
23June 2004 ;login:

password protection
for modern
operating systems

l

SE
C

U
R

IT
Y

The purpose of this paper is to help readers understand the security of the
password encryption methods used in various operating systems and to
establish some best practices for password management without requiring a
background in cryptography. The article covers most pertinent background
material in the first three sections.

Introduction
Early computer systems offered little in the way of password protection. The earliest
designs stored a user’s actual password along with his or her identifying information
(username and/or user ID) in a central password file. Such schemes suffer from the
obvious problem that any user who either legitimately has or surreptitiously gains
access to the password file knows the password to every account on the system. Later
designs avoided this problem by storing only an encrypted or hashed value in the pass-
word database.

Such systems are still vulnerable. Any attacker with access to a list of encrypted pass-
words can guess passwords by encrypting words from the dictionary or at random and
comparing the encrypted results of his or her guesses against the encrypted passwords
in the database. The designers of the UNIX operating system improved on this
method by using a random value called a “salt.” A salt value ensures that the same
password will encrypt differently when used by different users. This method offers the
advantage that an attacker must encrypt the same word multiple times (once for each
salt or user) in order to mount a successful password-guessing attack.

Cryptography: The Basics
Encryption preserves the confidentiality of data. A user encrypts a message using a
secret key so that others who do not know the secret key cannot recover the message.
The message is called plaintext before encryption and ciphertext after encryption.
Password protection schemes also use encryption, typically as a secure hash function.

Many modern encryption algorithms are iterated block ciphers that break data into
blocks of a specified size and encrypt them by iterating an encryption function several
times; each of these iterations is a round. One such cipher, Blowfish, is discussed later.

Rather than use the whole key to perform encryption in each round, most iterated
block ciphers derive a subkey for each round using a “key schedule.” A simple key
schedule may select certain bits of the key for use in each round, whereas a more com-
plicated key schedule, such as in RC5, may use mathematical means to generate the
subkeys from the key.1

A hash function takes an input and applies a set of operations to reduce the input to a
numeric value of a fixed size (usually 128, 192, or 256 bits). Outside of cryptography,
programmers use non-secure hash functions to sort and search data. Secure hash
functions need to have the special properties that it is computationally infeasible to
determine a message from its hash value and that it is difficult to find another message
with the same hash value.

by Steven
Alexander
Steven is a program-
mer at Merced Col-
lege. He programs
for the Student Sys-
tem and manages
the college’s intru-
sion detection.

alexander.s@mccd.edu

1. Alfred Menezes et al., Handbook of Applied
Cryptography. CRC Press, 1997.

PASSWORD PROTECTION l

Vol. 29, No.3 ;login:24

Because it is difficult to find two messages with the same hash value, hash values are
used to verify the integrity of messages. Users can independently compute the hash
value of a message and compare it to a known source to verify that the message has
not changed. Operating systems often apply a hash function to a password and store
the encrypted result instead of the plaintext password. Because of the properties
described, it is hard to determine the original password from the hash value and it is
difficult to determine another password that has the same hash value (though one or
more might exist). A user who needs to authenticate to the operating system tells the
system his or her password, and the system hashes it and then compares the resulting
value with the value stored in the password hash database.

Some operating systems use a dedicated hash function such as MD4 or MD5 to pro-
tect passwords; others use an encryption algorithm such as DES or Blowfish. When an
encryption algorithm is used, the system uses each password as the secret key to encrypt
a known message. In this case, the message is not secret, the systems designers only
wish to prevent an attacker from guessing the key used to encrypt a message. The reader
of this article should be aware that what is often referred to as password encryption is
really password hashing. To add to the confusion, encryption algorithms are some-
times used as hash functions (albeit with some modification in use or design).

Early UNIX
The standard password hashing algorithm in UNIX, crypt, is a modification of the
DES encryption algorithm;2 it is often referred to by its man page entry, crypt(3). The
system hashes each password after combining it with a 12-bit (4096 possible combina-
tions) salt value. UNIX uses the salt value to modify one of the properties of the DES
algorithm; this means that the same password will hash to a different result after merg-
ing each with a different salt value.

