
72 ; L O G I N : V O L . 3 1 , N O . 2

N I C H O L A S M . S T O U G H T O N

USENIX
Standards
Activities

Nick is the USENIX Standards
Liaison and represents the
Association in the POSIX, ISO C,
and LSB working groups. He is
the ISO organizational repre-
sentative to the Austin Group,
a member of INCITS commit-
tees J11 and CT22, and the
Specification Authority sub-
group leader for the LSB.

nick@usenix.org

2005 was a busy year for me as
the USENIX standards represen-
tative. There are three major
standards that I watch carefully:

n POSIX, which also incorpo-
rates the Single UNIX Specifi-
cation

n ISO-C
n The Linux Standard Base (LSB)

In order to do that, USENIX
funds my participation in the
committees that develop and
maintain these standards.
Throughout 2005, the Free
Standards Group (FSG) also
helped fund these activities. For
each of these, let’s look at the his-
tory of the standards, then at
what has happened over the past
12 months or so, and, finally,
what is on the agenda for this
year. Each of these standards is
critical to a large proportion of
our members. Without these
standards, open source software
as we know it today would be
very, very different!

P O S I X

The POSIX family of standards
was first developed by the IEEE,
arising from earlier work from
/usr/group and the System V
Interface Definition (SVID),
and was published as a “trial use”
standard in 1986. In 1988, the
first full-use standard was pub-
lished. The difference between
“trial” and “full” use is principal-
ly in the use of the term “should”
rather than “shall” in the require-
ments for any interface.

In 1990, the 1988 API standard
was revised, clarifying a number
of areas and expanding them. At
the same time, the API standard
became an ISO standard. At this
point in history, there were about
10 separate POSIX projects under
development, ranging from the
basic OS system calls and libra-
ries, through commands and util-
ities, to security, remote file
access, super-computing, and
more. In 1992, the second part

of POSIX was published (the
Shell and Utilities volume), and
it became a second ISO standard.
Amendments to these standards
were also under development,
and led to the addition of real-
time interfaces, including
pthreads, to the core system call
set. Many of the other projects
died away as the people involved
lost interest or hit political road-
blocks (most of which were
reported in ;login: at the time).

Until the end of the twentieth
century, POSIX was developed
and maintained by IEEE exclu-
sively. At the same time, the
Open Group (also known as
X/Open) had an entirely separate
but 100% overlapping standard,
known as the Single UNIX
Specification. This specification
started from the same place in
history, and many of the partici-
pants around the table at an
X/Open meeting were the exact
same people who had met a few
weeks before at an IEEE POSIX
meeting to discuss the same set
of issues!

This duplication of effort became
so annoying that a new, collabo-
rative, group was formed to pro-
duce a single document that
would have equal standing for
each of ISO, IEEE, and the Open
Group. That group held its first
meeting in Austin, Texas, in
1998, and was therefore named
the “Austin Group.” The Austin
Group published a full revision
of the POSIX and Single UNIX
specifications as a single docu-
ment in 2001. It was adopted by
all three organizations and is
maintained by the same team,
which represents the interests of
all three member organizations.

Since the 2001 revision, work
has been steadily progressing
maintaining this 3762-page mas-
terpiece. Every week, there is a
steady stream of “defect reports,”
which range from typos in the
HTML version (the document is
freely available in HTML on the

Web; see http://www.unix.org
/single_unix_specification),
through major issues with
ambiguous definitions, and so
on. Some of these defects can be
quickly and cleanly fixed, and
two “Technical Corrigenda”
documents have been approved,
which alter the wording for
some of the interfaces to clarify
their meanings.

Every ISO standard (and every
IEEE standard, too) has a five-
year “reaffirm/revise/withdraw”
process, where the document
is examined to see if it is still
relevant, whether it needs revi-
sion to meet current needs, or
whether it is now outdated and
should be withdrawn. For
POSIX, the Austin Group has
elected to revise the specifica-
tion during 2006.

Under the Austin Group rules,
the group as a whole cannot
invent new material. One of its
sponsor groups (IEEE, ISO, and
the Open Group) must have
prepared a document and had it
adopted under its own organiza-
tion rules before it can be pre-
sented to the group as a whole.
Therefore, the Open Group has
been developing, and is now in
the final stages of approving, a
number of documents which
include new APIs to become a
possible future part of a UNIX
branding program. Once ap-
proved, these documents can
then be examined by the Austin
Group (OK, so it’s still the same
group of people who developed
the set in the first place) for
inclusion into the POSIX
revision.

The new interfaces under con-
sideration are ones that have
been popular in the GNU-C
library (glibc) and Solaris for
some time, but have not been
formally standardized before.
They include support for stan-
dard I/O functions to operate on
memory buffers as well as exter-

nal files, getline and getdelim,
some multibyte string-handling
functions, robust mutexes, and
versions of functions that take
pathnames relative to a directory
file descriptor rather than plain
pathnames (this helps avoid cer-
tain race conditions and helps
with really long pathnames).

I would expect to see official
drafts of this new revision this
summer, and the final version in
2008.

