Bodík, Rean Griffith, Charles Sutton, Armando Fox,
Michael Jordan, and David Patterson, University of California,
Berkeley

Current methods for resource allocation in clouds use
simple performance models trained offline, or watermark
methods such as increasing resources when a utilization
watermark has been met (e.g., “when CPU utilization is
greater than 70%, add a core”). It is possible to do better
than these methods with a statistical model of behavior,
learned dynamically via online experimentation. Based on
measurements of end-to-end latency and its variance, a con-
trol policy simulator evaluates different policies and tunes
model parameters to optimize a reward function. In the case
of tuning feedback gain, the model tuning process is shown
experimentally to closely approximate optimal behavior.

104	 ; LO G I N : VO L . 3 4 , N O. 5

panel

Future Challenges to Cloud Computing■■

Moderator: Amin Vahdat, University of California, San Diego

Panelists: Garth Gibson, Panasas/Carnegie Mellon University;
Stefan Savage, University of California, San Diego; Ben Sigelman,
Google; Rich Wolski, University of California, Santa Barbara/
Eucalyptus Systems

Garth Gibson, “RAID for Clouds”
Garth Gibson questioned whether we have “the answer”
to storage in clouds. He pointed out that common storage
methods triplicate every file block, resulting in a 200% stor-
age overhead. He suggested a strategy, called DiskReduce,
that replaces duplicates with parity blocks to implement
distributed RAID 5. Repair of defective blocks is a back-
ground task deferred to times when storage is otherwise
idle. The strategy is tuned to perform optimally for realistic
file-system contents, where he estimated that 58% of files
use eight blocks or less, and 25% of files fit into a single
block.

Gibson noted that the true necessary complexity of a storage
stack is an unsolved problem and suggested that developing
a definitive understanding of complexity in storage is a chal-
lenge problem worthy of the Turing Award.

Gibson noted that infrastructure management is now in
its third generation. The first generation involved clus-
tering with Beowulf and condor. The second generation
introduced virtualization via VMware and Xen. The third
generation introduced elasticity. In Gibson’s opinion, the
fourth generation will reintroduce time-sharing, in service
agreements for response time.

Gibson also mentioned several general cloud challenges,
including refining the business model, balancing eventual
consistency of data against buggy code that needs strong
consistency, and a need for testing at scale. We need expen-
sive resources that we can safely “crash and trash.”

Stefan Savage, “Are Cloud Privacy and Security Pos-
sible?”

Stefan Savage concentrated on security and availability
issues in third-party computing. While Infrastructure as
a Service (IaaS) clouds leave primary responsibility in the
hands of clients, other models of cloud computing assign re-
sponsibility for computing and storage to some third party.
Implicitly, a cloud client trusts a cloud provider to provide
privacy, as well as storage availability, integrity, durability,
and retention limits. The cloud provider trusts cloud clients
to act in compliance with “acceptable use” policies and to
pay promptly and without contest. There is an implicit (and
perhaps unfounded) expectation that the cloud provider
will monitor clients for appropriate behavior.

Data privacy is a severe problem. A partial solution is
“opaque” storage that is encrypted on disk, but key dis-
tribution and management remains an unsolved problem.
Aside from technical issues, the Stored Communications

Act (SCA) grants third-party data less protection than data
stored at a first-party site, and it is unclear whether the pri-
vacy mechanisms available in clouds are sufficiently strong
to satisfy regulations (e.g., HIPAA and PCI). Much less is
known when cloud and customer are in different countries.

In a technical sense, Savage noted that data privacy is
threatened not only by privileged access, but also by the
existence of side-channels through which one customer
can determine the transient state of another, e.g., determin-
ing transaction volume by observing the timing of cache or
memory flushes, or even via the observed behavior of block
translation buffers. This gives one customer real-time infor-
mation on the state of another that can lead to a competitive
advantage.

Durability of storage has both technical and legal aspects.
How does one “prove” that storage is durable? What hap-
pens in case the cloud business fails? In a recent case, a
cloud provider deleted 4% of customer information irre-
trievably, and the customer had no recourse. A year later
the company went out of business, and in transferring their
data to another company, one-half of all customer informa-
tion was irretrievably lost with no customer recourse.

