
74 ; LOG I N : VO L . 3 3 , NO . 1

N I C K S T O U G H T O N

toward attributes
USENIX Standards Liaison

nick@usenix.org

BOTH TH E C AN D C + + STAN DA R D S A R E
being revised at present, and one proposal
the two revision projects have in common is
to include syntax for attributes, a feature
present as an extension inmost modern C
and C++ compilers.

Attributes allow the programmer to give additional
hints to the compiler about how to generate code.
They decorate variables, functions, and types. Both
C and C++ have numerous places within their
standards (and an enormous number, when one
considers currently deployed applications) where
attributes would help.

There are of course many ways to invent a syntax
for a new language feature. One way is to invent
new keywords in the language to represent the new
feature. However, this robs from the end-user’s
name space and is generally regarded as a bad thing
to do, unless the keyword uses an already reserved
name space (which, in C, means it has to start with
an underscore). Another alternative is to find some
currently illegal combination of punctuation marks
and make them a legal way of introducing the new
feature. This cannot break existing programs . . .
they wouldn’t have compiled with older compilers.
However, it does make it harder to use the pre-
processor to mimic the new standard on an older
compiler.

But, as I stated earlier, most modern compilers
have already implemented attributes as an exten-
sion. GCC calls them attributes, whereas Mi-
crosoft’s Visual C++ compiler calls them “declspec”
(and almost every other compiler follows one or
the other of these). In both cases, the existing prac-
tice has been, in fact, to use a new keyword. Both
of them prefix their new keyword with two under-
score characters, to put it into the name space re-
served for the implementation.

Let’s look at a trivial example of using attributes to
decorate a function. I’m sure everyone who pro-
grams in C or C++ has at some time written a func-
tion something like the following:

void fatal(const char *msg)
{
extern FILE *logfile;

if (logfile) {
fprintf(logfile, “Fatal: %s\n”, msg);
fclose(logfile);

}
fprintf(stderr, “Fatal: %s\n”, msg);
exit(1);

}

This simple function does some cleanup and exits the application on a fatal
error. The function doesn’t return; it calls exit(). There are a couple of things
an optimizing compiler wants to be able to do with a function that doesn’t
return: remove dead code that follows a call to a nonreturning function
and be able to notice that it doesn’t need to worry about return paths follow-
ing such a call. (Ever had that annoying error message “file.c:13: warning:
control reaches end of non-void function”?) A function that doesn’t return
doesn’t need to clean up the stack after itself, either.

Current existing practice in GCC allows you to add an attribute to the func-
tion prototype to indicate this:

__attribute__((noreturn)) void fatal(const char *);

The Microsoft compiler spells it slightly differently, but with the same effect:

__declspec(noreturn) void fatal(const char *);

The two committees, C and C++, are taking a very different approach to
adding attributes.

The C Approach

The C committee wants to follow existing practice as much as possible; it is
therefore looking at the __attribute__((xx)) and __declspec(xx) syntaxes close-
ly. The committee will likely pick one rather than the other, and it may con-
sider cleaning up the name a little. (All those underscores surely do look
ugly!) They could go for new keywords for every attribute (e.g., noreturn)
as a top-level keyword, but that would be very inflexible and hard to extend
(al though there is precedent, since some of the current keywords, such as
register, are really attributes). And remember what I was saying about key-
words: Adding new keywords to the language is always going to be an uphill
battle, as the users’ name space is invaded. The syntax itself, however, is felt
to be less important than the semantics of attributes. The intent of the com-
mittee is to select a common set of attributes that most vendors already sup-
port and to standardize what these attributes actually mean. To allow for
further extension of this, the standardized attributes will have stdc_ prefixed
to their name. The current proposal lists:

� stdc_noreturn: Applies to a function, indicating that the function does
not return.

� stdc_pure: Applies to a function, indicating that the function has no
side effects and will always return the same result for the same argu-
ments (allowing the optimizer to possibly cache results).

� stdc_warn_unused_result: Applies to a function and will cause the com-
piler to issue a warning diagnostic if the result is not used (e.g.,mal-
loc() would be an example where this is appropriate).

� stdc_nonnull: Applies to a parameter to a function, indicating that the
argument cannot be null.

� stdc_unused: Applies to a parameter to a function or to a variable, indi-
cating that this parameter or variable is not used, but only required to
ensure that the function has the correct signature.

� stdc_deprecated: Applies to a function, permitting the compiler to
warn if the function is used.

� stdc_align: Applies to any variable, indicating the alignment of that
variable.

� stdc_thread: Applies to any local variable, indicating that there should
be a separate copy of the variable for each thread (GCC has a keyword,
__thread, to do this).