The salt value is not secret; it is stored with the hashed password. When a user presents
a password to UNIX for authentication, the operating system looks up his or her salt
value and hashed password. UNIX uses the user’s stored salt value to modify the DES
algorithm when it hashes the presented password; the system then compares the result
with the value stored in the password database. Changing the DES algorithm with a
salt value has the added benefit that an attacker cannot use off-the-shelf DES encryp-
tion hardware to brute force passwords.

Whenever a user chooses a new password, the system generates a new salt at random.
Historically, UNIX generates the salt from the time of day or some other weak source
of entropy (randomness). Because of this, it is common for two users at a site to have
the same salt value. Still, the complexity of an offline password-cracking attack greatly
increases because each word must be re-hashed for each salt value.

The designers of UNIX also introduced another important idea in the design of the
UNIX crypt algorithm: They increased the time necessary to create or verify a pass-
word in order to further thwart offline password-cracking attacks while still keeping
system response to an acceptable level. UNIX iterates the DES algorithm 25 times to
create the crypt algorithm. Provos and Mazières estimated that a Digital Equipment
Corporation VAX-11/780 contemporary to the design of crypt would be able to try
only 3.6 possible passwords per second per salt.3 If a system had 36 users, each with a
different salt, it would take 10 seconds to try each possible password. Of course, mod-
ern equipment is able to fare much better; improved algorithms have replaced crypt in
several modern UNIX variants.

2. Menezes et al., Handbook; Robert Morris and
Ken Thompson, “Password Security: A Case
History,” Communications of the ACM, vol. 22,
no. 11 (November 1979), pp. 594–97.

3. Niels Provos and David Mazières, “A Future-
Adaptable Password Scheme,” Proceedings of the
1999 USENIX Annual Technical Conference
(June 1999), http://www.usenix.org/events/
usenix99/provos.html.

25June 2004 ;login: PASSWORD PROTECTION l

Recently, researchers at the San Diego Supercomputer Center instituted a project to
store the hashes of over 50 million common passwords computed once with each of
the 4096 possible hashes used by the DES crypt mechanism.4 Their results would be
less worrisome if they had not shown that the requirements for such an attack are also
within reach of a group of attackers using distributed storage.

Windows NT/2000/XP
The Windows NT line of Microsoft operating systems stores two password hashes: the
LanMan hash and the NT hash.5

LANMAN
The LanMan hash is used for backwards compatibility with Windows 95/98 and is the
less secure of the two Windows hashes. Windows limits passwords to 14 characters for
the LanMan hash. The system computes the LanMan hash by splitting the password
into two seven-character halves and converting all characters to uppercase; if the pass-
word is less than 14 characters, the system pads it with null bytes. The system uses each
half as a secret DES key to encrypt a fixed string of plaintext. The resulting hashes are
concatenated.

Programs such as L0phtCrack have exploited the weaknesses in the LanMan hash.
LanMan passwords are not case-sensitive. In addition, the system treats a 14-character
password as two seven-character passwords. To illustrate the problem, let us consider
the possible number of combinations for passwords of a given length and character
set.

If x is the size of the character set used for a group of passwords (for instance, 26 if the
passwords are alphabetic and not case-sensitive), then there are xy possible passwords
of length y with that character set. So a seven-character password that contains only
numbers and uppercase letters has 367 = 78,364,164,096 possible values.

An alphanumeric 14-character password should have 3614 = 78,364,164,096 x
78,364,164,096 possible values. Because Windows treats all passwords as two separate
seven-character passwords for the purpose of computing the LanMan hash, an
attacker only has to try 2 x 367 = 2 x 78,364,164,096 possible values. If we assume case
insensitivity, it is approximately 39 billion times easier to break two alphanumeric
seven-character passwords than it is to break an alphanumeric 14-character password.
If you had a computer that was capable of breaking any alphanumeric seven-character
password in one second (quite a feat!), you would have to wait up to 1200 years to
break an alphanumeric 14-character password.