Another ambiguity is what is meant by availability. How
do you know your provider is a good “steward” of your
data? Cloud providers offer “availability zones” but no one
knows what they mean. Meanwhile, lack of availability is
reimbursed as cost of the service, rather than the cost of the
business loss due to lack of availability. There may be a role
for the insurance industry in mitigating the risks that arise
from this disparity.

Another ambiguity in cloud hosting is the nature of reten-
tion. How does a customer know that deleted data is really
gone? Supposedly deleted data can be subpoenaed, and
the courts have not supported Fifth Amendment rights for
encrypted data.

Cloud computing has inherent risks for both client and
provider. Clients risk corruption/subversion of VM images,
problems of jurisdiction, and inability to verify the pri-
vacy of cloud data. For providers, cloud infrastructure is a
cyber-criminal’s dream world, with plenty of ambiguity and
anonymity behind which to hide. What could be more ideal
for the cyber-criminal than paying for a huge amount of un-
traceable computing infrastructure with a stolen credit card?

Ben Sigelman, “The ‘Elephant in the Datacenter’ and
Cloud Monitoring”

Ben Sigelman discussed the problems of monitoring clouds.
The “elephant in the data center” is that clouds are actually
quite difficult to use. Infrastructure degrades and changes
over time, developers move on, and performance of distrib-
uted applications is counterintuitive when one understands
only the serial version. The failures we observe are only the
subset that is visible, making troubleshooting very difficult.
These are all evidence that the building blocks we are using
for monitoring are wrong. Programming languages haven’t

; LO G I N : O c to b e r 20 0 9	 con fe re n ce re p o rt s	 105

adapted. The time spent on seemingly trivial tasks is alarm-
ing.

Recent work at Google on monitoring includes distributed
“always-on” event tracing, correlated with low-overhead
counters for performance monitoring and accounting.
Selected events are traced end-to-end, and request-response
times can be broken into components and analyzed in
detail. Implementing this kind of monitoring requires
standardization, including ubiquitous IPC/RPC mechanisms
and control-flow libraries. Monitoring is best considered an
independent platform in the cloud.

Challenges to cloud monitoring include needs for stan-
dardized APIs for monitoring data, as well as ex post facto
accounting. Azure/AppEngine-like systems should expose
detailed performance info for APIs. For accounting purpos-
es, we do not know the cost of a write until after the write
occurs.

Rich Wolski, “The Self-Owned Open-Source Cloud”
Rich Wolski discussed the role of open source in clouds and
the relationship between open source self-owned clouds and
the current “retail sales” model of cloud service purchase.

Current public clouds are based on a “retail sales” model
that quite literally employs the same infrastructure to rent
CPUs as to buy DVDs. Public clouds are dependent on
customer self-service and a concept of “quality-of-service”
that is misnamed a “service-level agreement.” Accountability
between customer and provider is based on e-commerce. A
customer with a problem is treated like a customer who is
dissatisfied with a material purchase.

Meanwhile, management models for clouds are just as valid
in the self-owned data center as in the cloud, and upcom-
ing challenges in data assimilation from ubiquitous sources,
multi-player gaming, and applications for mobile devices re-
quire a new level of infrastructure that is present in clouds
but not present in current self-owned data centers.

One solution to this problem is the self-owned, open source
cloud. Eucalyptus is one of the first enabling technologies
for creating one’s own clouds. Eucalyptus (an elastic utility
computing architecture) is a Linux hosting service that is
simple, extensible, commodity-based, and easy for system
administrators to install and maintain. Using Eucalyptus,
one can emulate first-generation cloud services such as
Amazon Advanced Web Services easily and quickly.

Intended uses of Eucalyptus include cloud research, as well
as homogenization of existing self-owned IT infrastructure.
It is not intended as a replacement for commercial cloud
services, but, rather, as an open prototyping environment
that enables research and open source development.