POSIX has long had support
beyond the C language world.
There are Ada and Fortran offi-
cial “bindings” to POSIX. How-
ever, there has never been a real
connection between the C++
world and the POSIX world;
C++ programs can use C to call
POSIX functions. But this leads
to all sorts of complications for
C++ programmers and, more
seriously, to much reinvention
of the wheel in providing map-
pings between C++ constructs
and those of POSIX. The Austin
Group has received several
defects from C++ programmers
who want to know why they
can’t do x, to which the tradi-
tional answer has been “don’t
use C++, use C”! And to make
matters worse, the C++ language
committee is also going through
a revision at present, and they
want to add all sorts of features
to the language that might make
it harder to access some of the
fine-grained features of POSIX
(since they want the language
to work on other platforms,
they deliberately try to be OS-
neutral).

All that may change soon. A
study group has recently been
formed to look into the need
for, and desire to build, a C++
binding to POSIX. USENIX is
hosting the wiki for this group,
and you are welcome to join:
http://standards.usenix.org/posix
++wiki.

I S O C

The first version of the ISO C
standard, then known as ANSI-
C, was published in 1989. It
took the original language from
Kernighan and Ritchie’s book
and tightened it up in a num-
ber of places. It added function
prototypes and considerably
improved on the standard C
library. The first versions of
POSIX used this language as the
underlying way to describe inter-
faces, and included a c89 com-
mand to invoke the compiler.

Between 1989 and 1999, the C
committee added wide character
support and addressed several
language “defects”—internal
discrepancies in the way various
features were described. The
committee included a number
of compiler vendors, who were
also keen to have the language
permit ways to guide an opti-
mizer: features such as con-
stants, volatile variables and
restrict pointers were added to
the language for this purpose.

In 1999, a new revision came
out which included several new
features such as these, along
with major rework for floating
point support (including things
such as complex numbers).

At this point, the committee is
fairly happy with the state of
the core language and is fight-
ing back against proposals to
change it. However, they have
not stopped working! They are
currently preparing several tech-
nical reports that optionally
extend the C language in a
number of directions. Of these,
by far the most significant to
most USENIX members is the
report formerly known as the
“Security TR.” I say formerly
because the term “Security”
(and it turns out, many other
related words) are so overloaded
and charged with meaning that

; LO G I N : A P R I L 2 0 0 6 U S E N I X STA N DA R D S AC TI V ITI E S 73

by far the most objections to the
document were to its title.

The report formerly called the
“Security TR” actually attempts
to deal with the fairly common
problem of buffer overflow. It
does so in a very simple fashion:
every interface in the ISO-C
standard library that takes a
buffer has a secure variant which
includes the size of the buffer.
Now, while that is the meat of
the original concept, it isn’t all
that the report currently propos-
es. The report introduces the
concept of runtime constraints,
that is, various things that must
hold true when an interface is
invoked. The original standard
library simply had undefined
behavior when you passed a null
pointer to an interface that
expected a pointer to a buffer. So

char *p = malloc(10);
gets(p);

could fail in a variety of ways,
despite being well-formed, legal
C.

The new “secure” library ver-
sion of this,

char *p = malloc(10);
gets_s(p, 10);

will invoke a runtime exception
handler (analogous to a signal
handler) if p is null (because the
malloc failed) or if there are
more than 10 characters on the
next line of standard input.

According to its current stats,
this document proposes a
library that might be of benefit
to someone going over thou-
sands or millions of lines of
existing code and trying to find
and plug all of the possible
buffer overflow spots. It is likely
to end up obfuscating some of
the code. It is also possible that
if the buffer size is not well
known, it could end up hiding
bugs where the programmer
simply guesses at a buffer size
but is wrong; now the code
looks as if it has been retrofitted

to prevent buffer overflows, but
it hasn’t!

It will also likely change the ABI
of third-party libraries that want
to use this; they must now have
a way of receiving the size to
check against. This suggests to
me that this library will have lit-
tle uptake as it stands, though
Microsoft has implemented it
and has updated all of its core
programs to use it (is this a
good thing?).

The core of the problem is that
memory handling in C is com-
plicated and error-prone.
Nobody will doubt that
improvements in the supporting
APIs are useful, but the existing
APIs already provide the means
to write correct programs. It is
just cumbersome to do so. The
proposed interfaces won’t
change that; on the contrary,
they could make programs even
more complex. An alternative
approach is to take as much of
the memory handling away from
the programmer as possible.

To that end, I am preparing a
second part to this technical
report that uses dynamic memo-
ry allocation instead of static
buffers. For new programs
(rather than retrofits of old
code), this approach leads to a
cleaner, more robust application,
with fewer possibilities for prob-
lems. For example, instead of
reading data from an input with
gets into a static buffer (that
might be too small), the getline
function allocates a buffer big
enough to hold the entire input
line, however long it was (or
returns NULL if there was in-
sufficient memory). The only
problem with such an interface
is that the programmer must
remember to release the memo-
ry when he or she is done with
it, by means of a call to free.
Some have argued that this, too,
can lead to unexpected bugs, as
programmers forget to free these

buffers, and the application
slowly leaks memory. However, I
believe this is a smaller problem
than the use of static buffers
with guessed sizes.