Case sensitivity is a problem. A seven-character alphanumeric LanMan password has
367 = 78,364,164,096 possible values, since Windows converts all letters to uppercase
before it computes the hash. However, if the algorithm were case-sensitive, there would
be 627 possible values, a total of 3,521,614,606,208. There are 45 times more seven-
character case-sensitive alphanumeric passwords than seven-character case-insensitive
alphanumeric passwords.

NT HASH
Windows computes NT hashes by applying the MD4 hash algorithm, invented by Ron
Rivest, to the entire password; there is a 14-character maximum on Windows NT but
not on Windows 2000 or XP. The NT hash does not suffer from the same problems as
the LanMan hash. The NT dialect hash is case-sensitive and computed against the

4. Tom Perrine, “The End of crypt() Passwords
Please?” ;login:, vol. 28, no. 6 (December 2003),
pp. 6-12.

5. Bruce Schneier and Mudge, “Cryptanalysis of
Microsoft’s Point-to-Point Tunneling Protocol
(PPTP),” Proceedings of the 5th ACM Conference
on Communications and Computer Security
(November 1998), http://www.schneier.com/
paper-pptp.html.

l

SE
C

U
R

IT
Y

Vol. 29, No.3 ;login:26

entire password. Administrators who do not need to support Windows 95, 98, or Mil-
lennium Edition users are encouraged to disable the storage of the weaker LanMan
password.6

The MD4 algorithm consists of 48 steps which turn a 512-bit input into a 128-bit out-
put. MD4 pads all inputs to a multiple of 512 bits, though it can iterate over several
512-bit blocks if necessary. When passwords are 13 characters long or less, the inputs
to the last three steps are null. An attacker can use this information to reverse the last
three steps of any password hash he or she is trying to crack. Subsequently, the attacker
only needs to compute the first 45 steps for each password tried. This results in a
speedup of about 6%.

Further improvements to this optimization are possible. The 128-bit output of MD4 is
really four separate 32-bit values. Only one of these values changes in each step. The
fourth of these 32-bit values changes last in steps 41 and 45. Since step 45 is reversed
by the previous optimization, an attacker can compare the fourth part of the hash
value after step 41 to the calculated value and stop computing if the values do not
match. An attacker will only have to compute beyond step 41 once in every 4 billion
tries. This improves the speedup by about 15%.

COMMON PROBLEMS
The Windows password schemes suffer from some common problems. First, there
is no salt value applied to the passwords. Because of this, attackers can hash a large
dictionary of possible passwords in advance to speed up their attacks. Using efficient
sorting and searching methods, it is a trivial matter to determine whether a user’s pass-
word hash corresponds to one of the hashes in the attacker’s dictionary. An attacker
who is actively guessing passwords against a large list of users can save an enormous
amount of computation time by only having to encrypt each possible password once,
unlike the case with UNIX passwords.

Sort-and-search algorithms make an attacker’s job even easier. The naive method for
finding a Windows password is to hash a possible password, then compare the result
against the password hash of every user whose password you wish to recover. This is
akin to reading every entry in the phone book until you find the person you’re looking
for. By sorting the password hashes, an attacker only needs to compare the hash of

each possible password against a small num-
ber of password hashes.

Another drawback to the password hashing
schemes used in Windows is, unfortunately,
efficiency. Faster password hashing algorithms
allow an attacker to guess passwords more
quickly. Table 1 offers a comparison of the
speed of different password hashing algo-

rithms as implemented in the popular pass-
word cracker “John the Ripper.” The benchmarks in Table 1 are from the program’s
own benchmarking feature as it performed on a 2.4GHz Pentium 4 with 512MB RAM.
I have noticed that John performs about 40–50% faster in practice (on my reference
machine) than the benchmarks show; this is possibly a cache issue. L0phtcrack 4 per-
forms significantly better than John and is able to compute about 5.3 million LanMan
hashes per second; it computes about 126,000 NT hashes per second. The difference is
very likely rooted in machine-specific optimizations, so your mileage may vary.

