
Proceedings of USITS' 99: The 2nd USENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11–14, 1999

M I N I N G L O N G E S T R E P E A T I N G
S U B S E Q U E N C E S T O P R E D I C T
W O R L D W I D E W E B S U R F I N G

James Pitkow and Peter Pirolli

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Mining Longest Repeating Subsequences to
Predict World Wide Web Surfing

James Pitkow
Xerox PARC

Palo Alto, CA 94304 USA
pitkow@parc.xerox.com

Peter Pirolli
Xerox PARC

Palo Alto, CA 94304
pirolli@parc.xerox.com

Abstract

Modeling and predicting user surfing paths involves
tradeoffs between model complexity and predictive
accuracy. In this paper we explore predictive modeling
techniques that attempt to reduce model complexity
while retaining predictive accuracy. We show that
compared to various Markov models, longest repeating
subsequence models are able to significantly reduce
model size while retaining the ability to make accurate
predictions. In addition, sharp increases in the overall
predictive capabilities of these models are achievable
by modest increases to the number of predictions made.

1. Introduction

Users surf the World Wide Web (WWW) by navigating
along the hyperlinks that connect islands of content. If
we could predict where surfers were going (that is, what
they were seeking) we might be able to improve
surfers’ interactions with the WWW. Indeed, several
research and industrial thrusts attempt to generate and
utilize such predictions. These technologies include
those for searching through WWW content,
recommending related WWW pages, and reducing the
time that users have to wait for WWW content
downloads, as well as systems for analyzing the designs
of web sites. Our previous work [12, 17] has attempted
to characterize basic empirical properties of user
surfing paths at web sites. Studied properties include
the distribution of the number of clicks made by surfers
at a web site, the complexity of path structures, and the
consistency (or change) of paths over time. In this
paper we explore pattern extraction and pattern
matching techniques that predict future surfing paths.
We expect that future work may exploit these modeling
techniques in applications such as WWW search,
recommendations, latency reduction, and analysis of
web site designs.

Modeling and predicting user surfing paths involves
tradeoffs between model complexity and predictive
accuracy. In this paper we explore predictive modeling
techniques that attempt to reduce model complexity
while retaining predictive accuracy. The techniques
merge two methods: a web-mining method that extracts
significant surfing patterns by the identification of
longest repeating subsequences(LRS) and a pattern-
matching method that embodies the principle of
weighted specificity. The LRS technique serves to
reduce the complexity of the model by focusing on
significant surfing patterns. This technique has been
explored in connection with other areas of user
interaction [8]. The weighted specificity principal
exploits the finding that longer patterns of past surfing
paths are more predictive. These techniques are
motivated by results from previous predictive models
and our prior empirical characterization [17] of surfing
data. We shall show that when compared against a base
standard of two different Markov model
representations, the LRS pattern extraction and
weighted specificity pattern matching techniques are
able to dramatically reduce model complexity while
retaining a high degree of predictive accuracy.

1.1. Surfing Paths

Figure 1 models the diffusion of surfers through a web
site [12, 17]: (a) users begin surfing a web site starting
from different entry pages, (b) as they surf the web site,
users arrive at specific web pages having traveled
different surfing paths, (c) users choose to traverse
possible paths leading from pages they are currently
visiting and (d) after surfing through some number of
pages, users stop or go to another web site. Research in
a number of application areas assumes, either explicitly
or implicitly, that information about surfing paths
observed in the past can provide useful information
about surfing paths that will occur in the future.

2. Applications of Predictive Models

2.1 Search

The ability to accurately predict user surfing patterns
could lead to a number of improvements in user-WWW
interaction. For instance, the Google search engine [3]
assumes that a model of surfing can lead to
improvements in the precision of text-based search
engine results. Conceptually, Google models surfers
pursuing random walks over the entire WWW link
structure. The distribution of visits over all WWW
pages is obtained from this model. This distribution is
then used to re-weight and re-rank the results of a text-
based search engine. Under this model, surfer path
information is viewed as an indicator of user interests,
over and above the text keywords entered into a
standard search engine. Following this line of reasoning
one might also assume that surfing models with higher
predictive accuracy would yield better search engines
since the models provide a more realistic view of real
world usage. The approach we propose here aims to be
more informed than the random walk model implicit in
Google. To the extent that surfing predictions improve
text-based search results, we would expect that a more
informed approach would yield better improvements
than a random walk model.

2.2 Recommendation of Related Pages

Recently, tools have become available for suggesting
related pages to surfers [10, 16, 18]. The “What’s
Related” tool button on the Netscape browser
developed by Alexa, provides recommendations based
on content, link structure, and usage patterns. Similar
tools for specific repositories of WWW content are also
provided by Autonomy. One can think of these tools as
making the prediction that “surfers who come to this
page (site) are most likely to be interested in the
following pages (sites).” The predictive model of
surfing proposed here could be used to enhance the
recommendations made by these and other systems.

2.3 Web Site Models

Producers of WWW content are often interested in
improvements in web site design. Recent research has
developed visualizations to show the flow of users
through a web site [5]. Businesses have emerged (e.g.,
Web Techniques, www.webtechniques.com) that send
simulated users through existing web sites to provide
data on web site design. Predictive models of surfer
paths could help move the state of web site analysis
from post-hoc modeling of past user interactions, or a
current web site, to predictive models that can
accurately simulate surfer paths through hypothetical

Enter Exit

Users enter a webs ite at various
pages and begin s urfing

Continu ing users d is tribu te themselves
down various paths

Users arrive at pages hav ing traveled

d ifferent paths

A fter some number of page v is its
users leave the web s ite

(a)

(b)

(c)

(d)

p
1

p
3

p
2

Figure 1. A conceptual model depicting the various stages of users traversing a web site.

web site signs. Web site designers could explore
different arrangements of links that promote desired
flows of surfers through content.

