
; LOGIN: APR I L 2007 WHY STANDARDIZE? 69

N I C H O L A S M . S T O U G H TO N

why
standardize?

USENIX Standards Liaison

nick@usenix.org

Descriptive or prescriptive?
Should a formal International
Standard describe a single
existing product, or should it
prescribe how future prod-
ucts should work? Is it an
abuse of the process for any
one company to force a docu-
ment describing its product
through the standards mill?

Most of the formal standards
on which I work describe
some sort of an interface.
They act as contracts among
multiple producers of the
interface and multiple con-
sumers of its services.

For example, POSIX
describes the interfaces pro-
vided by a wide variety of dif-
ferent operating system
implementations (e.g.,
Solaris, AIX, HP-UX) and
portable applications that
should compile and run on
any of those implementa-
tions. The C standard
describes the language a com-
piler must be able to translate
and provides a guarantee that
an application that strictly
conforms to the language
standard will always run the
same when translated with a
strictly conforming compiler.

As such, standards such as
POSIX or C are prescriptive;
they dictate behavior on both
sides of the interface. They
tell an implementer what
must be done in order to
conform, and they tell an
application developer how to
write portable code that does
what was intended.

Occasionally, however, a
descriptive standard is need-
ed. The Linux Standard Base
(LSB) is one such standard. It
describes the binary interface
between an application and a
Linux distribution. It is still
prescriptive in the sense that
a distribution that fails to

ship the versions of the
libraries or symbols required
does not conform, but it does
not tell implementers how to
write interfaces. Instead, it
describes what the imple-
mentation does. Linux hopes
to be POSIX conforming (and
almost is), so POSIX can tell
implementers how to write
interfaces; the LSB only
describes the size and shape
of the binary interface itself.

When we are developing the
POSIX standard, however,
every attempt is made to take
into account existing and his-
toric practice (including
Linux behavior). In that
sense, even POSIX ends up
being somewhat descriptive.
POSIX tries to specify the
things that every implemen-
tation must do (by looking at
what every implementation
actually does), and it leaves
unspecified those areas where
implementations may differ.

But when a standard is
descriptive you have to start
asking yourself, “Who is the
intended user?” and “What is
the intended purpose?” If the
standard simply describes
something that is, a single
product with a single imple-
mentation, rather than the
way a conforming implemen-
tation should work, why
bother? The whole purpose
of the standard is to allow
competing implementations
and to allow portable applica-
tions. In the LSB case, the
answer to the question is
easy; the intended user is any
application developer target-
ing the Linux platform. The
purpose is to ensure binary
compatibility among distribu-
tions. It does prescribe what
distribution vendors must
implement in their products,
and it does promise conform-
ing application developers



binary portability across con-
forming distributions.

But let’s look for a few min-
utes at another standard
wending its way through the
process at present: Office
Open XML (OOXML). The
name is (deliberately?) con-
fusing: It is Office Open, and
not Open Office! This is a
standard developed by
Microsoft for their Office
product.

At this point, OOXML is an
approved standard within
Ecma International (the peo-
ple who brought you Ecma-
script). It is sometimes
known as Ecma Office Open
XML, or EOOXML. The
Ecma standard (Ecma-376) is
being submitted to ISO/IEC
JTC 1 via the “Fast Track”
process. If this process were
to be completed, Ecma-376
would be an international
standard that describes a file
format used by Microsoft
Office. No other product
could ever fully conform to
it. There is no good technical
purpose for this standard. Of
course, the Ecma committee
doesn’t actually say that any-
where, but should you
attempt to read the 6,000+
pages, you would find
numerous places with phras-
es such as “This element
specifies that applications
shall emulate the behavior of
a previously existing word
processing application”
(Microsoft Word 95), but
nowhere will you find a
description of what that
behavior is. If you are trying
to write an application that
reads an OOXML file, what
chance do you have of imple-
menting this? In Microsoft’s
defense, most of these
requirements are marked as
“deprecated” and describe
“compatibility” settings.

However, they are still a
mandatory part of the stan-
dard for conformance. How
else are they going to achieve
their goal of having every
document ever produced by
MS Office capable of being
expressed in OOXML?