6. SANS, “SANS Top 20 Vulnerabilities,”
http://www.sans.org/top20/.

Table 1

27June 2004 ;login: PASSWORD PROTECTION l

Obviously, it would do no good to slow down a password hashing routine to the point
that it bottlenecks a system; however, other modern operating systems have slowed the
process of password hashing in order to hinder would-be attackers. The key here is to
balance security and efficiency.

NEW AND IMPROVED PROBLEMS
Recently, Philippe Oechslin, improving on a technique developed by Martin Hellman
in 1980, developed a cryptanalytic attack that has consequences for Windows pass-
words.7 Readers interested in the details of the attack should read Oechslin’s paper.
This article will only cover the attack in a basic Windows-specific manner.

The attack is a time-memory tradeoff that requires an attacker to store up to several
gigabytes of data. If storage were of no consequence, an attacker could pre-compute
the hashes of every imaginable password up to some reasonable length and store them
along with the accompanying password. Attackers would then only need to look up a
given hash in their database to discover the password. Oechslin’s attack is able to
achieve nearly the same convenience with thousands of times less storage.

The attack uses large tables of “rainbow chains.” They are computed as follows:

1. A random word is generated and stored in the first column of the current row in
the table.

2. The word is encrypted and the resulting ciphertext is “reduced” so that it repre-
sents another possible password (each character is converted into a printable
ASCII character).

3. Step 2 is repeated many times over (usually a few thousand). The length of the
chain dictates the number of times that step 2 is repeated. A part of Oechslin’s
improvement on Hellman’s method is to slightly change how the reduction is
computed after each repetition in the chain. The details and consequences
require a paper of their own.8

4. The result of the final reduced value is stored in the second column of the cur-
rent row.

Once an attacker generates sufficiently large tables, he or she will be able to recover a
significant number of passwords in a small amount of time. An attacker first tries to
determine if the password used to compute a given hash is the same as one used to
compute one of the chains in his or her tables. This is determined by reducing and
hashing the password hash in a manner similar to the method listed above for creating
the tables. Each time the password hash is reduced, it is compared to the entries in col-
umn two of the table. If a match is found, the chain is recomputed (beginning with the
value in column 1). The attacker will have to weed through some false-positives to find
the target password. If one of the passwords hashed during the creation of the chain
produces the password currently under attack, the attacker is successful. It takes several
seconds to find a password using typical current workstations. The search takes longer
(and fails) if the password is not a part of any of the stored chains.

This attack is statistical in nature. For alphanumeric LanMan passwords, a 2.8 gigabyte
table will include about 99.9% of the possible passwords. An attacker actually has to
perform about 10 times as much computation to generate such a table of rainbow
chains as would be needed to compute and store every possible password and hash.
This is not as bad for the attacker as it seems. Using a 2.4GHz Pentium IV with 512
megabytes of RAM, I was able to generate five rainbow tables, each with 35 million

7. Philippe Oechslin, “Making a Faster Cryptan-
alytic Time-Memory Trade-Off,” Crypto 2003
(forthcoming). Douglas Stinson, Cryptography:
Theory and Practice. CRC Press, 1995.

8. Oechslin, “Making a Faster Cryptanalytic.”

l

SE
C

U
R

IT
Y

Vol. 29, No.3 ;login:28

chains of length 4666, in about 215 hours (nine days). These five tables are equivalent
to the single 2.8 gigabyte table mentioned above.

Oechslin applied his technique to the Windows LanMan password hash; the attack is
applicable to the Windows NT Hash with more effort. The attack is more difficult to
use against the NT Hash because it is case-sensitive and the passwords are not limited
to seven characters in length. Attackers could, of course, simplify their attacks by only
considering passwords of seven characters or fewer. Still, an attacker would have to
consider that there are a far greater number of possible case-sensitive passwords than
case-insensitive ones. The attacker would probably consider a lesser set of passwords,
such as those where all characters happen to be lowercase or where only the first letter
is in uppercase.

FreeBSD
By default, the FreeBSD operating system uses a crypt mechanism based on the MD5
hash algorithm. MD5 is the successor to the MD4 algorithm used for password hash-
ing in the Windows NT line of operating systems.