2.4 Latency Reduction

Predictive models have significant potential to reduce
user-perceived WWW latencies. Year after year, users
report WWW delays as their number one problem in
using the WWW [19]. One emerging strand of research
that aims to improve WWW access times has grown out
of research on improving file accesstime though
prefetching and caching methods (e.g., [4]). Of
particular interest to our research, Griffioen and
Appleton’s work [11] on file system prediction
introduced the notion of automatic prefetching and
evaluated the effectiveness of a one-hop Markov model.

A number of recent methods based on the use of
Markov models as well as other methods have recently
been proposed for prefetching and caching of WWW
pages [1, 9, 13, 15, 20]. Roughly, the idea is that if a
system could predict the content a surfer was going to
visit next, and there was little cost involved, then the
system could prefetch that content. While the user
processes one page of content, other pages could be
prefetched from high-latency remote sites into low-
latency local storage.

Kroeger, Long, and Mogul [13] explored potential
improvements in WWW interaction latencies that might
be gained by predicting surfer paths. Current proxy
servers typically mediate WWW access by accepting
requests from user client applications. These requests
are serviced by delivering content that has been cached,
prefetched, and retrieved from other caches, or
retrieved directly from origin Web servers. Proxies are
typically accessed faster by clients than WWW servers
are accessed by proxies. This usually occurs because
the proxies are located on the same local area network
as the client, whereas the proxies must access WWW
servers over external network connections. Assuming
this standard configuration, Kroeger et al. divided user-
WWW latencies into (a) internal latencies caused by
computers and networks utilized by the clients and
proxies and (b) external latencies caused by computers
and networks between the proxies and external WWW
servers. Examining WWW user traces collected at the
Digital Equipment Corporation WWW proxy, Kroeger
et al. found that external latencies accounted for 88% of
the total amount of latency seen by users geographically
close to proxies. Other analyses by Kroeger et al.
suggest that up to 60% of the observed external

latencies could be reduced by improved caching and
prefetching methods.

3. Predictive Surfing Models

Several predictive models of surfing have been
developed in order to improve WWW latencies. It is
instructive to review how their effectiveness varies.
This review, plus a review of prior empirical
characterizations of surfing patterns, motivate the
pattern extraction and pattern matching techniques that
we present in Section 5.1.

3.1 Path Profiles

Schechter, Krishnan, and Smith [20] utilized path and
point profiles generated from the analysis of Web
server logs to predict HTTP requests. They used these
predictions to explore latency reductions through the
pre-computation of dynamic Web pages. The profiles
are constructed from user session. During a single
session, a user interacting with the WWW traverses
some sequence,S, of URLs. From that single sequence,
the set of all possible subsequences is extracted as
paths. Over some time period (say a day), the
frequency of all observed paths is recorded. The
resulting path profile consists of the set of all ordered
pairs of paths and their observed frequencies.

Schechter et al. propose a method for predicting the
next move of a surfer based on matching the surfer's
current surfing sequence against the paths in the path
profile. The ranking of matches is determined by a
kind of specificity heuristic: the maximal prefixes of
each path (the firstN-1 elements of anN-length path)
are compared element-wise against the same length
suffixes of the user path (i.e., a sizeN-1 prefix is
matched against the lastN-1 elements of the user path),
and the paths in the profile with the highest number of
element-wise matches are returned. Partial matches are
disallowed. In other words, if a surfer's path were <A,
B, C>, indicating the user visited URL A, then URL B,
then URL C, the path would be better matched by a
path in the profile of <A, B, C, D> than <B, C, E>. For
the paths in the profile that match, the one with the
highest observed frequency is selected and used to
make the prediction. Using our example, if <A, B, C,
D> were the best match and most frequently observed
path in the profile, then it would be used to predict that
the user who just visited <A, B, C> would next visit
URL D. Schechter et al. found that storing longer paths
in the profile offered some improvements in prediction
but they did not study this systematically.

Schechter et al. were also concerned with reducing
model complexity. They pointed out that since a
sessionS consists of an ordered sequence of URLs
visited by a user, the worst case scenario of a naïve
algorithm to store the decomposition of every path is
order |S|3. To reduce the model size, Schechter et al.
used a maximal prefix trie with a minimal threshold
requirement for repeating prefixes.

3.2 First-Order Markov Models

Based on the first-order Markov prediction method
described in [11] for file prediction, Padmanabhan and
Mogul [15] constructed a dependency graph containing
nodes for all files ever accessed at a particular WWW
server. Dependency arcs between nodes indicated that
one file was accessed within some number of accesses
w of another file. The arcs were weighted to reflect
access rates. Padmanabhan and Mogul found that a
predictive prefetching method based on this
dependency representation reduced WWW latencies,
and the reductions increased asw increased fromw=2
to w=4.

Bestravos [1] used a method where one first estimates
the conditional probabilities of transitioning directly
from each page to every other page within a timeTw

based upon server log file analysis. Like Padmanabhan
and Mogul, this is a first-order Markov model
approximation for predicting surfer paths, except the
forward window is measured by time instead of number
of pages. Using this approach, Bestravos developed a
speculativeservice method that substantially reduced
server loads and latencies. The architecture allows for
the server and/or client to initiate the retrieval of
resources predicted to be requested in the near future.
Such systems now are generally referred to ashint-
basedsystems, e.g., [7, 13, 15]. Bestravos did not,
however, explore the effects of using longer surfer
paths (higher-order Markov models) in the predictive
model.