What the Ecma committee
does say is:

The goal of the
Technical Committee is
to produce a formal
standard for office pro-
ductivity applications
within the Ecma
International standards
process which is fully
compatible with the
Office Open XML
Formats. The aim is to
enable the implementa-
tion of the Office Open
XML Formats by a wide
set of tools and plat-
forms in order to foster
interoperability across
office productivity
applications and with
line-of-business sys-
tems.

Sounds great, right? But it is
a lofty goal that they have
singularly failed to achieve or
even approach. In their press
release announcing that the
standard had been approved
by Ecma International, they
say, “The new open standard
safeguards the continued use
of billions of existing docu-
ments.” And that’s the point:
Safeguard MS Office docu-
ments. Any legacy MS Office
document can be converted,
by MS Office, into the
OOXML format, and any
conforming application must
be able to handle the result.

The charter for OOXML
expressly locked the standard
to Microsoft Office. (Recall
that bit about “fully compati-
ble with the Office Open

XML Formats.”) So the entire
standardization process with-
in Ecma International was
tied up by the language that
expressly forbade any attempt
to deviate or improve on the
Microsoft format. The pro-
cess was not open, and it
does not represent industry
consensus (both stated goals
of the ISO/IEC process).

OOXML describes a file for-
mat. Granted, a file format
standard is somewhat differ-
ent from a straight interface
type of standard. But it’s not
that different: It should be
possible to write an applica-
tion that produces such a file
and know that any other con-
forming application can read
the same file and produce the
same results. In the OOXML
case, there can only be one
application that can produce
or consume the file: Mi-
crosoft Office. To pretend
that this is a standard that
will increase document porta-
bility is an outright lie.

And to make matters worse,
ISO/IEC already has a stan-
dard that is in exactly the
same space, is well written,
and is well adopted: Open
Document Format (ODF).
As I write this, OOXML is at
the start of a six-month bal-
lot. The first thirty days of
that period is to note “any
perceived contradiction with
other JTC 1, ISO or IEC
standards.” National bodies
(e.g., those of the U.S. or
the U.K.) can submit com-
ments on such “perceived
contradictions,” and if any
are received, the five-month
remainder might be put on
hold. Groklaw has been com-
piling a list of contradictions
to submit. We shall see what
happens.

There can only be one pur-
pose in Microsoft attempting

70 ; LOG I N : VO L . 3 2 , NO . 2



to push the OOXML standard
through: to be able to state
that it has a standard con-
forming product. It is a sim-
ple knee-jerk reaction to
ODF, the accepted standard
that has locked them out of
some major government con-
tracts. And there can only be
one user of the standard:
Microsoft.

Now, don’t get me wrong; I’m
glad that Microsoft has pub-
lished a specification that
tells others the nitty-gritty
details of one of the file for-
mats used by Office. It just
doesn’t need to be an interna-
tional standard. The only
possible beneficiary of the
effort to make it one can be
Microsoft. The company has
even managed to get some
very clever wording into the
legal license arrangements
that appears to prevent unau-
thorized (by Microsoft)
implementations.

This controversial standard is
not without its supporters,
and not entirely without
merit, at least at the theoreti-
cal level. There’s more than
one programming language,
so why shouldn’t there be
more than one office docu-
ment format? And ODF is
not perfect in every respect.

The OOXML document really
sums up everything that is
wrong with the ISO “Fast
Track” process, and it may
indeed even lead to the
downfall of that process. The
Fast Track process was origi-
nally designed to allow a
standard developed through
an open process in another
standards development
organization (SDO) to speed
through the ISO process. In
theory, the document had
already accepted adequate
comment and review from
that SDO itself.

However, some SDOs (and
Ecma is a particularly notable
one here) have simply served
as backdoor ways to get a
poorly reviewed, proprietary
document published by ISO.
If OOXML gets through these
next six months unscathed,
the Fast Track process will be
seen by many as utterly
worthless. The process is
used as a sort of shell game:
The message to Ecma mem-
bers is, “Oh, don’t worry if
this isn’t perfect . . . it will be
reviewed again by ISO,”
while saying to ISO members,
“Oh, you don’t need to put
any effort into this document
in ISO . . . it has already been
reviewed by Ecma.”

An interesting perspective
(and my motivation for this
article) can be found at
http://www.robweir.com/
blog/2006/01/how-to-hire-
guillaume-portes.html.

; LOGIN: APR I L 2007 WHY STANDARDIZE? 71