Poul-Henning Kamp developed the MD5 crypt routine based on Rivest’s MD5 hash
algorithm. MD5 crypt uses a salt of up to 48 bits and effectively has no limitation on
password length. It is also far slower than either DES crypt or the Windows password
hashing methods. To achieve this, MD5 crypt uses an inner loop with 1,000 iterations
to continuously remix data into the hash calculation. FreeBSD also supports the tradi-
tional DES-based crypt and a Blowfish-based crypt mechanism. FreeBSD distinguishes
MD5 and Blowfish hashes from DES crypt hashes by adding a prefix to the hash
entries.

Provos and Mazières raised questions about the design of MD5 crypt;9 however, the
algorithm currently looks to be far more secure than the DES crypt mechanism or
either of the Windows password hashing schemes. There is a better alternative to all of
these.

OpenBSD
Niels Provos and David Mazières have designed a crypt mechanism based on the
Blowfish encryption algorithm.10 Blowfish is a block cipher encryption algorithm
designed by Bruce Schneier.11 Provos and Mazières actually designed two algorithms,
eksblowfish and bcrypt. Eksblowfish is derived from Blowfish and has a purposefully
slow key schedule. Bcrypt is a hash algorithm based on eksblowfish. Bcrypt is the most
secure password hashing algorithm in common use at the time of this writing.

Bcrypt allows passwords to be up to 55 characters in length. Note that while MD5
allows longer passwords than bcrypt, this does not increase its security, because its
128-bit output is the limiting factor. It would be easier to find an alternate password
with the same hash as a given password than to find a specific password in excess of 55
characters. A random password consisting of only printable ASCII characters only
needs to be 20 characters long before a hash function output of 128 bits is the limiting
factor. A hash function with a 192-bit output limits the security of passwords of 30
characters or more. Passwords that are not completely random would need to be
longer to provide the same security; however, the limit of current supercomputing
technology is close to 70 bits and will not approach 128 or 192 bits anytime soon.

Bcrypt requires a random salt value of 128 bits, which is large enough that no two
accounts on the same system are ever likely to have the same salt. In fact, an attacker

9. Provos and Mazières, “A Future-Adaptable
Password Scheme.”

10. Provos and Mazières, “A Future-Adaptable
Password Scheme.”

11. Bruce Schneier, “Description of a New Vari-
able Length Key, 64-Bit Block Cipher (Blow-
fish),” Fast Software Encryption, Cambridge
Security Workshop Proceedings. Springer Verlag,
December 1993, pp. 191–204.

29June 2004 ;login: PASSWORD PROTECTION l

would need to have the hashes of about 16 quadrillion users before it is more likely
than not that two hashes are alike.

Bcrypt also uses a cost variable; an increase in the cost variable causes a likewise
increase in the time required to perform a bcrypt hash. The cost assigned to new pass-
words is configurable using a systemwide configuration file. In OpenBSD, administra-
tors can assign different cost values for normal users and the superuser.

Protecting Password Hashes
STORAGE
Password hashes need protection regardless of the security of the hashing mechanism.
An attacker lacking the password hashes for a system cannot attempt any offline
attacks.

Most UNIX systems offer password shadowing. When password shadowing is used,
user information is stored in the /etc/passwd file but the password hashes are stored in
another file, usually /etc/shadow or /etc/master.passwd. Many UNIX systems auto-
matically use password shadowing; others (HP-UX for instance) require an adminis-
trator to configure password shadowing. All system administrators are encouraged to
familiarize themselves with the pertinent areas of their system documentation.