3.3 Summary

Regardless of where the transitions were recorded
(proxy, server, etc.) all of these prefetching methods
essentially record surfing transitions and use these data
to predict future transitions. It is interesting to note that
the methods of Schechter et al. and Padmanabhan and
Mogul seemed to improve predictions when they stored
longer path dependencies. In order to further motivate
the rational behind the specificity principle for path
matching, we next summarize the results of empirical
analyses we [17] performed on server log files. In

Section 5 we introduce the longest repeating
subsequence (LRS) method as a technique that adheres
to the principles of path specificity and model
complexity reduction and evaluate it against surfing
path data in Section 6.

4. Empirical Analysis Surfing Paths using
K th-Order Markov Models

In [17], we systematically evaluated the predictive
capabilities of Kth-order Markov using ten days of log
files collected at the xerox.com web site. Among other
things, the results of this analysis suggest that storing
longer path dependencies would lead to better
prediction accuracy. This section reviews the methods
and results of that study.

4.1 N-Gram Representation of Paths

Surfing paths can be represented asn-grams. N-grams
can be formalized as tuples of the form <X1, X2, … Xn>
to indicate sequences of page clicks by a population of
users visiting a web site. Each of the components of the
n-gram take on specific valuesXi = xi for a specific
surfing path taken by a specific user on a specific visit
to a web site.

Users often surf over more than one page at a web site.
One may record surfing n-grams, <X1, X2, … Xn> of
any length observable in practice. Assume we define
these n-grams as corresponding to individual surfing
sessions by individual users. That is, each surfing
session is comprised of a sequence of visits made by a
surfer, with no significantly long pauses. Over the
course of a data collection period—say a day—one
finds that the lengths,n, of surfing paths will be
distributed as an inverse Gaussian function1, with the
mode of the distribution being length one. This appears
to be a universal law that is predicted from general
assumptions about the foraging decisions made by
individual surfers [12]. In practice one typically finds
that the majority of users visit one page on a web site
and then click to another web site.

4.2 Kth-Order Markov Approximations

The first-order Markov model used by Bestravos [1]
and Padmanabhan and Mogul [15] were concerned with
page-to-page transition probabilities. These can be

1 The inverse Gaussian distribution is a heavily skewed
distribution (much like the log normal distribution) that
predicts that the bulk of recorded paths will be very short with
a few very long paths.

estimated from n-grams of the form <X1, X2> to yield
the conditional probabilities

p(x2 | x1) = Pr(X2 = x2 | X1 = x1) .

If we want to capture longer surfing paths, we may
wish to consider the conditional probability that a surfer
transitions to annth page given their previousk = n-1
page visits:

p(xn | xn−1,...xn −k) = Pr(Xn = xn | Xn−1,...,Xn− k).

Such conditional probabilities are known as Kth-order
Markov approximations (or Kth-order Markov models).
The zeroth order Markov model is the unconditional
base rate probability:

p(xn) = Pr(Xn)

which is the probability of a page visit. This might be
estimated as the proportion of visits to a page over a
period of time.

4.3 Summary of Prior Empirical Analysis

Using data collected from xerox.com for the dates May
10, 1998 through May 19, 1998 we [17] systematically
tested the predictive properties of Kth-order Markov
models. The site received between 220,026 and 651,640
requests per day during this period. Over this period,
there were 16,051 files on the xerox.com web site, of
which 8,517 pages were HTML.

The reliable identification of user paths in a web site is
often a complicated and site specific task. The
xerox.com web site issued cookies to users only upon
entry to the Xerox splash page and recorded the “User-
Agent” and “Referer” field for each request when
present. User paths were identified using cookies and a
set of fallback heuristics when cookies did not exist2.
The Xerox server permitted caching of resources. When
present, Get-If-Modified headers were included in the
construction of user paths. Still, under certain client
and proxy configurations, the xerox.com caching policy
resulted in missed client navigation, e.g., when a user
clicked on the “Back” button. As a result, user paths
constructed by our heuristics often contained transitions
to other pages not linked to from the current page. Over
the ten days used in this study, 176,712 user paths were
observed.

2 The exact methods, tradeoffs, and the effects of counting
each IP as a user are described greater detail in[17].

The models were estimated from surfing transitions
extracted from training sets of WWW server log file
data and tested against test sets of data that occurred
after the training set. The prediction scenario assumed
a surfer was just observed makingk page visits. In
order to make a prediction of the next page visit the
model must have (a) an estimate ofp(xn|xn-1,…xn-k)
from the training data, which required that (b) a path of
k visits <xn-1,…xn-k> (a penultimate path) had been
observed in the training data. Given a penultimate path
match between paths in the training and test data, the
model examined all the conditional probabilities p(xn|xn-

1,…xn-k) available for all pagesxn, and predicted that
the page having the highest conditional probability of
occurring next would in fact be requested next.
Whether the observed surfer made the predicted visit (a
hit) or not (a miss) was then tallied. The model did not
make a prediction when a matching path in the model
did not exist. It is important to examine the
performance of the model in making correct predictions
as well as incorrect predictions since incorrect
predictions often result in undesirable costs, which can
mitigate any benefits.