Challenges of clouds include federation, privacy, cost, and
storage. Federation is a policy mediation problem. “Private”
clouds are actually hybrid clouds with both private and
public information. Cost of cloud services is increasingly
becoming a “first-class” object, in the sense that algorithms

are measuring cost and reacting directly. We have not seen
“the” cloud storage model yet.

A short discussion followed, in which several questions
were raised. Is it even more difficult to have a testbed than
to set up a cloud? Panasas never tested hardware at any-
where near the scale that people are purchasing. Cost and
incentive models are hard to understand. If you do not
believe this, try teaching a cloud computing course to un-
dergraduates. They do not understand that they are spend-
ing money until they “see the bill” for what they did during
the course. What is the Eucalyptus business model? When
one starts a venture-backed company, one bases one’s model
on serving the enterprise. Eucalyptus will develop and sell
customizations that enable enterprise needs.

stor age cloud and appliances

Full Papers
In Search of an API for Scalable File Systems: Under the ■■

Table or Above It?
Swapnil Patil, Garth A. Gibson, Gregory R. Ganger, Julio Lopez,
Milo Polte, Wittawat Tantisiroj, and Lin Xiao, Carnegie Mellon
University

Data-intensive scalable computing (DISC) systems, intended
to process and store massive data sets, have built their own
distributed file systems (e.g., Google File System, Hadoop
Distributed File System [HDFS]). By contrast, cluster file
systems such as the Parallel Virtual File System (PVFS)
have been used to run larger-scale workloads by the High
Performance Community (HPC) community for about a
decade. The authors explore how to evolve the file system
API used by the HPC community so that they can be used
for DISC workloads. The authors propose extending tradi-
tional cluster file systems to expose block layout to applica-
tions, thus allowing applications to co-locate computation
with data. The authors built a lightweight shim layer that
connects Hadoop and PVFS. Through this shim, they added
three functions: read-ahead, co-location of compute with
data, and exposing file block layout to applications. Their
experiments show that PVFS with the shim layer performs
comparably to HDFS. Second, most DISC systems use
databases with weaker semantics than traditional databases
to store and query metadata. The authors propose a mecha-
nism for using the file system with a filtered directory scan
to provide similar functionality.

CloudViews: Communal Data Sharing in Public Clouds■■

Roxana Geambasu, Steven D. Gribble, and Henry M. Levy,
University of Washington

Currently, most Web services store and process their data in
their own data center. For example, Flickr and Picasa have
similar interfaces, but both of them reimplement the soft-
ware stack from the ground up. With the advent of public
cloud services, however, Web services can “rent” themselves
to each other, which is made easier by sharing data among

106	 ; LO G I N : VO L . 3 4, N O. 5

co-located services. CloudViews is a storage system that
is designed so that services running on a cloud can share
data with each other. CloudViews provides database-style
views for data sharing between applications. For example,
in CloudViews, a Flickr-like service might create a view that
shares photos to an automatic photo tagging service but not
the ownership information of the photos. The challenges
in such a service include providing a scalable protection
mechanism, query admission control, and QoS for resource
allocation. A member of the audience pointed out that views
are good for read-only data and another member asked how
CloudViews shares metadata between services. The author
replied that both these issues are good material for future
research.

Cloud Analytics: Do We ■■ Really Need to Reinvent the
Storage Stack?
Rajagopal Ananthanarayanan, Karan Gupta, Prashant Pandey,
Himabindu Pucha, Prasenjit Sarkar, Mansi Shah, and Renu
Tewari, IBM Research

MapReduce workloads are generally executed on Internet-
scale file systems, such as Google File System (GFS), that
do not provide a POSIX interface. The authors explore the
suitability of traditional cluster-based file systems for such
workloads. In particular, they compare HDFS (an open
source implementation of GFS) with IBM’s GPFS cluster
file system. Compared to GPFS, HDFS provides larger data
blocks (on the order of 64MB), allows applications to co-
locate computations with data by exposing block locations
to applications, and provides data availability in case of
node and disk failures.