When possible, UNIX administrators should use MD5 crypt or Blowfish instead of the
traditional DES crypt. Both of these alternatives are available on Linux, Solaris, and
the BSD systems. For information about Blowfish on Linux, please visit OpenWall
(http://www.openwall.com/crypt/). Sun Microsystems recently introduced their own
crypt mechanism based on MD5. The new mechanism is meant as a more secure
replacement for the MD5 crypt mechanism introduced for FreeBSD. Sun’s new algo-
rithm uses a configurable number of iterations for its inner loop. The default value is
currently 4096. I do not currently know if the inner loop is the same as FreeBSD’s but,
with the high number of iterations, it looks to be much slower (which is good!). To my
knowledge, these alternative crypt routines are not currently available on AIX, IRIX, or
HP-UX. Replacing DES crypt may break some upper-level applications, particularly
those run from UNIX operating systems that do not support the new methods; con-
sider yourself warned.

Microsoft introduced SysKey, with the release of Windows NT Service Pack 3, to
encrypt password hashes stored in the Windows registry. Attackers can bypass SysKey
protection using pwdump2. For more information on SysKey use, Windows adminis-
trators should refer to Microsoft’s “knowledge base” articles.12

TRANSMISSION
Sending unencrypted passwords across a network is an activity best reserved for those
who like to live dangerously. Many administrators erroneously think that switched
networks will prevent an attacker from sniffing passwords as they travel across a net-
work; this is not true.13 Switches enter a “learning” mode after they start up. While in
this learning mode, a switch will broadcast traffic in the same manner as a hub. The
MAC tables on a switch can also be selectively poisoned, which allows traffic intercep-
tion, as is done by programs like Dsniff and Ettercap, or they can be overloaded so that
legitimate entries are flushed from the table, which will force the switch to broadcast
traffic destined for those addresses.

12. Microsoft, “Windows NT System Key Per-
mits Strong Encryption of the SAM,” Microsoft
Knowledge Base Article 143475; Microsoft,
“How to Use the SysKey Utility to Secure the
Windows 2000 Security Accounts Manager
Database,” Microsoft Knowledge Base Article
310105, http://support.microsoft.com/.

13. Abe Singer, “No Plaintext Passwords,” ;login:,
vol. 26, no. 7 (November 2001), pp. 83–91.

l

SE
C

U
R

IT
Y

Vol. 29, No.3 ;login:30

The security personnel at the San Diego Supercomputer Center have eliminated the
transmission of unencrypted passwords on their protected network using solutions
such as SSH and SSL.14 System administrators are encouraged to read Abe Singer’s
paper and consider what they can do for their own networks.

Some protocols that enable the elimination of plaintext password transmission have
other drawbacks. For instance, the Windows NTLM protocols use a challenge response
mechanism.15 In the NTLM protocols, a server sends a random challenge to a client
that has requested authentication. The client encrypts the challenge using a user’s
password hash and sends it back to the server. The server attempts to decrypt the
client’s response using the copy of the user’s password hash stored on the server.

This scheme suffers from the obvious problem that a user only needs the password
hash to authenticate; an attacker able to recover the hashes from the server can operate
just as well as if he or she had the actual passwords. This version of the protocol has
numerous other problems as well. Version 2 of the NTLM protocol has better security
properties than its predecessor; administrators are encouraged to upgrade.16 The Ker-
beros protocol also suffers from the problem that all of the information needed to
authenticate is stored on the server.17

Password Policy
PASSWORD HANDLING
Often, the users of a system will bypass all of the carefully designed and maintained
security mechanisms of that system to convenience themselves. It doesn’t matter how
securely passwords are chosen or stored in a system if users have those passwords stuck
to their monitor or keyboard on a sticky note. There are two things to consider here:
policy needs to strictly forbid such activity, and users need to have passwords that they
can remember. Unfortunately, effectively enforcing policy requires the involvement of
management. Getting all of the management in an organization to enforce rules
against post-it notes may require divine intervention. However, other approaches may
have better success.

One approach is for system policy to specifically authorize IT staff to confiscate post-it
notes with password information and disable the related account. This should elimi-
nate visible notes but probably won’t prevent users from sticking notes under their
keyboard or in the top drawer of their desk. User education can help increase adher-
ence to policy.