Table 1 presents a subset of the analyses presented in
[17], where predictions based on a training set collected
one day and were tested against data collected the next
day. We define

• Pr(Match), the probability that a penultimate path,
<xn-1,…xn-k>, observed in the test data was matched
by the same penultimate path in the training data,

• Pr(Hit|Match), the conditional probability that page
xn is visited, given that <xn-1,…xn-k>, is the
penultimate path and the highest probability
conditional on that path is p(xn|xn-1,…xn-k),

• Pr(Hit) = Pr(Hit|Match)•Pr(Match), the probability
that the page visited in the test set is the one
estimated from the training as the most likely to
occur (in accordance with the method in our
scenario),

• Pr(Miss|Match), the conditional probability that
pagexn is not visited, given that <xn-1,…xn-k>, is the
penultimate path and the highest probability
conditional on that path is p(xn|xn-1,…xn-k),

• Pr(Miss) = Pr(Miss|Match)•Pr(Match), the
probability that the page visited in the test set isnot
the one estimated from the training as the most likely
to occur (in accordance with the method in our
scenario), and

• Pr(Hit)/Pr(Miss), the probability of correctly
predicting pagex divided by the probability of
making an incorrect prediction for all transitions.

The last metric provides a coarse measure of the
benefit-cost ratio. That is,

Benefit:Cost =B * Pr(Hit) / C * Pr(miss)

whereB andC vary between 0 and 1 and represent the
relative weights associated with the benefits and costs
for each application. Naturally, different applications
have different inherent tradeoffs associated with the
benefits of making a correct prediction versus the costs
of making an incorrect prediction and will often require
a more complex metric to encode the true tradeoffs.
From Table 1 it can be seen that,

• Lower-order models have higher Pr(Match). This
indicates that the chances of seeing short surfing
paths across days are much higher than for longer
surfing paths.

• Higher-order models have higher Pr(Hit|Match). If
one can find a match of longer surfing paths then
they are likely to be better predictors than shorter
surfing paths.

• Lower-order models have higher Pr(Hit) overall.
This indicates that the overall hit rate is dominated by
the probability of finding a penultimate path match,
Pr(Match).

• For the xerox.com data, if one assumes that the
benefit of making a correct hit equals the cost of
making an incorrect prediction (B = C = 1), using a
4th order model is optimal.

Included in [17] is an analysis of prediction stability
over time using entropy analysis and the improvements
due to increasing the size of the training data set.

The results of the above analyses lead us to explore
methods that would improve both pattern extraction and
pattern matching. In this next section, we introduce the
notion of longest repeating subsequences (LRS) to
identify information rich patterns and present two
modifications of LRS to improve pattern matching.
These models are then compared to different Markov
models in Section 6.

5. Model and Prediction Methods

Schechter et al. [20] discuss the explosive growth of
storage requirements for path profiles (we discuss their
analysis in detail below). Producing an accurate
predictive model using the least amount of space has
many computational benefits as well as practical
benefits. One might even imagine a model being
compact enough to reside in memory for each thread
handling requests on a busy WWW server.

One solution to reduce model space is to use compact
data structures like tries as was used in Schechter et al.
While an issue of great interest and complexity, we will
not treat more efficient data structure solutions in this
paper. Another solution is to attack the problem at the
core and remove low information elements from the
model. The LRS technique treats the problem as a data-
mining task, where some of the paths are considered
noise. This hinges off the insight that many paths occur
infrequently, often as a result of erroneous navigation.
Identifying repeating subsequences enables common
sub-paths to be extracted. This has the benefit of
preserving the sequential nature of the paths while
being robust to noise. Using LRS, the storage
requirement is reduced by saving only information rich
paths.

Table 1. Probability of matching a path of the same length, Pr(Match), conditional probability of accurately predicting the
next page visit of a surfer given a path match, Pr(Hit|Match), and the overall accuracy of predicting a surfer page visit,
Pr(Hit). Conditional miss probabilities, Pr(Miss|Match), overall miss rate, Pr(Miss), and hit to miss ratios, Pr (Hit)/Pr(Miss),
are also provided. Training data and test data were collected on successive days. Matching and predictions were conducted
on paths of the same length. No predictions were made in the absence of a match.

Order of
Markov Model

Pr
(Match)

Pr
(Hit|Match)

Pr
(Hit)

Pr
(Miss|Match)

Pr
(Miss)

Pr(Hit)/
Pr(Miss)

1 .87 .23 .20 .77 .67 .30
2 .61 .30 .18 .70 .43 .42
3 .30 .34 .10 .66 .20 .51
4 .21 .41 .08 .59 .12 .65
5 .21 .29 .06 .71 .15 .40
6 .20 .31 .06 .69 .14 .43
7 .20 .27 .05 .73 .15 .34

The second method we explore is to use a specificity
heuristic in pattern matching. As shown by the results
of Schechter et al., Padmanabhan and Mogul, and Table
1, higher-order Markov models result in higher
prediction rates when there is a penultimate path match.
The principle of specificity encourages the use of
higher-order path matches whenever possible to
maximize hit rates. The drawback of this approach is
that the likelihood of a higher-order path match is quite
small, resulting in lower overall hit rates. The
decreased likelihood of a long path match is in part a
function of the inverse Gaussian distribution of path
lengths, where over 80% of the distribution is
accounted for by paths of length four or less. It also is a
function of the exponential growth in the combinations
of possible paths, where the length of the path is the
base and the exponent is the average number of links
per page within the web site. As an example, given a
site with an average of three links per page, a path of
length eight will have 6,561 possible combinations
assuming only forward traversals. Due to limitations in
the ability of server logs to completely capture user
navigation, recorded paths are not limited to only
forward links, which makes the set of possible
combinations even larger.

5.1 Longest Repeating Sequences

A longest repeating subsequence [8] is a sequence of
items where

1)subsequence means a set of consecutive items,
2)repeated means the item occurs more than some

thresholdT, whereT typically equals one, and
3)longest means that although a subsequence may be

part of another repeated subsequence, there is at least

once occurrence of this subsequence where this is the
longest repeating.