To verify that they could bridge the gap between HDFS
and GPFS, the authors modified GPFS to expose the block
location information to MapReduce applications. Second,
directly increasing GPFS block size to match that of HDFS
is not feasible, as GPFS internally uses block size to perform
prefetching. Instead, the authors introduce a new construct
called a metablock, which is basically a consecutive set of
(smaller) blocks of a file that are allocated on the same disk.
The small blocks are used internally by GPFS to perform
accounting, prefetching, etc., whereas the larger logical
metablock is exposed to MapReduce applications. With
these changes, the performance of the modified GPFS and
HDFS are comparable. Further, the authors ran experiments
to confirm that metablocks do not hurt the performance of
GPFS for traditional applications. Thus, clustered file sys-
tems, enhanced appropriately, can provide the best of both
the traditional applications and MapReduce workloads.

Short Papers
Constructing and Managing Appliances for Cloud Deploy-■■

ments from Repositories of Reusable Components
Matthew S. Wilson, rPath, Inc.

The usual way to deploy applications is to start with a base
image, install applications, snapshot the image, and then
spin up new instances from snapshots. However, these

snapshots are hard to move from one provider to another.
Automation tools can help, but they require a new setup for
each cloud environment. Instead, Matthew Wilson proposes
handling software configuration management via a version
control system. Dependencies between software components
are encoded by grouping components with the compo-
nents that they require. Once all software is managed and
grouped under version control, one can build deployment
images from these groups. One member of the audience
asked how many companies are using their system. Wil-
son replied that companies can use their rPath software to
do this or can use their rBuilder free online service. About
17,000 projects are using the service, and 50 companies
have downloaded rPath. Another audience member asked
whether they changed the operating system. Wilson replied
that the operating system is changed as little as possible.

Maximizing Efficiency by Trading Storage for Computation■■

Ian F. Adams, Darrell D.E. Long, and Ethan L. Miller, Univer-
sity of California, Santa Cruz; Shankar Pasupathy, NetApp;
Mark W. Storer, Pergamum Systems

The authors argue that instead of storing data that is not
frequently accessed in the cloud, it can be more cost-effi-
cient to regenerate data on demand. For example, instead
of pre-generating various formats of photos (BMP, jpeg, tiff,
etc.), it might be more efficient to store photos in the most
frequently used format and regenerate other formats on
demand. To enable regeneration of data, one needs to record
the inputs, processes, and provenance needed to regener-
ate the data. The decision whether data should be stored
or regenerated is determined by cost-benefit analysis. The
factors to consider in this analysis include data semantics
(i.e., should the exact same data be regenerated or will any
data generated by the same process suffice), the cost of
regenerating data, and the cost of computing in the cloud in
the future.

m ap reduce and cloud applic ations

Full Papers
Mochi: Visual Log-Analysis Based Tools for Debugging ■■

Hadoop
Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and
Priya Narasimhan, Carnegie Mellon University

Current debugging tools present debugging data at the
wrong level of abstraction to be useful in debugging clouds.
Mochi, instead, expresses MapReduce program execution
in terms of the high-level operations “Map” and “Reduce.”
It extracts views of node behavior with SALSA, correlates
execution traces, and creates a conjoined representation of
control and data flow. Control flow consists of the order in
which operations are executed, while data flow indicates
how the output of one operation is used as an input to oth-
ers. This conjoined representation is visualized in a number
of ways using the R statistics system. The “swimlanes” vi-
sualization shows the extent of map and reduce operations

; LO G I N : O c to b e r 20 0 9	 con fe re n ce re p o rt s	 107

in time, so that wedged operations can be detected and
addressed. “Realized execution paths” provide a statistical
depiction of time spent in each processor state, while data
flow depictions show how map and reduce functions relate
to one another.

A Common Substrate for Cluster Computing■■

Benjamin Hindman, Andy Konwinski, Matei Zaharia, and Ion
Stoica, University of California, Berkeley

NEXUS is a common substrate level that allows several
cloud frameworks with differing semantics to co-locate in
the same cloud. It can also be used to run several versions
of the same framework in one cloud. NEXUS is extremely
lightweight and attempts to be a “microkernel” for serv-
ing cloud stacks. Performance experiments for a logistic
regression machine-learning algorithm show that running
Hadoop on top of NEXUS is negligibly slower than run-
ning Hadoop alone, but that running the same application
on NEXUS alone is several times faster. Since microkernels
were not successful, an audience member wondered, why
do the authors expect NEXUS to be successful? By the time
microkernels were introduced, there were a number of well-
established players in the operating systems space, but the
cloud is still young and can be changed.