Back to the name of this report:
as I said , “Secure Library” got
a ringing “no” vote. This report
does not address any of what
many people regard as security
issues. The name “Safer Library”
was suggested, but the owners
of a product called “Safer-C”
objected. In the end it has come
down to “Extensions to the C
Library—Part 1—Bounds
Checking Functions.”

TH E L I N UX STA N DA R D BA S E

The LSB is an Application
Binary Interface (ABI), rather
than an Application
Programming Interface (API).
As such, it covers details of the
binary interfaces found on a
given platform, providing a con-
tract between a compiled binary
application and the runtime
environment that it will execute
on. The first version was pub-
lished in 2000 and has devel-
oped rapidly since then. It now
consists of a Core specification
(including ELF, Libraries,
Commands & Utilities, and
Packaging), a Graphics module
(including several core X11
libraries), and a C++ module.

Each specification has a generic
portion that describes interfaces
that are common across all
architectures and seven architec-
ture-specific add-ons that spell
out the differences between the
architectures.

For the past year or more, I
have been acting on behalf of
the Free Standards Group as the
technical editor for the ISO ver-
sion of this standard. ISO 23360
was unanimously approved last
September by the national bod-
ies that contribute to the sub-
committee responsible for pro-

74 ; L O G I N : V O L . 3 1 , N O . 2

; LO G I N : A P R I L 2 0 0 6 U S E N I X STA N DA R D S AC TI V ITI E S 75

gramming languages and their
runtime environments.

We have had to jump through a
few hoops in the final publica-
tion phase, but now it looks as
though the document is ready.
You will soon be able to buy a
CD from ISO with the LSB on it
(see http://www.iso.org), or you
can just download the PDF for
free from the Free Standards
Group (though the copyright
notice is subtly different, as are
the running headers and foot-
ers—see http://refspecs
.freestandards.org.

What now for the LSB? Are we
done? Of course not! The LSB
workgroup has a new chair, Ian
Murdock (the Ian of Debian). A
new subgroup is developing a
desktop specification, with an
increased focus on libraries
needed by desktop applications
such as GTK, Qt, PNG, XML,
more X, imaging, etc.

And with the pace of develop-
ment in the open source com-
munity, it is necessary to contin-
ually revise the specification to
match current practice. For
example, until recently the plug-
gable authentication modules
(PAM library) had no symbol
versioning, but the upstream
maintainers have now decided
to add that (which makes main-
taining an ABI possible). The
LSB now has to be updated to
discuss which version of which

symbol you should be using to
get the promised behavior.

Additionally, the LSB Core
Specification is mostly a super-
set of the POSIX APIs. How-
ever, there is a small handful of
places where the two specifica-
tions are at odds. For the most
part, these differences won’t
bother most programmers most
of the time, but there are corner
cases you can creep into where
you’ll find your application isn’t
portable between an LSB-con-
forming platform and a POSIX-
conforming platform. For exam-
ple, POSIX requires the error
EPERM if you attempt to unlink
a directory, while the LSB
requires this error to be EISDIR.

A document describing these
differences is now available from
ISO as Technical Report 24715.

During the revision of POSIX
this year, and as a part of any
future LSB development work,
we will review these changes to
see if there is any way that
either specification can accom-
modate the behavior of the
other in some deterministic
fashion.

A well-supported standard for
Linux is a necessary component
of Linux’s continued success.
Without a commonly adopted
standard, Linux will fragment,
thus proving costly for ISVs to
port their applications to the
operating system and making it

difficult for end users and Linux
vendors alike. With the LSB, all
parties—distribution vendors,
ISVs, and end users—benefit as
it becomes easier and less costly
for software vendors to target
Linux, resulting in more appli-
cations being made available for
the Linux platform.

It is important for the LSB
workgroup not to slip into the
comfortable feeling that the job
is now done. If the workgroup
does not remain focused on the
core document, that core docu-
ment will quickly become irrele-
vant, overtaken by the pressures
of distribution vendors to have
their product be the de facto
standard in the absence of a
good de jure base.

My work with the LSB over the
past year has not just been as
the technical editor of the ISO
standard, although this has been
a major part of my work. I have
also been one of the principal
technical editors of the specifi-
cation as a whole. With the
completion of the submission of
the initial core specification to
ISO, the sources of funding for
this critical project have largely
dried up. I end with a plea: if
your organization believes that
standards for UNIX, Linux, and
C are important, consider donat-
ing money to USENIX to help
fund the development and
maintenance of these standards.

A N N UA L M E E TI N G O F TH E U S E N I X B OA R D O F D I R E C TO R S

The Annual Meeting of the USENIX Board of Directors will take place at the Boston Marriott Copley Place
during the week of the 2006 USENIX Annual Technical Conference, May 30–June 3, 2006. The exact loca-
tion and time will be announced on the USENIX Web site.