To help illustrate, suppose we have the case where a
web site contains the pages A, B, C, and D, where A
contains a hyperlink to B and B contains hyperlinks to
both C and D. As shown in Figure 2, if users
repeatedly navigate from A to B, but only one user
clicks through to C and only one user clicks through to
D (as in Case 1), the longest repeating subsequence is
AB. If however more than one user clicks through
from B to D (as in Case 2), then both AB and ABD are
longest repeating subsequences. In this event, AB is a
LRS since on at least one other occasion, AB was not
followed by ABD. In Case 3, both ABC and ABD are
LRS since both occur more than once and are the
longest subsequences. Note that AB is not a LRS since
it is never the longest repeating subsequence as in Case
4 for the LRS ABD.

LRS have several interesting properties. First, the
complexity of the resulting n-grams is reduced as the
low probability transitions are automatically excluded
from further analysis. This reduction happens for all
transitions that occur onlyT times, which in some
cases, will result in a prediction not being made. For
example, with a threshold ofT=1 the penultimate match
for the LRS AB is A in Case 1. In this case, a
prediction will not be made after the pages A and B
have been requested. The reduction in complexity
typically results in a slight loss of pattern matching, as
will be made evident in the below experiments.

To contrast, if all 2nd-order Markov approximations
were being used to make predictions and path AB has
been observed, the system would have to randomly

C D

B

A

Case 1
LRS:

AB

C D

B

A

Case 2
LRS:

AB
ABD

C D

B

A

Case 3
LRS:

ABC
ABD

D

B

A

Case 4
LRS:

ABD

Figure 2. Examples illustrating the formation of longest repeating subsequences (LRS). Thick-lined arrows indicate more
than one traversal whereas thin-lined arrows indicate only one traversal. For each case, the resulting LRS are listed.

select either C or D since each are equally probable. If
a hint-based prefetching system were used, a set of
predictions could also be made by the server and passed
along to the client with the contents of the currently
requested page. In this case, a list could be returned
that contains both C and D, each with equal probability.
We will study the effect of varying result list size in
section 6.3. Note also that in Case 2, after seeing AB
the LRS predictive model will predict D, just as would
all the 2nd-order Markov approximations. In this
manner, the LRS model can be viewed as a proper
subset of the Kth-order Markov approximations.

Another interesting property of the LRS model is its
bias towards specificity. Any single page-to-page
transition that is always repeated as part of longer
sequences is not included into the LRS model. For
web sites, a transition from the popular entry points
usually results in all forward links being followed more
than some thresholdT. For predictive purposes, this
reduces the number of penultimate matches that the
LRS model can make for shorter paths and as direct
result, lowers the overall hit rate for the model.

5.2 Hybrid LRS-Markov Models

We now propose two straightforward hybrid models
that use LRS subsequences extracted from training data.
In the first hybrid LRS model we extract LRS patterns
from the training data and use these to estimate a first-
order Markov model. That is, we decompose each LRS
pattern into a series of corresponding one-hop n-grams,
e.g., the LRS ABCD would result in AB, BC, and CD
1-grams. We call this model aone-hop LRSmodel. In
Section 6.1, we compare the one-hop LRS model
against a first-order Markov model estimated from all
the paths in a training data set.

The second hybrid LRS model decomposes the
extracted LRS subsequences into all possible n-grams.
The resulting model is a reduced set of n-grams of
various lengths. We call this theAll-Kth-Order LRS
model, since all orders ofk are able to make
predictions. The main advantage of this model is that it
incorporates the specificity principle of pattern
matching by utilizing the increased predictive power
contained in longer paths. Below, we test the All-Kth-
Order LRS model against anAll-Kth-Order Markov
model. As with the All-Kth-Order LRS model the All-
Kth-Order Markov model is constructed by
decomposing all possible subsequences into varying
length n-grams.

5.3 Model complexity reduction

Schechter et al. [20] note that their profiling method
requires that a path of lengthS be decomposed into all
subpaths. They point out that to store the profile for a
single path of lengthS (i.e., all the necessary subpaths)
requires storage that grows as O(S3). Note, however,
thatn distinct paths of lengthSwill not necessarily each
require O(S3) storage. The distinct paths of lengthS
will share many redundant subpaths of length less than
S. The problem with the Schechter et al. analysis is that
it fails to incorporate the combinatorics of surfing
paths. Moreover, it is only in the worst case that one
needs to store all distinct paths and all distinct subpaths.
One may have the goal of storing those that are likely to
be needed, and this is the aim of the LRS pattern
extraction method.

The amount of space required for all modelsLRS and
Markovdepends on the combinatorics (e.g., the
redundancy) of user paths. Basically, we need to know
how the number of patternsof paths and subpaths
grows as a process of surfing. A model of the path
combinatorics could be formulated if we understood the
underlying path-generating process [6]. Unfortunately,
the process that generates user paths within web sites
has not been characterized in detail (although see [12]
for beginnings) and may well very from site to site as
well as from time to time.

In the absence of a more informed surfing process
model, we explore the following simple model.
Assume that surfing paths have an average branching
factorb. That is, surfers may start inb places, and from
each page they move to one ofb pages on average.
Assume that the surfers move at random, thereby
generating random paths. Surfing paths of lengthS can
be divided intoS/k subpath partitions of length 0 <k ≤
S. Each subpath partition of lengthk will have bk

patterns (assuming randomly chosen paths along theb
branches). So the complexity cost,C(k), in terms of
number of patterns as a function of subpath lengthk
will be

() i
S

i

biSSC �
=

=
1

)(

As noted by Newell and Rosenbloom [14], this does not
have a closed-form solution but one can show that the
derivative is such that

SbeSC)log()(' = .