Using Proxies to Accelerate Cloud Applications■■

Jon Weissman and Siddharth Ramakrishnan, University of
Minnesota, Twin Cities

A proxy can be utilized to speed up access to cloud services
by having superior location or access to relevant resources.
In a PlanetLab experiment, proxies were utilized to access
30 commercial Web services. Response times for 70% of
queries were improved by proxying, with a 20% perfor-
mance improvement on average among these. Proxies excel
when a cloud application accesses multiple others, which
can happen due to specialization of computing infrastruc-
ture or data store, distributed data mining, and mash-ups,
among others. Open questions include whether to proxy
and why, where to optimally locate proxies, and how to
select a proxy from those available. The ability of a proxy to
cache results or perform local computations has not been
explored.

Short Papers
DryadInc: Reusing Work in Large-scale Computations■■

Lucian Popa, University of California, Berkeley; Mihai Budiu,
Yuan Yu, and Michael Isard, Microsoft Research, Silicon Valley

A Dryad job is a directed acyclic graph representing data
flow in a distributed computation, where each vertex is a
computation and each edge represents data flow. A Dryad
job or set of jobs often involves redundant calculation of
the same result several times. “Identical computation” (IDE)
caches and reuses results of repeated computations, while
“incremental merging” (MER) employs a user-crafted com-
putation that incorporates new data into the results of a pre-
vious computation. The cost-effectiveness of IDE and MER

depends on a time/space tradeoff and whether computation
time or cache space is more expensive in context.

Towards Optimizing Hadoop Provisioning in the Cloud■■

Karthik Kambatla and Abhinav Pathak, Purdue University;
Himabindu Pucha, IBM Research Almaden

Hadoop has hundreds of configurable parameters. Current
tools like Hadoop on demand and Cloudera are laborious
to use when parameter tuning. One alternative is controlled
experimentation. Trying a distributed grep with 1, 4, 8, 16,
and 24 map nodes shows diminishing returns after use of 8
map nodes. Thus one can determine an appropriate number
of map nodes by direct experimentation. Someone ques-
tioned the value of such a method given that such experi-
ments would have to be done “at scale” and expensively in
order to guarantee sufficient accuracy.

BSDCan 2009: The Technical BSD Conference
Ottawa, Canada
May 6–9, 2009

Summarized by Royce Williams (royce@tycho.org)

Slides for most of the presentations are available at http://
bsdcan.org/2009/.

keynote address

Thinking about Thinking in Code■■

George V. Neville-Neil, Neville-Neil Consulting

In what he described as “a bit of a rant,” George Neville-Neil
challenged the BSD development community to think about
their work in a different way.

Neville-Neil started by attacking the idea that software de-
velopment is significantly more creative than, for example,
automobile manufacturing. He pointed out that there has
been little true innovation in graphical user interface de-
sign, showing similarities in GUIs ranging from the Xerox
PARC user interface through Mac OS X. He discarded tradi-
tional explanations such as blaming marketing or that users
demand front-end consistency. Even OS internals, he ar-
gued, have not substantially changed and do not fundamen-
tally differ among the major families of operating systems.
He stated that the languages that we work with truly dictate
our work, that features of bad languages (sloppy, unsafe,
confusing) lead to code that follows suit, and that making
programming languages easier has effectively lowered the
quality of code (by lowering the barrier to entry).

In a flurry of frank advice to programmers, Neville-Neil
went on to encourage reading good code, working with
good programmers (rather than poor ones, which he argues
can actually cause your own code to suffer), and refrain-
ing from repeatedly reinventing the wheel by recreating
low-level constructs (like lists, hashes, and other academic
projects). Instead, he suggested reading research papers
discriminatingly, exploring unfamiliar code and languages,