Writing a password down is not always bad. It is quite reasonable to have system
administrative passwords written down in a secure location. Of course, proper proce-
dures must be maintained for handling the passwords. Sometimes, an administrator
may need to keep a written copy of passwords temporarily. Consider, for instance, the
case that a successful intrusion has happened and the administrator must change sev-
eral different passwords at once. Some administrators solve this problem by choosing
multiple passwords that are variations of each other. This method suffers from the
problem that password cracking software might generate those same variations if one
of the passwords is cracked successfully and added to an attacker’s dictionary. If
administrators (or users) must write down password(s), I recommend that they are
stored in a semi-secure location, such as a locked cabinet or drawer (in a non-public
area) or a wallet (if kept on the administrator’s person). Change the passwords imme-
diately if the written copy is lost.

14. Singer, “No Plaintext Passwords.”

15. Hobbit, “CIFS: Common Insecurities Fail
Scrutiny” (January 1997), http://www.
insecure.org/stf/cifs.txt; Schneier and Mudge,
“Cryptanalysis of Microsoft’s PPTP”; Bruce
Schneier et al., “Cryptanalysis of Microsoft’s
PPTP Authentication Extensions (MS-
CHAPv2),” CQRE ’99 (Springer Verlag, 1999),
pp. 192–203, http://www.schneier.com/
paper-pptpv2.html.

16. Schneier et al., “Cryptanalysis of Microsoft’s
PPTP Authentication Extensions”; Microsoft,
“How to Enable NTLM 2 Authentication,”
Microsoft Knowledge Base Article 239869
(2004), http://support.microsoft.com/.

17. Rik Farrow, “Network Defense: Kerberos for
Net Authentication,” http://www.spirit.com/
Network/net0902.html; Simson Garfinkel and
Gene Spafford, Practical UNIX and Internet
Security. O’Reilly, 1996.

31June 2004 ;login: PASSWORD PROTECTION l

Many organizations have periodic staff development activities; if management can be
convinced to sponsor a workshop that includes basic security information and the rea-
soning behind policy, users may adhere to it more closely. It may also be effective for
IT staff to periodically share information about attacks on the network. I am not sug-
gesting that anybody should try to convince their system’s users of an impending elec-
tronic doomsday, only that some awareness is helpful.

Another problem in most organizations is password sharing. Eliminating this problem
involves both technical and policy measures. Restricting users to a single logon session
can help to alleviate the problem. If possible, policy should authorize the IT depart-
ment to disable accounts that it knows a user has shared. It is also important that it be
as simple as possible for users to gain access to objects to which a user should legiti-
mately have access. If it takes days for a user to get access to the resources that they
need, they are much more likely to try to share another’s account. In addition, in such
an environment, users are more likely to be sympathetic to other users and share their
password when asked.

PASSWORD SELECTION
The weakest passwords are short or are words, names, or derivations of words or
names. Simply changing an “A” to a “4” or an “s” to a “$” does not significantly increase
the security of a password. The password cracker John the Ripper has a customizable
set of rules that it uses to try various permutations on supplied dictionary words and
user information as possible passwords.

The three properties that define the security of a password are: length, character set,
and randomization. Strength in one of these properties can make up for weaknesses in
the others (to a point).

When passwords are not limited to seven or eight characters, as in Windows NT or
some UNIX systems, length is the easiest way to increase the security of a password. It
is easier to choose a very long password than a very random password. A 40-character
password that uses only lowercase letters and spaces will be extremely difficult to
break. Using current computing technology, such a password would be impossible to
break without good language analysis or luck. Still, it is not wise to pick passwords
from a popular text such as one of Shakespeare’s plays or sonnets.

The characters used in a password have a major effect on the security of the password,
especially when the length of a password is limited. An eight-character password with
lowercase letters and punctuation is over 800 times harder to break than a password of
the same length with just lowercase letters. When considering the characters used in a
password it is useful to break the character set into groups: uppercase and lowercase
letters each account for 26 characters, numbers account for only 10, and special char-
acters account for 34. Strong passwords should have at least one character from each of
three different groups.