; LOGIN: FEBRUARY 2008 TOWARD ATTR IBUTES 75

� stdc_packed: Applies to a structure or union, indicating that no
padding should be included, minimizing the amount of memory re-
quired to hold the type. It is also applicable to an enum type, indicat-
ing that the smallest integral type appropriate be used (e.g., a packed
enum with fewer than 256 discrete values should be stored in a char).

Other attributes may yet be added to this list. In particular, the committee
spent considerable time at its most recent meeting discussing the cleanup at-
tribute from GCC, comparing it to the try {} finally {} construct added to Mi-
crosoft’s compiler. A paper on this subject is expected at the next meeting, in
April 2008.

The C++ Approach

The C++ committee, in contrast, loves to invent! If no new keywords are to
be added to the language, why not invent a whole new syntax? Their pro-
posal currently describes the syntax for adding attributes and only a few of
the attributes themselves (noreturn, final, and align). The proposed syntax
adds attributes surrounded by [[...]], after the definition. Currently both
GCC and the Microsoft compiler expect attributes before the thing that they
modify, though GCC can accept them after in some circumstances. So the fa-
tal example above would become:

void fatal(const char *) [[noreturn]];

This syntax certainly doesn’t suffer from the excess of underscores and gen-
eral ugliness in the existing practice. It is certainly true that, by using the
currently implemented extensions, the syntax can very rapidly get to be so
opaque as to be almost unreadable:

int i __attribute__((unused));
static int __attribute__((weak)) const a5

__attribute__((alias(“__foo”))) __attribute__((unused));

// functions
__attribute__((weak)) __attribute__((unused)) foo()

__attribute__((alias(“__foo”))) __attribute__((unused));
__attribute__((unused)) __attribute__((weak)) int e();

The C++ proposal uses some aspects of the GCC syntax, but it removes
that which the committee deems to be controversial. As stated, instead of
__attribute__, which is long and makes a declaration unreadable, the propos-
al uses [[]] as delimiters for an attribute. For a general struct, class, union, or
enum declaration, it will not allow attribute placement in a class head or be-
tween the class keyword, and the type declarator. Also, unlike the GCC at-
tribute and Microsoft declspec, an attribute at the beginning will apply, not
to the declared variable, but to the type declarator. This will have the effect
of losing the GCC attribute’s ability to declare an attribute at the beginning
of a declaration list and have it apply to the entire declaration. The commit-
tee feels that this loss of convenience in favor of clearer understanding is de-
sirable.

class C [[attr2]] { } [[attr3]] c [[attr4]], d [[attr5]];
attr2 applies to the definition of class C
attr3 applies to type C
attr4 applies to declarator-id c
attr5 applies to declarator-id d

Another aspect of the C++ proposal is to apply attributes to things other
than simply variables, functions, and the like—for instance, to blocks and to
translation units (or files). This aspect of attributes has no real implementa-

76 ; LOG I N : VO L . 3 3 , NO . 1

tion experience, although some compilers use the #pragma or _Pragma con-
struct from C for something similar. So, for a global decoration or a basic
statement, you might say:

using [[attr1]];

to have attr1 apply to the translation unit from this point onward. Similarly,
for a block, one might have:

using [[attr1]] { }

Now attr1 would apply to the block in braces. For a control construct, an
annotation can be added at the beginning:

for [[attr1]] (int i=0; i < num_elem; i++) {process (list_items[i]); }

where attr1 applies to the for control flow statement.

Conclusion

The C++ committee is also nearing the end of their revision process, where-
as the C committee is just starting. If the C++ committee does indeed settle
on the current proposed syntax, they will set new existing practice for the C
committee to follow.

Several people have complained that recent changes to both C and C++ have
led to divergence; neither committee appears to be able to follow the other’s
lead without making similar changes in an incompatible fashion. An exam-
ple of this divergence was the introduction of variadic arguments to func-
tions. C++ uses “...” following the last formal parameter, but in C there must
also be a comma (“, ...”). Indeed, some have noted that the only compatible
extension that both languages have adopted is the // comment construct! So
it will be interesting to see whether the introduction of attributes provides
another place where the two languages diverge or a place where the two
committees can actually work together for a change.

C is, after all, supposed to be a language compatible with C++. Once, C was
a strict subset of C++, though it is no longer. But how far should they di-
verge? How much effort should we spend on maintaining the relationship
between the languages?

I’m personally torn on the best way forward with attributes, in both lan-
guages, and would appreciate feedback.

; LOGIN: FEBRUARY 2008 TOWARD ATTR IBUTES 77