It should also be noted, that under this random process
model longer path patterns are less likely to recur than
shorter path patterns.

For the one-hop models, the worst case complexity of a
one-hop Markov model is O(V2), whereV is the number
of pages in the web site and every page is connected to
every other page. In practice, the connectivity of web
pages is sparser as evidenced by the low number of
hyperlinks per page [2]. Such sparse connectivity
graphs are well suited for adjacency-list
representations, which require O(V+E) whereE is the
number of edges between pagesV. As mentioned
previously, the worst-case storage requirements for All-
Kth-order Markov approximations are O(S3).

The result of applying LRS to a set of path data is a
possible pruning of the resulting Markov models. The
extent of the pruning depends on the amount of
redundancy and the value selected for the repeating
thresholdT. In the worst case, the amount of storage
required for the LRS models is equal to the worst-case
for the equivalent Markov models. As we shall see, in
practice, the reduction can be quite significant, though
we note that the amount of reduction will likely vary
from web site to web site and even within sites
depending on traffic patterns.

6. Evaluation

In order to test whether the hybrid LRS models help
achieve the goal of reducing complexity while
maintaining predictive power, we conducted a set of
experiments on the same data used in our previous
study [17] summarized above. For the below analyses,
three consecutive weekdays were chosen starting on
Monday May 11, 1998 for the training data and
Thursday May 14, 1998 for the test day. There were
63,329 user paths for the training days and 19,069 paths
for the test day. As with our previous evaluation,
predictions were not made when the model did not
contain a matching pattern.

6.1 One-hop Markov and LRS Comparison

One-hop Markov models and their derivatives are
important to study empirically as they are conceptually
simple and easy to implement. Developing a rich
understanding of these models helps frame the results
and tradeoffs of more complex models. For this
experiment, the one-hop Markov and the one-hop LRS
models were built using three training days. For each
path in the test day, the path was decomposed into a set
of sequential transitions. Each model was then tested to

see if there was a matching prefix (Match) for each
path, and if so, if the correct transition was predicted
(Hit). From this, the probability of a match Pr(Match),
the probability of a hit given a match Pr(Hit|Match), the
hit rate across all transitions Pr(Hit), and the benefit-
cost ratio Pr(Hit)/Pr(Miss) were computed along with
the corresponding miss probabilities.

Table 2 displays the results for the one-hop Markov
model and the one-hop LRS model. Overall, there were
13,189 unique hops in the training data with the one-
hop LRS model reducing this set by nearly a third to
4,953 unique hops. The hit probabilities in Table 2 are
slightly higher than in Table 1. These discrepancies
result from weekday and weekend traffic differing
significantly at xerox.com and that the data used in
Table 2 contained only weekday data for the training
and testing sets.

Table 2. Results of comparing a one-hop Markov model with
the one-hop LRS model.

One-hop
Markov

One-hop
LRS

Number of one-hops 13,189 4,953

Model Size (bytes) 372,218 136,177

Total transitions in test data 25,485 25,485

Matches 25,263 24,363

Hits 6,402 6,056

Pr(Match) .99 .96

Pr(Hit|Match) .25 .25

Pr(Hit) .25 .24

Pr(Miss|Match) .75 .75

Pr(Miss) .74 .72

Pr(Hit)/Pr(Miss) .34 .33

The one-hop LRS model produces a reduction in the
total size required to store the model thus satisfying the
complexity reduction principle. One might expect that
the sharp reduction in the model's complexity would
result in an equally sharp reduction in predictive ability.
However, this is not the case as the one-hop LRS model
performs nearly as well as the one-hop Markov model
in terms of the total number of predictions made
(25,263 one-hop Markov versus 24,363 one-hop LRS),
total number of hits (6,402 one-hop Markov versus
6,056 one-hop LRS), and the overall probability of
correctly predicting the next page Pr(Hit) (25% one-hop
Markov versus 24% one-hop LRS). Both models
produced similar miss probabilities, with the Markov
model resulting in a 75% incorrect prediction rate and
the LRS model 72%. The benefit-to-cost ratio for each
model is nearly identical.

The one-hop LRS model was able to significantly
reduce model complexity while preserving predictive
ability. However both these models are very simple
and they do not leverage the greater predictive abilities
of longer paths.

6.2 All-K th-order Markov approximation
and All-K th-order LRS Comparison

In order to adhere to the principle of specificity, longer
paths should be used wherever possible given their
greater predictive power. With this in mind, we set out
to explore the differences between the All-Kth-order
Markov model and the All-Kth -order LRS model. As
with the one-hop analysis above, since the All-Kth-LRS
is a subset of all All-Kth-order Markov approximations,
we did not expect to see better predictive capabilities,
but rather wanted to examine the tradeoffs between
complexity reduction and the model's predictive power.

Table 3. Results from testing the All-Kth-order Markov and
the All-Kth-order LRS models.

All-K th-order
Markov

All-K th-
order LRS

Number of one-hops 217,064 18,549

Model Size (bytes) 8,847,169 616,790

Total transitions in test data 25,485 25,485

Matches 25,263 24,363

Hits 7,704 6,991

Pr(Match) .99 .99

Pr(Hit|Match) .31 .27

Pr(Hit) .30 .27

Pr(Miss|Match) .69 .73

Pr(Miss) .69 .72

Pr(Hit)/Pr(Miss) .44 .38

For this experiment, the same three training days and
test day were used. For each training day, each path
was decomposed into all corresponding n-grams for the
All-K th-order Markov model. With the All-Kth-order
LRS model, the LRS were first computed and then each
LRS was decomposed into the set of all n-gram
subsequences. For the evaluation, each transition in a
path of the test data was broken down into its
corresponding subsequence suffixes. The resulting
suffixes were then checked to see if there was a
matching n-gram for each model. The prediction with
the greatest specificity (number of element-wise
matches between training and test paths) weighted by
conditional probability was then selected as the
prediction. This weighted specificity measure differs
slightly from that used in our previous study and that

used by Schechter et al. A prediction was not made if a
suffix match was not found.

