
; LOGIN: FEBRUARY 2007 STANDARDS: MULTITHREADING IN C AND C++ 75

H A N S B O E H M , B I L L P U G H ,
A N D D O U G L E A

standards:
multithreading
in C and C++

Hans Boehm is a researcher at HP Labs
who is best known for his work on garbage
collection. Recently he has focused on
improving concurrent programming foun-
dations, especially for C++.

hans.boehm@hp.com

William Pugh is a professor at the
University of Maryland, College Park. His
current research focus is on developing
tools to improve software productivity, reli-
ability, and education.

pugh@cs.umd.edu

Doug Lea, a professor of computer science
at SUNY Oswego, is the author of several
widely used software packages and com-
ponents, as well as articles, reports, and
standardization efforts dealing with
object-oriented software development.

dl@cs.oswego.edu

MA I N ST R E AM D E S K TO P
and server machines
increasingly require explicit-
ly concurrent programs to
achieve full performance,
owing to the increasing
prevalence of both single-
chip multiprocessors and
hardware support for multi-
ple threads.

Currently a common way to
write such programs is to pro-
gram in C or C++, with the aid of
a threads library, such as an im-
plementation of the POSIX
pthreads interfaces, to provide
concurrency. This is also an es-
tablished technique for handling
multiple concurrent event
streams, even on single-threaded
single-processor machines.

Unfortunately, this approach has
turned out not to be completely
sound, primarily because reliable
multithreaded execution re-
quires certain guarantees about
the language and compiler that
cannot easily be provided by a li-
brary or library specification [1].
Some of the associated issues
have been understood for many
years. The second half of this pa-
per briefly outlines a symptom of
this issue that appears to not
have been well recognized.

As a result, several of us have
started an effort to address these
problems by directly defining the
meaning of multithreaded pro-
grams in the underlying pro-
gramming language. Initially this
is being done in the context of
C++, building on some earlier
work in the context of Java [2, 3].

There appears to be consensus
that these issues should be ad-
dressed in the current ongoing
revision of the C++ standard. In
that context, we are addressing
three somewhat separable issues:

1. Defining the meaning of exist-
ing programs in the presence
of threads. Our current ap-
proach largely follows
pthreads and leaves the se-
mantics undefined if there is
a data race, i.e., if a program
modifies a location while an-
other thread is accessing it.
This approach appears to be
the only plausible one for C
and C++. However, it can only
succeed if the definition of a
data race is made precise
enough for programmers,
compiler writers, and hard-
ware to know when data races
occur and how to avoid them.
Currently, it is not defined at
all. Among other consequen-
ces, unexpected compiler
transformations regularly
break multithreaded pro-
grams (as illustrated in the
example that follows).

2. Defining an atomic operations
library to allow the construc-
tion of correct multithreaded
programs without locks. This
does not directly affect most
existing application-level pro-
grams, though a significant
number of them should be
modified to use this library in
order to ensure correctness.
Such a library is necessary for
development of portable core
libraries and infrastructure
code that increasingly use
lock-free techniques to imple-
ment high-performance syn-
chronization support. Defin-
ing an atomics library relies
critically on the semantics of
memory operations and data
races.

3. Designing a threads API that
meshes better with the rest of
the C++ language.

We expect that the first two is-
sues and their solutions also ap-
ply, with minor modifications, to
C. And compatibility would be
greatly desirable. We expect the
last issue is mostly C++ specific,



76 ; LOG I N : VO L . 3 2 , NO . 1

though there are likely to be ex-
ceptions, such as support for
thread-local storage.

As a result, we would like to en-
courage members of the C com-
mittee to follow our discussions
and to provide input, particular-
ly if they see aspects of our ap-
proach that would make it less
palatable to the C committee,
and hence lead to unnecessary
divergence between C and C++.

A Simplified Example

We illustrate some of the prob-
lems addressed by this work
with a simple case in which the
current language specifications
for C and C++ are clearly inade-
quate for multithreaded pro-
grams. This is only one among
many possible examples. It helps
demonstrate that the problems
are in fact profound and must be
addressed by the language speci-
fication and compilers. It also
points out that the expected im-
pact on compilers is likely to be
nontrivial.

Consider the following declara-
tions and function definition:

int global_positives = 0;
typedef struct list {
struct list *next;
double val;
} * list;

void count_positives(list l)
{
list p;
for (p = l; p; p = p -> next)
if (p -> val > 0.0)
++global_positives;

}

Now consider the case in which
thread A performs

count_positives(<list containing
only negative values>);

while thread B performs

++global_positives;

This should be perfectly correct,
since count_positives in this spe-
cific case does not update glob-
al_positives, and hence the two
threads operate on distinct glob-
al data and require no locking.

But some existing optimizing
compilizers (including gcc,
which tends to be relatively con-
servative) will “optimize”
count_positives to something
similar to

void count_positives(list l)
{
list p;
register int r;

r = global_positives;
for (p = l; p; p = p -> next)
if (p -> val > 0.0) ++r;
global_positives = r;
}

This transformation is clearly
consistent with the C language
specification, which addresses
only single-threaded execution.
In a single-threaded environ-
ment, it is indistinguishable from
the original.

The pthread specification also
contains no clear prohibition
against this kind of transforma-
tion. And since it is a library and
not a language specification, it is
not clear that it could.

However, in a multithreaded
environment, the transformed
version is quite different, in that
it assigns to global_positives,
even if the list contains only neg-
ative elements. Our original pro-
gram is now broken, because the
update of global_positives by
thread B may be lost, as a result
of thread A writing back an earli-
er value of global_positives. By

pthread rules, a thread-unaware
compiler has turned a perfectly
legitimate program into one with
undefined semantics.

This is a contrived example, but
similar issues have been encoun-
tered in practice, and these are
discussed in more detail in
Boehm [1]. We hope this has
served as a brief introduction to
the kind of problems we are try-
ing to address and will encour-
age others to follow the discus-
sion.

REFERENCES AND FURTHER READING

[1] H.-J. Boehm, “Threads Can-
not Be Implemented as a Li-
brary,” in Proceedings of the ACM
SIGPLAN 2005 Conference on Pro-
gramming Language Design and
Implementation, pp. 26–37, 2005.
Also available at http://www
.hpl.hp.com/techreports/2004
/HPL-2004-209.html.

[2] JSR-133 Expert Group, JSR-
133: Java Memory Model and
Thread Specification:
http://www.cs.umd.edu/~pugh/
java/memoryModel/jsr133.pdf,
August 2004.

[3] J. Manson, W. Pugh, and S. V.
Adve, “The Java Memory Mod-
el,” in Conference Record of the
Thirty-Second Annual ACM Sym-
posium on Principles of Program-
ming Languages, January 2005.
Also available at http://www.cs
.umd.edu/users/jmanson/java
/popl05.pdf.