Truly random passwords are hard to remember. It usually suffices to generate a pass-
word from a pattern that is meaningful only to you. “TfcIdwaT” is meaningful only if
you know that it stands for “The first car I drove was a Toyota.” Adding or prepending
a number to this password would make it even better (if it wasn’t in print).

On Microsoft Windows 2000 and later, there is an option in the Local Security Policy,
accessed through Administrative Tools in the Control Panel, that “Password must meet
complexity requirements,” which can be enabled to force users to use strong pass-

l

SE
C

U
R

IT
Y

Vol. 29, No.3 ;login:32

words. It requires that users not base passwords on their username (in whole or in
part), that passwords be at least six characters long, and that the password contain
characters from at least three of the four character groups mentioned above. I think
that this forms the basis for a good password selection policy on any system. My only
complaint is that the length requirement is too low. Thankfully, Windows also allows a
minimum password length to be set; I recommend 14 characters if storage of the Lan-
Man password has not been disabled; otherwise, depending on the security require-
ments of the system, the value can be set as low as 10.

Various methods exist in other operating systems for enforcing password policy.
OpenWall has made a PAM module available that allows flexible policy configuration
(http://www.openwall.com/passwdqc/). Among other things, the module can modify
password length requirements based on the character groups present in a given pass-
word. Many systems allow an administrator to configure a minimum password length
even if PAM is not available. Recall that only the first eight characters matter if the tra-
ditional DES crypt is used.

PASSWORD AGING
Password aging is configurable on most systems and is important for a good security
policy. I don’t recommend expiring passwords more often than every 30 days; users are
more liable to forget their passwords, reuse passwords, or write them down. Passwords
for accounts with administrative privileges should expire every 30 to 90 days, whereas
it may be acceptable to force the expiration of user passwords as infrequently as every
120 to 180 days. If possible, use password history to prevent users from reusing old
passwords. My recommendation, if the option is configurable, is to remember one to
two years’ worth of passwords.

Administrators must consider several factors when deciding how often to change pass-
words. If the security requirements of the network are high, passwords should expire
more frequently. If the password hashing mechanism is weak, DES crypt, or a Win-
dows method, the passwords should again expire more frequently. If an attacker gains
administrative access, expire all passwords immediately (aside from other measures). If
passwords are not transmitted across the network in the clear, passwords can be
changed less frequently. Systems that force users to choose strong passwords of 10
characters or more, except systems using LanMan or DES crypt, can afford to allow
passwords to expire a little less often.

It is important to remember that, regardless of their cryptographic strength, passwords
can be captured by sniffing, keystroke logging, or other methods. A major point to
consider is the willingness of your user population to comply with the requirements
and not break security by other means (such as sticky notes).

PASSWORDS ON MULTIPLE SYSTEMS
To whatever extent possible, administrators and users should use different passwords
for different systems. The passwords used for personal accounts should never be the
same as those used in the workplace. I would also recommend that passwords be dif-
ferent for different classes of systems in the workplace.

To clarify this statement the passwords used for Windows accounts should not match
those used for UNIX accounts. One can consider network devices such as routers and
switches a single class, but they should be separate from security-critical devices such
as intrusion detection systems and firewalls.

The passwords used for
Windows accounts should
not match those used for
UNIX accounts.

33June 2004 ;login: PASSWORD PROTECTION l

The key is that there should be some separation. If passwords are the same or similar
across multiple systems, an attacker is more likely to leverage access on one machine to
gain access to the rest of the network. This is especially true of passwords used to
access third-party server software; several years back I discovered that the password
encryption used in a popular email server for Windows was just a simple substitution
cipher. Six months later, a security company discovered that the company had replaced
the password encryption algorithm with another equally simple cipher. Be careful and
use your own judgment when reusing passwords.

Acknowledgments
I extend my thanks to Keith Simonsen for his suggestions and Casper Dik for answer-
ing my last-minute questions.

l

SE
C

U
R

IT
Y

Save the Date!
OSDI ’04

Sixth Symposium on
Operating Systems Design

and Implementation
December 6–8, 2004 u San Francisco, CA

Co-located with WORLDS ’04

http://www.usenix.org/osdi04/