Table 3 shows the results of the experiment. As with
the previous experiments, the test data consisted of
25,485 transitions. As one would expect, the
complexity of storing the All-Kth-order Markov is
significant as there are close to one quarter million n-
gram sequences which in a naive representation require
8,800 Kbytes. The All-Kth-order LRS model reduces
the model space by an order of magnitude, decreasing
the total number of n-grams to 18,549, which consume
616 Kbytes of space, which is nearly double that for the
one-hop Markov model and almost six times that for
the one-hop LRS model. The All-Kth-order Markov
model was able to match nearly all transitions and
resulted in a correct prediction 31% of the time. The
performance of this model is better than the one-hop
Markov model tested earlier, highlighting the
specificity principle. The All-Kth-order LRS model
performed nearly as well, correctly predicting the next
page request 27% of the time, with an overall miss rate
of 73% compared to 69% for the Markov model. The
benefit-to-cost ratio for the Markov model exceeds that
for the LRS model (.44 versus .38).

Figure 3 summarizes the results of the two experiments
with respect to hit rates. In certain cases, the difference
between the predictive power of the All-Kth may not
outweigh the considerable space savings of the one-hop
models. While the All-Kth-order Markov model
provides the highest hit rate, the one-hop Markov
model provides 83% of the predictive power while
consuming only 4.2% of the space. The same is true for
the one-hop LRS, where 80% of the predictive power is
accomplished using only 1.5% of the space.

0

0.2

0.4

0.6

0.8

1

Pr(Match) Pr(Hit|Match) Pr(Hit)

All-Kth-Order Markov
All-Kth-Order LRS
One-Hop Markov
One-Hop LRS

P
er

ce
nt

Figure 3. Summary of the likelihood of being able to make a
prediction Pr(Match), correct prediction given a match
pr(Hit|Match) and overall hit rate Pr(Hit) of each model.

6.3 Parameterization of Prediction Set

Restricting the prediction to only one guess imposes a
rather stringent constraint. One could also predict a
larger set of pages that could be surfed to on the next
click by a user. For certain applications that aim to
reduce user latency like hint-based perfecting
architectures, it is important to understand the cost-
benefit tradeoffs in a systematic manner. This section
explores how the hit rate varies when considering larger
sets of predictions.

We evaluated each model’s performance when
returning sets of between one and ten predictions. Each
set was constructed by ranking the predictions about the
next page visit in decreasing order of likelihood, and
selecting the topmostn predictions. For the one-hop
models, the predictions were ranked by probability of
predicted transition. For the All-Kth–order models, the
predictions were ranked by the weighted specificity
principle.
Figure 4 shows the probability of each model correctly
predicting the next page visit across different prediction
set sizes. As with the previous experiments, the All-
Kth-order models performed better than the one-hop
models due to the increased information contained in
the longer paths and the LRS models performed slightly
worse than the Markov models at a fraction of the
model space. Increasing the prediction set has a
dramatic impact on predictive power, with the
predictive power of each method nearly doubling by
increasing the set size to four elements.

7. Future Work

Motivated by the principle of weighted path specificity
and complexity reduction, we have shown that small
compact models of user surfing behavior exist that
retain predictive power. Clearly, other methods exist to
predict future access of resources. While this paper has
focused on enhancements to various Markov models,
we believe that the concept of LRS can be successfully
applied to Markov models in other domains as well as
to other suffix-based methods.

In the above experiments, subsequences that occurred
more than once were considered repeating. In theory,
repeating can be defined to be any occurrence threshold
T. We hypothesize that model complexity can be
reduced even further while maintaining acceptable
predictive power by raising the thresholdT.
Determining the ideal threshold will depend upon the
specific data and the intended application.

Another variable that was not parameterized in the
above experiments was the confidence level for each
prediction. Inspection of the data revealed that in
several cases, each model was making predictions that
were not very likely. A modified pattern-matching
algorithm could be restricted to only make predictions
when a given probability of making a successful
prediction was achieved. While lowering the
probability of a match Pr(Match), the reduced overall
hit Pr(Hit) rate could be offset by the increased
likelihood of being correct Pr(Hit|Match). This is
especially appropriate for applications where the cost of
being wrong outweighs the benefits of being right.

The application of the LRS models to prefetching and
latency reduction is also of interest. Given the compact
size of the LRS models, one can imagine HTTP server
threads issuing hint lists to clients while maintaining the
model in memory. Our preference is a system in which
the server provides the client with a list of suggested
prefetchable items. The client then decides what items
to prefetch when. This would not require, but might
benefit greatly from modifying the current pre-
computed static LRS model into an adaptive, real-time
model, especially since the optimal hint set size will
most likely vary from server to server as well as page to
page within a server. The overall effectiveness of this
application and modifications needs to be evaluated. In
a similar manner, LRS provides a compact information-
dense method to store user paths for later data analysis.

From a more psychological perspective, we note that
LRS may represent the common navigational sub-units
or “chunks” across all users and documents on a web
site. That is, the repeating subsequences may be an
appropriate logical unit to encode the paths most
traveled. We postulate that these chunks are well suited

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

All-Kth-Order Markov
All-Kth-Order LRS
One-Hop Markov
One-Hop LRS

P
r(

H
it|

M
at

ch
)

Size of Prediction Set

Figure 4. The effect on making a correct prediction as a
function of the number of predictions made by each model.

for document and user clustering since they preserve
the sequential nature of surfing, are robust against
noise, and reduce overall computational complexity.

Finally, the exact space reduction achievable by LRS
for Web surfing requires the generating function
underlying web surfing to be identified and other traces
to be examined.

8. Conclusion

Clearly there exists a tradeoff between model
complexity and predictive power. Our initial
exploration into the predictive capabilities of user paths
led us to postulate the principles of complexity
reduction and specificity. From this, we employed the
notion of longest repeating subsequences to produce a
subset of all paths. We showed that in the simplest case
of modeling paths as a one-hop Markov model, the
reduced one-hop LRS model was able to match the
performance accuracy of the one-hop Markov model
while reducing the complexity by nearly a third. We
then showed that overall hit rates could be raised by
including the principle of specificity, with the All-Kth-
Order LRS model almost equaling the performance of
the All-Kth-order Markov model while reducing the
complexity by over an order of magnitude. We further
showed that varying the size of prediction set results
large gains in predictive.

9. Acknowledgements

We would like to the USENIX reviewers and our
shepherd Jeff Mogul for their helpful comments and
suggestions.

10. References

1. Bestravos, A. (1995). Using speculation to reduce server
load and service time on the WWW.Proceedings of the 4th
ACM International Conference on Information and
Knowledge Management, (CIKM '95)Baltimore, MD.

2. Bray, T. (1996). Measuring the Web.Proceedings of the
Fifth International WWW ConferenceParis, France.

3. Brin, S. and Page, L. (1998). The anatomy of a large-scale
hypertextual web search engine.Proceedings of the Seventh
International WWW ConferenceBrisbane, Australia.

4. Cao, P., Felten, E.W., Karlin, A.R., and Li, K. (1996).
Implementation and performance of integrated application-
controlled file caching, prefetching, and disk scheduling.
ACM Transactions on Computer Systems, 14, 311-343.

5. Chi, E., Pitkow, J., Mackinlay, J., Pirolli, P., Gossweiler,
R., and Card, S.K. (1998). Visualizing the evolution of web
ecologies.Proceedings of the Conference on Human Factors
in Computing Systems, (CHI '98)Los Angeles, CA.

6. Clement, J., Flajolet, P., and Valle, B. (1998). The analysis
of hybrid trie structures.Proceedings of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms.

7. Cohen, E., Krishnamurthy, B., and Rexford, J. (1998).
Improved end-to-end performance of the web using server
volumes and proxy filters.Proceedings of the ACM
SIGCOM.

8. Crow, D. and Smith, B. (1992). DB_Habits: Comparing
minimal knowledge and knowledge-based approaches to
pattern recognition in the domain of user-computer
interactions. In R. Beale and J. Finlay (Eds.),Neural networks
and pattern recognition in human-computer interaction(pp.
39-63). New York: Ellis Horwood.

9. Cunha, C.R. (1997).Trace analysis and its applications to
performance enhancements of distributed information
systems. Unpublished thesis, Boston University, Boston.

10. Dean, J. and Henzinger, M.R. (1999). Finding related
pages in the World Wide Web.Proceedings of the Eighth
International World Wide Web ConferenceToronto, Canada.

11. Griffioen, J. and Appleton, R. (1994). Reducing file
system latency using a predictive approach.Proceedings of
the 1994 Summer USENIX Technical ConferenceCambridge,
MA.

12. Huberman, B.A., Pirolli, P., Pitkow, J., and Lukose, R.J.
(1998). Strong regularities in World Wide Web surfing.
Science, 280, 95-97.

13. Kroeger, T.M., Long, D.D.E., and Mogul, J.C. (1997).
Exploring the bounds of web latency reduction from caching
and prefetching.Proceedings of the USENIX Symposium on
Internet Technologies and Systems, (USITS '97)Monterey,
CA.

14. Newell, A. and Rosenbloom, P.S. (1981). Mechanisms of
skill acquisition and the law of practice. In J.R. Anderson
(Ed.)Cognitive skills and their acquisition(pp. 1-55).
Hillsdale, NJ: Lawrence Erlbaum.

15. Padmanabhan, V.N. and Mogul, J.C. (1996). Using
predictive prefetching to improve World Wide Web latency.
Computer Communication Review, 26, 22-36.

16. Pirolli, P., Pitkow, J., and Rao, R. (1996). Silk from a
sow's ear: Extracting usable structures from the web.
Proceedings of the Conference on Human Factors in
Computing Systems, (CHI '96)Vancouver, Canada.

17. Pirolli, P. and Pitkow, J.E. (1999). Distributions of surfers'
paths through the World Wide Web: Empirical
characterization.World Wide Web, 2(1-2), 29-45.

18. Pitkow, J. and Pirolli, P. (1997). Life, death, and
lawfulness on the electronic frontier.Proceedings of the
Conference on Human Factors in Computing Systems, (CHI
'97) Atlanta, GA.

19. Pitkow, J.E. and Kehoe, C.M. (1999). GVU's Tenth
WWW User Survey.Online Publication:
http://www.gvu.gatech.edu/user_surveys.

20. Schechter, S., Krishnan, M., and Smith, M.D. (1998).
Using path profiles to predict HTTP requests.Proceedings of
the Seventh International World Wide Web Conference
Brisbane, Australia.

